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Abstract 
 
In this work, a mixed beam approach is performed for 
the structural response of thin-walled, multi-celled 
composite blades with built-in twist. The analytical 
model includes the effects of elastic couplings, shell 
wall thickness, and torsion warping. The Reissner’s 
semi-complimentary energy functional is used to derive 
the beam force-displacement relations. The bending and 
torsion-related warpings introduced by the pretwist 
effect are derived in a closed form in the beam 
formulation. An extensive validation study has been 
carried out to correlate the current analysis with 
available literature and detailed finite element structural 
analysis results. Various cross-section blades are 
considered in the comparison study. These include 
pretwisted beams with rectangular solid and single-cell 
box section, composite beams with two-cell box section, 
and two-celled composite blades with extension-torsion 
couplings. Very good correlation has been obtained for 
cases considered. The effects of pretwist and fiber 
orientation angles on the static behavior of thin-walled 
composite beams with multi-cell sections are also 
investigated.  
 

Introduction 
 
During the past couple of decades, pretwisted blades 
have attracted a lot of attention especially for 
helicopters, propellers, tilt rotors, and wind turbine 
applications. In a structural point of view, the pretwist 
affects not only on the torsional property but also on the 
bending rigidity. Besides this direct characteristic, the 
pretwist introduces a coupling between extension and 
torsion, even for blades with isotropic materials. For the 
composite case, there will be an additional coupling 
between bending and shear. It is apparent that these 
structural couplings make the analysis more involved 
than that without the pretwist effect especially with 
composite materials.  

 
Rosen [1] presented an extensive review dealing with 
statics, dynamics, and stability aspects of pretwisted 
beams. It is suggested that the appropriate treatment of 
section warpings (e.g., torsion warping) is viable for 
refined structural analysis of pretwisted blades. In 
addition, bending-related warpings as well as torsion 
warping can play significant roles in the structural 
response of composite blades, thus these should be 
taken into account correctly. Despite vast research 
activities displayed so far [2-4], as pointed out by Yu 
[5], there remains still a lack of published results with 
which to compare for pretwisted composite beams. In 
other words, there is a strong need to provide 
benchmark results in the relevant field and also 
fundamental information on specific subjects inherent 
in the modeling of pretwisted composite blades. 
 
In general, composite rotor blades are built-up 
structures made of different materials for the skin and 
spar and are of closed single- or multi-celled cross-
sections. There is a need to properly model the local 
behavior of the shell wall as a reaction to the global 
deformation of the blade, even for the thin-walled blade 
analysis. There have been a few selected research 
activities to model and analyse thin-walled composite 
beams with multi-cell sections [6-8]. Mansfield [6] 
developed a flexibility formulation for thin-walled 
composite beams with two-cell cylindrical tube section. 
The equilibrium equations of shell wall are used to 
derive a [4 × 4] flexibility matrix that captures classical 
four beam variables (extension, two bendings, and 
torsion). Chandra and Chopra [7] investigated both 
analytically and experimentally the structural response 
of two-cell composite blades with extension-torsion 
couplings. The stiffness matrix derived is of the order 
of [9 × 9] since they include derivatives of shear strains 
as independent variables. Volovoi and Hodges [8] 
developed closed-form expressions by using the 
variational-asymptotic beam approach for the stiffness 
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matrics that contain the four classical beam variables. 
They insisted that shell bending strain measures as well 
as constraint conditions for each cell of the section were 
not taken into account consistently in the published 
literature. Numerical results showing the effects of shell 
bending strain measures are provided in the paper. 
Jung, et al. [9] extended the previous mixed beam 
theory [10] to consider the multi-cell section blades. 
The theory accounts for the effects of elastic couplings, 
shell wall thickness, transverse shear couplings, 
warping, and warping restraint. The theory was applied 
to composite blades with two-cell airfoil sections. 
Fairly good correlation with experimental test data has 
been achieved by using the mixed approach. 
 
