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Abstract 

An engineering method for the nonlinear thermo
viscoelastic characterization of elastomeric 
dampers in the frequency domain was developed 
and numerically realized . 
Material equations are represented in terms of 
amplitude dependent complex moduli. Effects of 
material nonlinearities, heat buildup and environ
mental conditions on the damper efficiency were 
studied by a thermoviscoelastic model with concen
trated parameters. This model describes the steady 
state and transient thermal behaviour including 
special cases such as low temperature stiffening 
and thermal runaway.An application of this thermo
mechanical model for the prediction of rotor blade 
damping is demonstrated .In addition a short outline 
is given to a damper model with distributed 
parameters. 

1. Introduction 

Elastomeric lead-lag dampers are widely used in 
modern soft-inplane bearing less rotor systems as 
the primary source for damping. 
An optimum damper design has to take into 
account the operational variables including tempe
rature extremes and service life deterioration 
without serious loss of damping 1 10, 12,13 /. 
Due to the high thermal sensitivity of the physico
mechanical properties and the low heat conduction 
of elastomers the inftuence of dissipative heating, 
environmental temperature and air cooling on 
damper performance and durability is of significant 
importance in damper design. 
For this reason, investigations of the intensity of 
internal heat generation in relation to thermo
mechanical material properties, loading amplitude, 
frequency and heat release capacity are of consi
derable practical interest. 
The present paper describes an approximate 
theory of the thermoviscoelastic behaviour of 
elastomeric dampers , reflecting experiences 
gained during the development of the bearing less 
BO 108 (EC155) - rotor system (see Figure 1). 
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2. Thermomechanical Damper Model with 
Concentrated Parameters 

Stiffness and dissipation energy are global,directly 
measurable properties of elastomeric dampers. 
The analytical characterization of dampers by 
means of these integral quantities leads to 
concentrated parameter models. 
This formulation is consistent with the principle of 
energy conservation and based on a homogeneous 
distribution of strains and temperature. 
In the frequency domain the equations for spring 
rates and dissipation energy are represented in 
terms of amplitude and temperature dependent 
complex moduli. This engineering approach yields a 
useful analytical tool for predicting the thermovisco
elastic response at different loads and environ
mental conditions. In the fo/lowing,the investigations 
are limited to a representative damper model under 
cyclic shear.Superposition of dissipation energy 
rates allows an approximate generalization of this 
method to simultaneous multiaxial cyclic loads. 

2.1 Thermoviscoelastic Characterization in the 
Frequency Domain 

2.1.1 Experimental Determination of Mechanical 
Properties 

For the characterization of the nonlinear visco 
elastic behaviour of elastomeric dampers two kinds 
of experiments are usually conducted /4,13,14/: 



Short time tests 
Dynamic tests with mono (poly-) harmonic 
displacement (force-) controlled loads at different 
combinations of amplitudes, frequencies and 
temperature. 

Long-term tests 
Relaxation (creep- ) tests at different load ampli -
tudes and temperatures. 

1 n the first case, the load, displacement and 
temperature are recorded continuously and 
numerically analyzed for the determination of the 
complex spring rate and hysteresis area. 
In the second case, load (resp. displacement) and 
temperature are recorded continuously. The 
numerical analysis yields the relaxation (creep-) 
function and the static equilibrium modulus 
dependent on amplitude and temperature. 
A sketch of a typical test setup for dynamic shear 
tests is shown in Figure 2. 
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Fig.2 Test setup for dynamic shear tests. 

2.1.2 Idealization of Measured Hysteresis Loops 

Measured monofrequent hysteresis loops show in 
the nonlinear range a more or less significant 
deviation from the ideal viscoelastic elliptic shape. 
For the analytical characterization of real damper 
properties (based on the methods of the classic 
theory of viscoelasticity) ,such nonlinear hysteresis 
loops are appropriately idealized by means of the 
following two equivalent criteria 

• same values of loop area (dissipation energy 

per cycle W0 ,.,) 

• same values of the amplitude of force F and 
displacement x 

The dynamic spring rate IK*I and the mechanical 
loss factor '1 = tano in the two types of loops are 
identical (method of equivalent damping energy). 
This widely used method leads to the introduction 
of an amplitude dependent complex modulus in the 
sense of generalization of the linear theory of 
viscoelasticity I 5 ,9,15,18 1. This allows an 
adequate simulation of the damper characteristic in 
respect to complex stiffness, loss factor and 
dissipation energy (heat build up). 
Figure 3 shows this "linearization" procedure in 
form of a sketch. 
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Fig.3 : Quasi - linearization of a measured 
hysteresis loop ( principle sketch) . 