Despite vast research efforts devoted so far, the 
pretwisted composite blades combined with multi-cell 
sections have not been exploited in the literature. In the 
present work, the mixed formulation developed in the 
earlier work [9-10] is extended to cover thin-walled, 
pretwisted composite blades with multi-cell section. 
The bending and torsion-related warpings associated 
with the introduction of pretwist are derived in a closed 
form in the beam formulation. An extensive validation 
study with available literature is performed to verify the 
current approach. The effects of pretwist and fiber 
orientation angles on the static behavior of thin-walled 
composite blades are also investigated. 
 

Formulation 
 
Figure 1 shows the geometry and coordinate systems of 
a pretwisted composite blade with two-cell cross-
section. Two different systems of coordinate axes are 
used: an orthogonal Cartesian coordinate system (x, y, 
z) for the blade, where x is the reference axis of the 
blade while y and z are the transverse coordinates of the 
cross section; a curvilinear coordinate system (x, s, n) 
for the shell wall of the section, where s is the contour 
coordinate measured along the middle surface of the 
shell wall and n is normal to the contour coordinate. 
The global deformations of the beam are (U, V, W) 
along the x, y and z axes, respectively, and φ  is the 
twist about the x-axis. The local shell deformations are 
(u, vt, vn) along the x, s and n directions, respectively. 
Allowing the transverse shear deformations, the local 
deformations at an arbitrary point on the shell wall can 
be expressed as 
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Fig. 1 Geometry and coordinate systems of a 
pretwisted two-cell blade. 

 
In Eq. (1), u  and  represent the deformations at 
the mid-plane of the shell wall and 

00 , tv 0
nv

sx ψψ ,  represent 
rotations about the s- and x-axes, respectively. The shell 
mid-plane displacements can be obtained in terms of 
the beam displacements and rotations as follows: 
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where r and q are the coordinates of an arbitrary point 
on the shell wall in the (n, s) coordinate system, 
respectively.  
 
Assuming small strains, the strain-displacement relation 
of the shell wall can be obtained as [10]: 
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where a is the local shell radius of curvature and ω  is 
the sectorial area of the section. In Eq. (3), the cross-
section rotations βy and βz are defined as: 
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In the above equation,  and xyγ xzγ  represent the 

transverse shear strains of the blade in the horizontal 
and vertical directions, respectively. The strain-
displacement relations of Eq. (3) form the basis of the 
displacement method for thin-walled blades.  (2.8) 
 
Assuming the hoop stress flow Nss in the shell wall is 
negligibly small, the constitutive relations for the shell 
wall of the section are written as 
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 (2.11a) 
where the primes over the stiffness constants denote 
that these are reconstructed using the zero hoop stress 
flow assumption (Nss=0) from the original A  and 

 coefficients appeared in the classical lamination 
theory [11]. In the present approach, we treat the strain 
measures 

ijij B,

ijD

xxε , xxκ  and xsκ as the known and derive 
expressions for the shear flow Nxs and the hoop moment 
Mss in terms of these known quantities by use of the 
equilibrium equations of the shell wall. It is convenient 
to write Eq. (5) in a semi-inverted form as: 
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 In order to assess the semi-inverted constitutive 
relations into the beam formulation, a modified form of 
Reissner’s semi-complimentary energy functional ΦR is 
introduced: 
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The stiffness matrix relating beam forces to beam 
displacements is obtained by using the variational 
statement of the Reissner functional which is given by 
[10], 
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where l is the length of the blade. In Eq. (8), the singly 
underlined terms represent the strain energy density of 
the blade and the doubly underlined term is the 
constraint condition with Nxs acting as the Lagrange 
multiplier [8]. Performing the integrals, Eq. (8) results 
in the equilibrium equations of an element of the shell 
wall  
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as well as the constraint conditions: 
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The first two equations in Eq. (9) indicate that Nxs 
consists of a constant part and a part that depends on 
the s-integral of Nxx,x. In addition, it is found from the 
third and fourth equations in Eq. (9) that Mss has a 
constant part, a part that varies linearly with s and a part 
that depends on the s-integral of Mxs,x. Hence, one can 
write 
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where  represent the circuit shear 
flows for each of the multi-cell section. For a two-cell 
blade, specifically, these shear flows and moments lead 
to eight unknowns that are expressed as: 