Complex stiffness IK*I and mechanical loss factor 

11 = tano are defined in this context as 

IK*I = FIX 

Y] = tan l arcsin ( :.:;-::) ] 

2.1.3 Nonlinear Analytical Characterization 

2.1.3.1 Factorization of Complex Viscoelastic 
Quantities 
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A widely reported and experimental verified method 
I 5, 13, 15,18/ for the characterization of nonlinear 
thermoviscoelastic material properties in the 
frequency domain is based on the definition of 
amplitude and temperature dependent complex 
moduli. 
The generalization of the classical theory of 
viscoelasticity to mechanical nonlinearity and 
thermomechanical coupling yields the following 
interrelations between force- and displacement 
controlled loading conditions in the frequency 
domain. 

Displacement-controlled viscoelastic response: 

F(x,w,{},t, ... ) = IK*(x,w,{},t, ... )l x 

K*(x,w,{},t, ... ) = K'(x,w,{},t, ... ) + i K"(x,w,{},t, ... ) 

T) (x,w,{},t , ... ) ~ K"(x,w,{},t , ... )/K'(x,w,{},t, ... ) 

Force-controlled viscoelastic response: 

x (F,w,{},t, ... ) = IJ* (F,w,{}, t, ... )l F 

J* {F,w,{},t, ... ) = J' (F,w,{}, t, ... ) - i J" (F,co,{}, t, ... ) 

T) (F,w,{},t, ... ) = J" (F,w,{},t, ... )/J' {F,w,{},t, ... ) 

Complex spring rate K* and complex compliance J* 
are connected here by the following relations 

J'l l {F,w,{},t, ... ) = K'1 1(x,w,{},t, ... ) I IK*(x,w,{}, t, .. .)l' 

IJ*{F,w,{},t, ... ) I = IK*(x,w,{}, t, ... )l"' 

and 

T)(F,w,{},t, ... ) = T) (x,w,{}, t, ... ) 

with 

F = IK*(x,w,{},t, ... )l x 

From the theoretical point of view,both descriptions 
of the complex moduli are equivalent. 
In order to characterize adequately these visco
elastic quantities, it is advantageous to introduce 
explicit analy1ical expressions. 
Experimental investigations show that effects of 
mechanical (amplitude) and thermal nonlinearity 
can be approximated by separable functions within 
the working range of the lead-lag damper /13 , 15 /. 
The difference between measured values and the 
approximation by separable functions of amplitude 
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and temperature effects is comparatively small and 
can be accepted in this engineering approach. 

With the definition of a parameter range and an 
appropriate selection of a reference point P 
( P (x,, w,, {},, t,, ... )) within this "working window" 
the following factorization with regard to amplitude, 
frequency and temperature is obtained : 

K'(x,w,<'!) = K', g'(x) h'(w,{}) 

K'(x,w,{}) = K", g"(x) h"(w,{}) 

with: 

9>1 (x) = 1 , h, (w, ,{}) = 1, 

in the working point P. 
In addition to an adequate theoretical character
ization of the damper performance, this approxi -
mation allows a significant reduction of component 
tests by analytical inter- /extrapolation of test 
results within the corresponding working range. 
The determination of the nondimensional corre -
lation functions "g' resp. 'h' is part of the next 
chapters. 

2.1.3.2 Effect of Amplitude 

The viscoelastic response of high damping 
elastomers shows a strong nonlinear dependence 
of the loading amplitude. 
For example, the effect of different shear ampli -
tudes x on damper characteristics (hysteresis 
loops) is presented in Figure 4 for a widely used 
type of silicon rubber. 
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Fig. 4: Effect of amplitudes on damper 
characteristic 
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The analysis of component tests shows for each 
viscoelastic quantity K' , K" , K* and r1 another 
amplitude dependency. Due to the interdepen -
dency of the complex viscoelastic functions, only 
two functions (e.g. K' and 1'\) are sufficient for the 
complete analytical characterization. 
The nondimensional amplitude function for K' is 
defined as 

g'(x) ~ K' (x, ,,,,, O~IK', . 

A good analytical approximation of the experi -
mental results is given by the following fit-function 

g'(x) ~ c, +(C,-C,) I (exp A) , where 

c 
A~(ln(1 +lx/x0i)IC~ ' 

with 

x, ~ 1 mm and C,. ... , C, ~ fit parameters. 

The parameters C, to C, are determined by means 
of a nonlinear regression analysis according to the 
Levenberg-Marquardt method I 8 1. Another 
approach is the use of nonlinear optimizing tools, 
see for example Ref. I 19 1. 

The corresponding amplitude function of the 
mechanical loss factor was found as 

with A ~ C3 lx/x,l and B ~ C5 lx/x,l 

Figure 5 shows the characteristic shape of such 
nonlinearity dimensionless functions. 
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The correlation with the remaining two amplitude 
functions g'(x) resp. g"(x) is given to 

g"(x) ~ g'(x) g
0
(x) and 

g*(x)~ 1/K,* (( f\,' g'(x))2 + ( f\," g"(x))l1/2 

Figure 6 to 7 show measured and analytically fitted 
springrates and loss factors in dependency of 
displacement amplitudes . 

•oor------------------~ 
: \ E~perimcnl 

~ 100 ~o/ 

~ :~\ 
0 

0 ~00 :- 0 K' {liued) 

~ JOO -~ K' '"'"'I 

8~ 
200 ·a o ~tl:::o-0 / 

-o~ u-u=68=====o.= 100 o-
0 0 

_ 
K" trued) - -o-----o 

DISPLACEMENT AMPUTUDE x Jrnmj 

EllL§_ : Complex stiffness as a function of 
displacement amplitude 

0.9 -

0.8 -

~ 0.7 -

- 0.6 F-

" .. ", r-r. 
(Initial S~tc) 

l'l (Aru.lylie>.l Curve fill 

*---~--*~ 
~ o.,- I ""'· ---*----q * ..... * Expenmeoc 

:;lo.•,·; 
~ OJ '« 
..., U.2 

~ 
0.( 

'o 

Fig. 7: Mechanical loss factor as a function of 
displacement amplitude 
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Fig. 5 : Dimensionless amplitude functions 

is given in Fig. 8 . 
In addition,Fig. 9 shows the mechanical loss factor 
'I in dependency of the force amplitude. 
The analytical relationships between cyclic strain 
and stress excitations are given in chapter 2.1.3.1 

-



:.z 
·' ,, 
Jl 
'-, 

lj 

~ 
~ 
'· 0 
u 
~ 

':1 
"' 15 
u 

6 

"' 
r 0 

' 
' 
• 
) 

' -

200 300 400 M 600 100 

l'ORO~ "MI'LI'IUDE I' INI 

Fig. 8: Complex compliance versus force 
amplitude 

0.\1 f-

"·' 
0.7 :-

(I· "f 
r- r 

(lni1ial Sute) 

Calculated from K' 

000 

~ O.b -~ ... J c 
~~ ~----~ .. ~~ 

" ~ 04 _ I 
~ o3f- * 
~ E•po=runel'>lal 
:; 02 /'""' "' . 

0 
0 100 JOO <00 

fORCE AMI'l.JTUDli f INI 

Ei9..,_Q : Mechanical loss factor versus force 
amplitude 

2. 1.3.3 Effect of Frequency 

An example of the effect of frequency on the 
damper characteristic is shown in Figure 10. 
The dimensionless frequency functions can be 
approximated within a limited frequency range by 
the following empirical equations. 

h'(cu) = h'(«>,>'l)=K' (x,,w,(}~ /K', 

h.,(w) = h,,(w,(}~ = 11 (x,,w,O~ht, 

Cs 
= C 4 (u>/wc) 

HYSTEHESIS LOOPS 
Strain Exchneion x- 2 mm 

o- 2s oc 
N .. const. 

(Initial State) 

~~ 
' I I 

• 0.1 IU 

DEFLECTION x !mmj 

Fig. 10 : Damper characteristic as a function of 
frequency 

The other two frequency functions h" and h* can be 
derived from the relations 

h"(w) = h"(w,t'l'~ = h'(w) h.,(w) 

and 

h*(w) = 1JK,* (( K1,' h'(w))
2 
+ ( f<." h"(w))

2
) 

112 

Figure 11 shows these isothermal frequency 
functions for a selected damper material. 
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2.1.3.4 Effect of Temperature 

Silicon rubber has a very low glass transition 
temperature and shows the slightest temperature 
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dependence of all elastomers with respect to 
stiffness and damping. Nevertheless, temperature 
is an important parameter and has a decisive 
influence on stiffness and dissipation characteristic. 
For example,the effect of different ambient 
temperatures on damper characteristic is shown in 
Fig.12. 
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Fig 12 : Damper characteristic as a function of 
ambient temperature 

The corresponding test setup is shown in Fig. 13. 