z
ss

y
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The continuity condition that must be satisfied for each 
wall of the section yields the following set of equations 
[8]: 
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Fig. 2  A two-cell airfoil section. 
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where the subscripts I and II indicate integration over 
the contour of cells I and II, respectively (see Fig. 2). It 
is noted that, for a m-celled section, the continuity 
condition results in a set of 4m equations. Inserting Eq. 
(6) into Eq. (13), the unknown shear flows can be 
obtained as 
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where the derivatives of blade deformations are defined 
as 
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In Eq. (14), [Q] is a symmetric [8×8] matrix and [P] is a 
fully populated [8×5] matrix. Note that these matrices 
are integrals over the whole contour and do not contain 
any coordinates such as y, z or s. Inserting Eq. (14) into 
Eq. (11), the shear flow and the hoop moment of the 
section are expressed as  
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It should be noted that the first part of the r.h.s. of Eq. 
(16) corresponds to the active component of shear flows 
and the second part corresponds to the reactive 
component of shear flows according to the terminology 
adopted in Gjelsvik [12]. The reactive shear flows are 

dependent on the applied forces and are related with 
transverse shear degrees of freedom. In order to 
simplify the analysis, the reactive parts are neglected in 
the present study. The transverse shear-related 
couplings can readily be included in a blade where 
these effects become more important [10]. 
 
By using the definition of shear strain γxs in both the 
equations (3) and (6), and integrating over 0 to s, the 
displacement field is obtained as 
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where ψi denote the cross-section warping distributions 
that present the following characteristic as 
 

0=∫ dsiψ  (17a) 

 
Differentiating Eq. (17) with respect to x, the axial 
strain becomes 
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where k is the initial twist of the blade and is defined as 
 

xxk ,β=  (19) 
 
where βx is a rotation of the cross-section about the x-
axis. In obtaining Eq. (18), the higher order 
contributions to the axial strain due to the pretwist 
effect are neglected as the same reason mentioned in Eq. 
(16). 
 
Inserting Eqs. (6), (16), and (18) into Eq. (8), the strain 
energy density of a blade results in the beam force-
displacement relation as: 
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where N is the axial force, My and Mz are the bending 
moments about y and z directions, respectively, T is the 
twisting moment and Mω is the Vlasov bi-moment. In 
the above equation, the [5 × 5] cross-section stiffness 
matrix  relates the beam force and moment 
resultants with beam displacements in an Euler-
Bernoulli and Vlasov level of approximation. It should 
be noted that the higher order parts in Eqs. (16) and 
(18) along with the doubly underlined term in Eq. (8) 
contribute to the transverse shear related couplings and 
this leads to a [7 × 7] stiffness matrix. The details can 
be found in Ref. 10.  
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Results and Discussions 

 
Numerical investigation has been performed to 
correlate the current analysis with available literature 
and also to identify the influence of pretwist on the 
structural behavior of composite blades. For the 
comparison study, various cross-section blades, such as 
pretwisted metal beams with rectangular solid and 
single-cell box section, two-celled composite box 
beams, and two-celled composite blades with 
extension-torsion couplings, are considered. 
 