Fig . 13 : Test setup for cold start simulation 
( laboratory conditions ) 

Due to the low thermal conductivity and a 
significant dependency of the mechanical 
cl1aracteristics on temperature, dissipative heating 
is of considerable influence on damper perform·
ance. As an example, Figures 14 and 15 show the 
effect of self - heating on damper characteristic 
dependent on loading time resp. load cycles. 
The effect of cool stream is neglectable in the initial 
phase, but its velocity has a significant influence on 
the thermal equilibrium state. 
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Fig . 14 : Hysteresis loop as a function of 
warm-up time (laboratory conditions) 
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Fig. 15 : Low temperature stiffening 
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Experimental investigations /3/ show a thermo -
rheologically complex material behaviour /5,16 I , 
where the effect of temperature can be characte
rized by two different nonlinear shift-functions a,(\l) 
and b,(0) .These shift-functions are introduced as 
follows 

K'n (x,,w,tr) = ~(0) K,'n h'n (w 3r(O)) 

IK*(x,,w,i!)l = ~(0) K', h*(w Sr((})) 

l)(X,,u>,,'J) = '1, h,,(<•> Sr((})) 

with (rl = (rl/(llo and 

a,(n~ = b,(n~ = 1. 
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The frequency-temperature coupling of the 
horizontal shift function "-r(O) permits no further 
decomposition (factorization) of these influence 
parameters. 
The temperature function "-r(D) is adequately 
approximated by the expression 

A 
"-r(O) = 10 

with T = 273 + 0 and TP = 298 K 

An approach for br(O) is given by 

Figure 16 shows these shift-functions (N = 2 resp. 
M = 4)for a high damping silicon rubber. 
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Fig.16: Temperature shift- functions "-r(fr) and 
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The corresponding approximation of stiffness and 
loss factor is presented in Figures 17 and 18 . 
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Fig.18 : Temperature effect on mechanical loss 
factor 

2.2 Dissipation Function for Cyclic Shear 
Deformation 

2.2.1 Basic Theory 

For thermomechanical problems with cyclic 
deformations it is often convenient to consider 
the mean rate of energy dissipation rather than 
the detail of the temperature history over a cycle of 
deformation /11/. 
The mean or 'cycle-averaged" dissipation rate can 
be calculated as : 

-.- ?.< .. ~ .. 

Q = .!!'.. r'" Q(t')dt' = .!!'.. r·• F(t') x(t')dt' = N . 
+ 2.11: Jr 2"tJr D1ss 

with w = 2rrf. 

The definition of the cycle - averaged temperature 
history is shown in Figure 19. 
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Fig. 19 :Temperature and load histories at cyclic 
excitation 



2.2.2 Monoharmonic disQ)acement-controlled 
loading 

In the case of displacement-controlled loading 
(strain excitation), the cycle-averaged dissipation 
rate has the general form /5,17 /: 

The analytical approximation by separable 
functions becomes 

N . = ~ K" g"(x) h"(w~ (0)) b (fl) x2 
D1ss2P l T 

Figure 20a to 20b show this high nonlinear 
dissipation function in dependency of amplitude, 
frequency and temperature. 
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Fig. 20 : Dissipation rate as a function of dis -
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2.2.3 Monoharmonic force-controlled loading 

For force-controlled monoharmonic loads the mean 
energy dissipation rate becomes 

0 = N1l·· = f W1l. = ~ J"(F,m,i)) F2 
t· I~!\ l$:\ 2 

with J" as imaginary part of the complex 
compliance. 
The interconversion of the viscoelastic quantities J* 
and K* is given in chapter 2.1.3.1 . 
Figure 21 shows the average dissipation rate as a 
function of force amplitude and temperature. 
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Fig. 21 : Dissipation energy as a function of 
force amplitude and temperature. 

2.2.4 Polyharmonic Loading 

The measured nonlinear viscoelastic response to a 
superposed harmonic displacement function 

x(t) = x1 sin w1 t + x, sin w2t 

with x1 = 4 mm, x, = 2 mm and f1 = 7 Hz , 
f2 = 4 Hz is presented in Figure 22 for the thermal 
state of equilibrium . 
The measured history of dissipation energy over a 
cycle of deformation is shown in Figure 23 . 
A comparison of the cycle-averaged dissipation 
energies for the corresponding monofrequent and 
bifrequent load cases is given in Table 1. 

:<, (t) 

X, (t) 

X (t) 

i),. 1 : 
~.ro 

Measured 
energies 

Corrigated (iso
thermal) energies 

30.3W 

6.9 w 
32.8W 

') 
fr E.ret 

16.2 oc 29.4 w 46.1 oc 
2.2 oc 4.3 w 46.1 oc 

21.1 oc 32.8 w 46.1 oc 
difference between initial temperature 
and thermal equilibrium temperature 
reference temperature for isothermal 
energy correction 

Table 1 Dissipation energies at multiharmonic 
loading 
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An accurate, more advanced method for the 
calculation of energy rates at arbitrary load 
histories yields the direct numerical solution of the 
nonlinear-viscoelastic constitutive equation in the 
time domain (Volterra integral equation of the 
second kind, I 4,51 ) . 

- 2.3 Heat Transmission 

The cooling capacity is an important design para -
meter for elastomeric dampers. 