Pretwisted metal beams 
 
The first example considered in this study is a 
pretwisted steel beam used in the work of Durocher and 
Kane [13]. The length of the beam is 76.2 mm and has a 
rectangular solid cross-section with 25.4 mm of width 
and 2.54 mm of thickness. The material properties are: 
Young’s modulus E = 203.4 N/mm2 and Poisson’s ratio 
ν = 0.3532. The total geometric pretwist angle βT from 
root to tip of the beam amounts to 68.8 degrees. The 
beam is clamped at its root and is loaded at the beam tip. 
Fig. 3 presents the comparison results of both the axial 
displacements and induced tip twist for the pretwisted 
steel beam under the action of tip tension force of 
22,250 N. The present results are compared with the 
analysis results of Durocher and Kane [13] and also 
with two-dimensional plate/shell finite element analysis 
results designated in the plot as MSC/NASTRAN 2D. 
A total of 200 CQUAD4 plate/shell elements are used 
for the MSC/NASTRAN 2D analysis. As expected, the 
beam shows an extension-torsion coupled behavior due 
to the introduction of the geometric pretwist. The 
agreement between the three different results is seen to 
be good. In general, the present results with mixed 
formulation are in a better agreement with the detailed 
finite element results than those with Durocher and 
Kane [13]. Fig. 4 shows the comparison of both the tip 
twist and induced tip tension under a tip torque load of 
22.6 N-m. The present predictions are in good 
agreements with those of Durocher and Kane [13] and 
MSC/NASTRAN 2D, as is seen in Fig. 4. 
 
The second example is a single-celled, pretwisted box 
beam studied in Bauchau and Hong [3]. The box beam 
of span l = 0.635 m has a thin-walled rectangular cross-
section (depth 25.4 mm, width 127 mm) with a uniform 
thickness of 1.07 mm. Young’s modulus and shear 
modulus are E = 115.4 MPa and G = 84.8 MPa, 
respectively. Fig. 5 shows the comparison of predicted 
tip twists of the beam with those of  Bauchau and Hong  
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Fig. 3 Comparison of response for pretwisted 
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Fig. 4 Comparison of response for pretwisted 
rectangular solid beam under tip torque (22.6 N-m). 

 
[3] as a function of the pretwist angles. It is seen that 
the present theory captures clearly both the torsional 
stiffening under tip torque and the untwisting of the 
beam under tip tension. Once again, the correlation 
between the current predictions and the analytical 
solution by Bauchau and Hong [3] is excellent. 
 
Two-cell composite box-beam 
 
The next example presented is a two-celled, thin-walled 
composite box-beam with extension-torsion couplings. 
As described in Fig. 6, the top and bottom walls of the 
box section are composed of [θ3/-θ3] while the vertical 
walls are composed of [-θ3/θ3] such that the extension-
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torsion couplings arise. Note that the normal to each 
wall is directed outward and the order is from top to 
bottom as is usual in the standard textbook [11]. The 
positive fiber angles are defined in Fig. 7. The 
geometry and material properties for the two-cell box 
beam are summarized in Table 1.  
 

Table 1. Geometry and material properties of two-
cell composite box-beams. 

Properties Values 

E11 
E22 
G12 
ν12 

Ply thickness, tp 
Outer width, 2b 
Outer depth, 2h 

Length, l 

141.9 GPa (20.59 x 106 psi) 
9.78 GPa (1.42 x 106 psi) 
6.13 GPa (0.89 x 106 psi) 

0.42 
0.127 mm (0.005 in) 
24.21 mm (0.953 in) 
13.64 mm (0.537 in) 

762 mm (30 in) 
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Fig.  5 Comparison of tip twist for pretwisted box 
beams. 

 
The two-cell box beam depicted in Fig. 6 is studied in 
Volovoi and Hodges [8]. They presented numerical 
results showing that the published literature didn’t take 
into account consistently both the shell bending strain 
measures and constraint conditions for composite 
beams with multi-cell cross-sections. Fig. 8 shows the 
comparison of torsion rigidities of two-cell composite 
box-beams as a function of ply orientation angles. In 

the plot, the present results are compared with the 
analytical results by Volovoi and Hodges [8] and with 
those of two-dimensional MSC/NASTRAN model. A 
variational-asymptotic beam approach is adopted for 
the results of Volovoi and Hodges. For the NASTRAN 
analysis, a finite element mesh composed of 6,600 (150 
along the beam span, 44 through the cross-section) 
CQUAD4 elements is used for the two-celled box-beam. 
It is seen that there is a clear correlation between the 
results obtained by three different methods. Though not 
presented herein, very good correlations are noticed for 
two-cell box-sections with different layup cases in 
comparison with the MSC/NASTRAN results. Fig. 9 
shows the variation of tip bending slopes as a function 
of fiber angles for the two-celled box-beam. The 
present results present a good correlation with the 
NASTRAN results. The results in Fig. 9 also indicate 
that the elastic couplings can be quite influential on the 
beam behavior: the increase of bending slopes obtained 
at 90 degrees is 13.5 times as high as that at 0 degree. It 
should be mentioned that this is achieved by purely 
changing the fiber angles without varying any 
geometric dimensions of box beams.  
 