""~;-----:.,~--7.,----'.,c--+,--,;---:-----;-~. Assuming that the heat transmission is caused by 
l)l:l·l.U_::"l'l()N "\"'"'\ 

Fig. 22: Multiharmonic viscoelastic response 
( strain excitation ) 
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convection, the rate of heat flow is described by 
the equation 

. 
Q = 2: a.A L>D-. 

- i I I I 

where 

'" r ,( (\ ;r , ., 
; :: ~. ,LHV~I\j_i~-~-{~~.1\ Afh\h:.~" ~ .; 

a ; = heat transfer coefficients 
~ = surface areas 
L>D-; = D-, - D-A = temperature differences 

between surfaces and ambient 

~w-vV .. \/~· V\.: -<0~ 
~ 2 

temperature 

w w._,,,_ JO<·~· ~ A simplified heat transfer model was assumed here 
0 .,, with a constant average temperature throughout 
.) - TEST RESUt.T I f 

vERSioN" ·•~ the vo ume o the discrete damper model and over 
·10 0~-;C, ;-, ---c,;!;,:----;;0C;-, --;e,.;----,0"'9--;;0';:, --,:,,-, --;;08;---0;.';9;--~ -loo its surface . 

. cAn engineering approach for the global heat trans -
mission can be found therefore by the following 
definition of an equivalent overall heat transfer Fig. 23 : Energy histories at poly harmonic loading 

The linear theory of viscoelasticity leads to a 
superposition principle for the cycle-averaged 
dissipation rates at isothermal conditions. 
The deviations in Table 1 from this principle are 
founded in nonlinearities due to amplitude effects, 
temperature differences and long-term hereditary 
effects. 
The validity of this superposition principle for 
dissipation powers is assumed here for nonlinear
viscoelastic materials at isothermal conditions, 
neglecting effects of amplitude dependency. 
The mean dissipation rate for superposed force
(resp. deflection-) controlled cyclic loads is 
therefore given to 

or in terms of dissipation energies 

The validity of an isothermal superposition -
principle is subject of further investigations ( multi
frequency response of lead-lag dampers 112/). 

coefficient a : . 
Q_ = a(D-A,vA) A (D-- D-A) = B(D-A,v,J (D--o-A) 

with a(D-A,v,J = (1IA) 2: a,(D-A,v,J A; and A= 2: A; 
' ' 

where D- = mean temperature of damper. 

Appropriate formulae and data for the heat transfer 
at forced and free convection are given for 
example in references I 1 , 2 I . 
Fig. 24 shows the overall heat transfer coefficient 
a for the considered damper as a function of the 
ambient temperature {}A and the mean air 
velocity v" . 
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Fig. 24: Overall coefficient of heat transfer versus 
air fiow velocity and ambient temperature 

The overall heat transfer (cooling) capacity at 
forced convection is therefore calculated as 

Effects of heat conduction and free convection are 
taken into account by addrtion of an equivalent heat 
transfer coefficient to a. 

2.4 Coupled Energy Equation 

2.4.1 Basic Considerations 

The extent of the temperature rise depends on the 
heat capacity of the damper and on the balance 
between the rate of mechanical energy dissipation 
and the rate of heat loss to the surroundings. The 
temperature may reach a steady-state value H the 
rates of these two processes - heat generation 

(N01,,) and heat loss (0 _)-become equal or it may 
increase indefinrtely ( "thenmal runaway"). 
This thermo mechanical process is shown schema
tically in Figures 25a to 25b . 

Thermal runaway 

N,.,iF.I 

Temper:Huro (} 

Fig. 25 a 

Thermal runaway--......... 

0, .• ~-

Timet 

Fig. 25 b 

Fig. 25 : Thenmal equilibrium and thermal failure 

2.4.2 Energy Balance 

The global energy balance of the discrete damper 
model is given to 

. -. . . 
OS= Q+ -a_= NDiss- a_ 

with 6+ : Rate of heat generation 

6 : Outfiow of heat 

6
5 

: Rate of heat accum~jation. 
Thermal equilibrium exists if 6 = 6 

+ -
The rate of heat accumulation in the damper can 
be written as . . 

Q = c {t s 

where the heat storage capacity C of the damper is 
defined to 

C =2: c1 m1 = 2: c1 P; V 1 
' ' 

with c Specific thermal capacity 
m: Mass 
p Density 
V : Volume. 

The summation (i) is carried out for the different 
parts of the damper, i.e. elastomer, shims and 
housings. TI1e effect of temperature on specific 
thermal capacity and density was neglected here. 

2.4.3 Differential Equations for the Damper 
Temperature 

The energy balance yields the general differential 
equ~ion for the (averaged) damper temperature 
\}-\}: 
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This nonlinear differential equation is the basic 
formula for the following considerations. 

2.4.3. i Displacement-Controlled Cyclic Excitation 

The explicit formulation of the energy term Q+ (t) 
leads to the following nonlinear differential equation 
for the transient damper temperature 

~{} = i/C {~ K"P g"(x) h"(war(f!)) br(l'!) x
2 

- B(f!A,v,.,)(f!-f!,.,)} 

The numerical solution by means of Rung_e-Kutta 
techniques ,/8/ ,requires the analytical characteri
zation of the energy terms. 
In the thermal steady state case (d{}/dt = 0) this 
differential equation reduces to a nonlinear 
algebraic equation with respect to f!. 
The numerical solution of this equation yields the 
equilibrium temperature {}E of the damper . 
No solution for {}E exists in the case of thermal 

.- . 
runaway ( Q+ > Q_ ) . 

The variation of damper stiffness and dissipation 
energy is coupled directly with the temperature 
history. 

2.4.3.2 Force-Controlled Cyclic Excitation 

For this case the temperature differential equation 
becomes: 

If the imaginary part of the complex compliance J" 
is not explicit known from force-controlled experi -
ments, it can be substituted by K" as follows: 

J"(x,w,f!) = K"(x.w.fr)' = "(;.w.frl (i/ K'(x,w,f!) ) 
K•(x,w,fr) l+Tl (x,w,tt) . 

The relationship between force amplitude F and 
deflection amplitude x is generally given to 

F- IK*(x,w,f!) I x = 0 . 

Solving this nonlinear algebraic equation with 
regard to x (for a given F) yields the identity 

J" (x(F),w,\}) = J"(F,<•>,il). 

2.4.3.3 Polyharmonic Excitation 

The assumption of a superposition principle for the 
mean dissipation rates 

• 
Q =2: Q. 

+ i +,I 

yields with the following expressions for the dissi
pation energies 

O+,i = ~· K"(xi'wi'f!) x
2 

(displacement controlled) 

respectively 

(force controlled) , 

the differential equation of damper temperature 
in a similar form as in the case of monoharmonic 
loading. 
The equilibrium temperature is given again as 
solution of the equation 

. 
Q+- Q_ = 0. 

2.4.3.4 Cooling Characteristic 

The rate of cooling in the unloaded position is 
described by the solution of the differential 
equation 

This equation is useful in the experimental identi -
fication of the relationship B/C . 

2.5 Numerical Simulation of Thermo mechanical 
Damper Characteristic 

Based on the presented theory a numerical model 
was developed for the simulation of the thermo -
mechanical damper characteristic. Examples of 
application of this model to realistic damper 
configurations are summarized in the following 
chapter. Figure 26 shows the thermal states of 
equilibrium at strain controlled loading conditions 

as intersection of the two curves N0 . resp. 6 . 
\SS ~ 

Stiffness,loss factor and therefore dissipation 
power decreases here with increasing heat build 
up. The case of stress controlled loading conditions 
is shown in Figure 27. Stiffness and loss factor 
decrease here also with selfheating, but higher 
deflections result in an increase of dissipation 
power. 
This diagrams show, that thermal runaway is 
excluded for this damper configuration,but at high 

88-11 



load amplitudes -coupled with low cooling capacity
overheating of the damper can occur. 
In both cases there is a significant influence of air 
velocity ( and ambient temperature ) on the damper 
equilibrium temperature and therefore on the 
damper performance. 
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Thermal equilibrium state at strain 
excitations. 
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Fig. 27 : Thermal equilibrium state at stress 
excitations. 

The effect of ambient temperature {1-A and cooling 

velocity v" on stiffness K' ,dissipation power N0 ,ss 
and average damper temperature {1- is explicitly 
shown in Figures 28 to 30 (strain excitation) and 
Figures 31 to 33 ( stress excitation ) . 

II EAT BUILDUP 
(Stnin E•crUllo<ll 

~"---------------------------------~ 
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INITIAL STATE (N-eon.>.~.) 

" . 
-~~ -H .1, -1:~ ., 1' 2s J' ~s ~s 6S n 

AMHIENTTEMPERATURE (JA J''Cl 

Fig. 28 : Storage spring rate K' versus ambient 
temperature and airflow velocity 
( strain excitation ) . 
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Fig. 30 : Temperature increase t:.tJ- versus 
ambient temperature and 
airflow velocity (strain excitation) 
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All these examples demonstrate the significant 
effect of ambient temperature ,cooling intensity 
and selfheating on the damper characteristic . 
As a further result ,the calculated dissipation 
energy N0 ;,. can be used in combination with an 
FEM analysis for the calculation of temperature 
distribution and therefore peak temperatures within 
the elastomer. 