 

[θ3/−θ3]

[−θ3/θ3]

[θ3/−θ3]

[−θ3/θ3]

 
Fig. 6 Extension-torsion coupled layup for two-cell 
box section. 

 
 

Fig.  7 Schematic of two-cell composite box beam. 
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Two-cell composite blades 
 
Numerical simulations are carried out also for coupled 
composite blades with two-cell airfoil section. Figure 2 
shows the schematic of the two-cell blade section that 
fabricated and tested by Chandra and Chopra [14]. The 
blade is clamped at one end and warping restrained at 
both ends. The geometry and the material properties of 
the blade are given in Table 2. Blades with three 

different ply layups representing extension-torsion 
couplings are studied in this section. Note that the 
bending-torsion coupled blades are already considered 
in Ref. 9. Table 3 shows the details of the layup used in 
the blades. 
 

Table 2. Geometry and material properties of 
composite blades. 

Properties Values 

E11 
E22 
G12 
ν12 

Ply thickness 
Airfoil 
Length 
Chord 

Airfoil thickness 

131 GPa (19 x 106 psi) 
9.3 GPa (1.35 x 106 psi) 

5.86 GPa (0.85 x 106 psi) 
0.40 

0.127 mm (0.005 in) 
NACA 0012 

641.4 mm (25.25 in) 
76.2 mm (3 in) 

9.144 mm (0.36 in) 

 
Figure 10 shows the comparison results of tip bending 
slopes for the two-cell blades under unit tip shear load. 
The experimental test data as well as the theoretical 
results obtained by Chandra and Chopra [14] and with 
those of the MSC/NASTRAN are compared with the 
present predictions. For the NASTRAN calculation, a 
total of 51,600 CQUAD4 plate/shell elements leading 
524,131 degrees of freedom are used. As can be seen in 
the plot, the predictions by the present method are in 
excellent agreement with experimental results and also 
with the NASTRAN results and show slightly better 
correlation than with the analytical results obtained by 
Chandra and Chopra [14]. It is note that Ref. 14 used a 
zero-in-plane strain and curvature assumption 
(γss=κss=0), while, in the present approach, a zero hoop 
stress flow assumption (Nss=0) is used for the 
constitutive relations (see Eq. (5)). In addition, the 
present method adopts a mixed-based approach for the 
beam formulation, while, in Ref. 14, a classical 
displacement-based approach is developed. These 
differences may contribute to the discrepancies as 
noticed in Fig. 10. Fig. 11 presents the comparison of 
tip twist response for the three different blades listed in 
Table 3 under the action of unit tip torque load. A good 
correlation between the present predictions, 
experimental results and the two-dimensional 
MSC/NASTRAN results is clearly seen in the plot. 
Based on the numerical studies displayed so far, the 
present beam formulation is thought to capture all the 
non-classical structural effects of thin-walled composite 
beams with multi-cell sections in a quite consistent 
manner. 
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Fig.  10 Comparison of bending slopes for extension-
torsion coupled blades under unit tip shear load. 
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Fig.  11 Comparison of bending slopes for extension-
torsion coupled blades under unit tip torque load. 

 
Effect of Pretwist 
 
Finally, the effect of pretwist on the structural response 
of thin-walled composite box-beam is investigated. For 
this study, each of the box-beam walls is composed of 
[θ6] to yield an extension-torsion coupling. Fig. 12 
shows the normalized tip twist response of [156] 
composite box-beam obtained as a function of pretwist 
angles. The normalized tip twist is defined as 

o0=Tβφφ , where o0=Tβφ  is the value of tip twist at 

zero angle of pretwist. As a means to quantify the 
pretwist effect on the beam behavior, the slenderness 
ratio of the box-beam is varied with change of pretwist 
angles. The slenderness ratio used is the span length 
divided by the height of the section. The pretwist angle 
is varied from 0 degree to 90 degrees while the 
slenderness ratio is decreased from 60 to 5.  As 
expected, the effects of pretwist on the torsional 
response become larger as the slenderness ratio 
decreases. As much as 42.8% reduction of tip twist 
(stiffening) is observed at 90 degrees of pretwist angle 
and at a slenderness ratio of 5, while the effects seem 
marginal when the slenderness ratio reaches 60 which 
falls the usual range of helicopter rotor blades. At this 
value of slenderness ratio (60), only 3% reduction of 
twist response is noticed even at 90 degrees of pretwist. 
The reason seems obvious when we look at the 
equations (18) and (20): Since the beam stiffness values 
are influenced by a square of the initial twist k, the 
pretwist affects the structural response in proportion to 
the square of the pretwist angles while the slenderness 
ratio is inversely proportional to the square of itself. 
Thus, blades with low slenderness ratio and high 
pretwist angles present much larger effect on the torsion 
behavior. 
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Fig. 12 Effect of slenderness ratios on the twist 
response of pretwisted composite box beam. 

 
As mentioned before, the results in Fig. 12 are obtained 
when the fiber angles held fixed (θ = 15o). In Fig. 13, 
the effects of fiber angles on the torsion response of 
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pretwisted box-beams are investigated with varying the 
pretwist angles. In this case, the fiber angles in the box-
beam walls are varied in the positive or negative 
direction while the slenderness ratio is held fixed to 20. 
It is seen that both the fiber angles and pretwist angles 
affect the torsional behavior of the beam significantly. 
The maximum change occurs at 15 degrees of fiber 
angles. The amount of increase reaches 6.6% at the 
positive 15 degrees, and as much as 10.1% reduction in 
twist angle is noticed at the negative 15 degrees. Note 
that the positive fiber angles have a softening effect 
while the negative angles present a stiffening effect on 
the torsion response. This result indicates that obtaining 
an appropriate combination of composite fiber angles 
and pretwist angles needs thorough investigation for 
optimum rotors. 
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Fig. 13 Effect of fiber orientation angles on the twist 
response of pretwisted composite box beam. 

 
Concluding Remarks 

 
In the present work, a mixed beam formulation for thin-
walled pretwisted composite blades with multiple-cell 
sections has been developed. The beam force-
displacement relations of the blade are obtained by 
using the Reissner’s semi-complementary energy 
functional. The bending and torsion-related warpings 
introduced with the pretwist effect are derived in a 
closed form in the beam formulation. The theory has 
been validated with available literature and detailed 
finite element results for coupled composite beams and 
blades with various cross sections. These include 
pretwisted beams with rectangular solid and single-cell 

box-section, composite beams with two-cell box section, 
and two-cell composite blades. Good correlation of 
responses with other literature is obtained for all the test 
cases considered. The effects of pretwist and fiber 
orientation angles on the static behavior of thin-walled 
composite box beam are also investigated. It is shown 
that the pretwist effects become pronounced at beams 
with low slenderness ratios. For [156] composite box-
beam case, the reduction of tip twist amounts to 42.8% 
at 90 degrees of pretwist angle and at a slenderness 
ratio of 5. In addition, the positive fiber angles have a 
softening effect while the negative angles present a 
stiffening effect on the torsion response. The amount of 
increase reaches 6.6% at the positive 15 degree case, 
and as much as 10.1% reduction in twist angle is 
noticed at the negative 15 degree case. 
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Table 3.  Lay-up cases of two-cell composite blades. 

Spar 
Cases 

Top Flange Bottom Flange 
Web Skin 

Blade 1 
Blade 2 
Blade 3 

[0/15]2 
[0/30]2 
[0/45]2  

[0/15]2 
[0/30]2 
[0/45]2  

[0/15]2 
[0/30]2 
[0/45]2 

[15/-15] 
[30/-30] 
[45/-45]  
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