2.6 Application to Rotor Blade Lead-Lag Damping 

g 2\XJ- \ >::::: .. 
'"'" ','"--.'.;:'~:::::o-?o:~-="-"-"'~~-:O:-=,...--~----~ One important application of the discrete damper 

o,tc,..:':.•:"",..:' ';:'"~=_,:_, ~_.,,~-c_,~-o---,,:c,-"",~-;,,--...,,o-, -,fc,~+.",.....-'] model is the analytical prediction of the modal 

2: 
' 'i 
~ _, 

~ 
;<; 

" lead-lag damping ratio o, and the first lead-lag 

Fig. 31 : Storage spring rate K' versus ambient 
temperature and airflow velocity 
( stress excitation ) . 
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Fig. 32 : Dissipation power N0;, versus ambient 
temperature and airflow velocity. 

" 
" 
W· 

" -

"' 

( stress excitation ) . 

HEAT BUILDUP 
(Slr<= Excilalion) 

TllERMAL STABILIZL:D STATE 

AMJIIENT TEMPERA 1"URE 1'1.., [''CI 

Fig. 33: Temperature increase ;\\}versus 
ambient temperature and airflow 
velocity ( stress excitation ) . 

eigenfrequency "\ under consideration of damper 

nonlinearities. 
A simplified numerical model for rotor blade 
damping with an integrated discrete damper model 
is shown schematically in Figure 34 . 
The stepwise iterative solution of this coupled 
nonlinear system for steady state operating 
conditions yields the modal lead-lag damping and 
frequency ratio versus lead-lag amplitude in 
dependency of the damper temperature. The 
example in Figure 35 shows the amplitude effect of 
the modal lead-lag damping and the corresponding 
lead-lag frequency ratio at d'ifferent temperatures . 
Other sources of rotor damping,such as structural 
resp. aeroelastic damping are not considered here. 

NUMERICAL !Mf>l.E.\H: .. "'TATI0!-1 OFT HE DISCRETE DAMPER MODEL 

<>~t,Dc r 
t•Mt x,.F,<o~\ "'(·De 

Aeroelas~ic !------<> Black Model 1~(-<> ROior Damping 

"'""" Modd 
Acromcch~ 

u _l K: 
Subilir 

._,F,wc 

jgpcnting ' ~ ondirioM I 

' J Environmcntll ~ Dampa Model ~ Conditions K',T] 

v~,O~ L _________ ;..\ 

Fig. 34: Simplified quasi- steady state model for 
the prediction of the modal rotor blade 
damping capacity. 
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Fig.35 : Rotor blade lead-lag damping and lead
lag frequency in dependency of lead-lag 
angle and temperature. 

3. Thermomechanical Damper Model with 
Distributed Parameters 

3.1 Basic Considerations to the FEM in the 
Nonlinear Viscoelasticity 

The description of the elastomeric damper with 
distributed parameters (stress, strain, temperature, 
heat transfer, etc.) leads to a coupled thermo -
viscoelastic finite element analysis. 
A frequency domain analysis with nonlinear FEM 
codes I 6 I is usually limited to small-amplitude 
vibrations of thermorheologically simple visco
elastic solids. This method neglects the effect of 
the load amplitude on spring rate and loss factor 161 
A time-domain analysis of the thermoviscoelastic 
damper model for arbitrary periodic loads is usually 
separated in two basic steps: 

- Numerical integration over a cycle of deforma
tion for the calculation of the nonlinear visco
elastic response and the corresponding 
dissipation energy.Temperature changes 
during this load cycle are neglected. 

Calculation of the transient temperature field 
with a temperature dependent " cycle -
averaged " heat source . 

The first step yields an inhomogeneous distribution 
of the dissipative heat source as well as a global 
mean value at different temperature boundary 
conditions. 
A complete coupled thermoviscoelastic analysis for 
the transient thermal state is too expensive in the 
design stage and must be limited to selected, 
critical load cases. In addition, thermorheologically 
complex material behaviour and a different 
amplitude dependency for the equilibrium and 
hereditary term of the viscoelastic constitutive 

equation are not realized today in finite element 
modules for nonlinear-viscoelastic problems. 
In this paper the application of the FEM method 
was restricted to a steady state heat transfer 
analysis with temperature dependent source terms 
by the concentrated parameter model. 

3.2 FEM calculation of the temperature 
distribution within the damper 

The basic equation which covers the most heat 
transfer analysis problems is the partial Fourier 
differential equation 

+ nniss 
c·p 

which relates the temperature change by time to 
the temperature distribution in space. 
The parameter A. is the coefficient of thermal 
conductivity, cis the specific heat capacity and p 

is the density . n d~• represents the dissipation 
energy per unit volume ,which can be regarded as 
an internal distributed heat source produced by 
cyclic damper deflections. 
In order to solve the Fourier equation the thermal 
boundary conditions must be defined. 
During operation the damper is blown by air and an 
exchange of heat occurs. 
The specific heat flow from the surface of the 
damper to the surrounding air flow is given by the 
expression 

with the coefficient of heat conduction a; (index i 
means the surface i ,where heat conduction takes 
place), the surface temperature Ow and the 
temperature {j A of the surrounding air flow. 
The corresponding a -values can be calculated for 
free and forced convection according to Ref. I 1 ,2 I, 
or are estimated by experiments. In the first step it 
can be assumed, that the a- values are identical at 
all points of the outer damper surface . 
Together with the initial temperature 

all required boundary conditions of the heat 
transfer problem are known . 
The Finite Elemente Program MARC ( Ref. I 6 I) 
was used here for the solution of this parabolic 
differential equation. 
The element library of MARC contains an 8- node 
axisymmetric isoparametric quadrilateral element 
which was used for t11e calculations. 
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Using the FEM method the solution of the Fourier 
equation reduces to solve the matrix equation for 
the wt1ole temperature field : 

C (df}/dt) + K {} = Q 

The vectors {} and d0/dt are the nodal temp -
eratures at time t and its time derivatives . 
C and K are the matrix of heat capacity and the 
heat transfer matrix. 
Q is defined as the heat flow vector at the nodal 
points. 
For the steady state case the time derivative of the 
temperature d{}fdt = 0 and the corresponding 
matrix equation reads : 

Kft= Q 

The solution vector for the temperature{} turns 
then out to be 

{} = K'' Q 

Examples: 

In order to investigate the peak temperatures and 
the influence of the metal shims on temperature 
distribution,two different FEM calculations for a 
lead-Jag damper with and wrthout metal shims have 
been carried out for the steady state case. 

The coefficients of heat conduction a1 are 
calculated according to Ref. /1 , 2 I for forced and 
free convection assuming an air flow velocrty of 
about w A = 50 m/sec , see also Figure 24. 

The dissipative energy N0 ,., of the global damper 
model was calculated for given boundary 
conditions and dynamic loads using the concen -
!rated parameter model. 
For the FEM calculation of peak temperature 
within the damper an homogeneous distribution of 
the dissipated energy 

is assumed . Figures 36 to 37 show the calculated 
temperature distributions within the damper. 

.·:. ;, ,!'.'< .• ,. 

Fig. 36 : Temperature distribution within a 
damper with metal shims. 

I 
I 
j 
! 

I 

Fig. 37: Temperature distribution within a 
damper without metal shims. 

Due to the cooling effect of the two metal shims, 
the maximum temperature for the first example 
was found to be : 

Without metal shims, the peak temperature is 
higher and turns out to be : 

D· = 43 co 
mux 

Taking into account an initial temperature of 

the relationship between peak temperature "'""' 
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and the integral mean temperature {j- ,'j 

(conce~trated parameter model) was found to be 

fl,- irm,)ir ~ 31 C"/25.25C" ~ 1.23 
(damper with shims) 

respectively 

B, ~ {}m,)ir ~ 43 C"/25.78C" ~ 1.67 
(damper without shims) 

Summary 

An engineering model for the prediction of the 
thermoviscoelastic response of discrete 
elastomeric lead-lag dampers under cyclic loading 
was developed. This model is based on amplitude 
dependent complex moduli and involves material 
nonlinearrties and nonlinearity effects due to 
thermomechanical coupling. 
Numerical studies were carried out with this 
concentrated parameter model wrth intent to 
investigate the influence of load amplitude, 
frequency,ambient temperature and cooling rate on 
the heat build up and damper properties. 
Crrteria for thermal overheating were derived and 
the effect of poly harmonic excrtations on self
heating was considered. 
The difference in the thermoviscoelastic response 
with respect to displacement and force controlled 
cyclic excrtations was discussed and the 
application of this concentrated parameter model 
for the prediction of rotor blade damping was 
demonstrated. 
In addition a finrte element analysis was carried out 
for the determination of the peak temperatures 
within the elastomer. 
Finally,a brief outline was given to damper models 
with distributed parameters. 
In conclusion, this engineering model shows a 
simple way to simulate the effects of thermo -
mechanical coupling and nonlinearities on the 
dynamic properties of elastomeric dampers , 
mastering the load case temperature. 
The reported results cover the first stage of 
theoretical and experimental investigations 
concerning the thermomechanical design of 
dampers. Further activities in the analy1ical damper 
characterization are the time domain formulation 
for arbitrary loads and its numerical realization 
such as the experimental verification of the 
temperature effect during flight tests. 
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