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Abstract.

This work focuses on the nonlinear control of
helicopters. A scale model helicopter (Ben-
zin Trainer) of the University of Technology of
Compiegne (France) will serve later for experi-
ments. Our global interest is a general model (7-
DOF) obtained to be used on the autonomous
forward-flight of the helicopter. However, in this
paper we present a reduced-order model (3-DOF)
representing the helicopter mounted on an exper-
imental platform. Although simplified, this 3-
DOF Lagrangian model presents quite interesting
control challenges due to nonlinearities, aerody-
namical forces and underactuation. Due to the
very particular dynamical and control properties
of the model we propose a specific nonlinear con-
troller using passivity properties. Numerical sim-
ulations are presented.

1. Introduction.

In this note we consider the problem of controlling
a scale model helicopter when it is mounted on
a platform. Though the mathematical model of
this system is much simpler than that of the “free-
flying” helicopter, its dynamics will be shown to
be non-trivial (nonlinear in the state, and under-
actuated).

Contrary to most of the recent works in the field
of nonlinear control of helicopters [1], [3] and [5],
we incorporate the main and tail rotors dynamics
in the Lagrange equations. Moreover the control
inputs are taken as the real helicopter inputs (the
translational displacements of the main and tail
rotors collective pitches and the longitudinal and
lateral cyclic pitch angles of the main rotor). This

*Juan-Carlos. Avila-Vilchis@inpg.fr
fBernard.Brogliato@inpg.fr

21.1

is shown to complicate significantly the way the
input u appears in the Lagrange equations (u €
R* for the 7-DOF model and v € IR? for the
3-DOF model studied in this paper).

This paper is organized as follows. In section
2 we present a Lagrangian model of the heli-
copter mounted on an experimental platform.
This model can be seen as made of two subsys-
tems (translation and rotation). The dissipativity
properties of the model are analyzed in section 3
where one lossless operator is shown. In section
4 we present a two steps control design (one step
for each subsystem). Section 5 is devoted to sim-
ulation results. In section 6 we present some con-
clusions of this work. Finaly the values for the
model parameters are given in appendix A.

2. Model of the Helicopter-Platform.

Counterbalance
weight

X=---

Figure 1: Platform.

We consider figure 1 where the counterbalance
weight compensates the weight of the vertical col-
umn of the platform. The zyz reference system
is an inertial one and the x;y;z; reference sys-
tem is a body fixed frame. The model is obtained
by a Lagrangian formulation. The kinetic energy
T is formed by four quantities: T, Try, Trmr and
T, corresponding to kinetic energy of translation
and kinetic energy of rotation of the fuselage, the



main rotor and the tail rotor, respectively. The
potential energy is formed by the gravitational
potential energy U, and by the flapping potential
energy Up. In the particular case that we present
here, U, = 0.

The model has the next form:

M(q)§+ C(g,4)d + G(q) = Q(u) (1)

where M is the 3 x 3 inertia matrix, C is the
3 x 3 Coriolis matrix, G € IR® is the vector of
conservative forces, Q@ = [f. 7. 7]7 is the vector
of generalized forces, ¢ = [z ¢ 7]T is the vector
of generalized coordinates and u = [hy  h7]T
is the vector of control inputs. hjys and hr are
the translational displacements of the main and
tail rotors collective pitches respectively. They
are proportional to the collective pitch angles of
the main and tail rotors respectively. The height
2z < 0 upwards, ¢ is the yaw angle and ~y is the
azimuth angle of the main rotor blades.

The components of the vector @ are [4], [6]: f, =
T + Dy, 7. = Trd and Ty = Qum + Qmot- T
is the thrust of the main rotor, D,; is the drag
force produced by the induced velocity, T is the
thrust of the tail rotor, d is a known constant,
Qs is the drag moment of the main rotor and
@ mot is the moment of the engine.

The various terms in (1) are:

Co 0 0
M(g)=| 0 ¢ +cacos?(esy) e
0 C4 Cs
0 0 0 )
C(g,q9) = | 0 cesin(2c37)y  cesin(2e37)¢
0 —cpsin(2¢37y)o 0
Cr7
Gl@=| 0
0

2)

with the assumption that the helicopter evolves
at low rates of vertical velocity so that the vertical
flight induced velocity and the hover induced ve-
locity are approximately equal (v, & vp), taking
Q(u) = A(¢)u + B(g) and from [4]

[ Cg;’.)/2 0
A(g) = 0 011"Y2
| ci2y—ci3 0
| 3)
Cy7Y + C10
B(q) = 0
| ey’ +as
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where the ¢;’s ¢ = 0, ...,15 are constant physical
parameters.

One sees that this model is made of two main cou-
pled SUbSyStemS St(anslat'ion and Srotat'ion with
states (z, 2) and (¢, @,, ) respectively. This will
be used for control design.

3. Dissipativity Properties of the
Model.

The use of passivity has been at the core of the
design of many feedback controllers in the past
fifteen years (see [2]). The interest of passivity-
based controllers comes from their physical foun-
dations (contrary to some other nonlinear stabi-
lization techniques which rely only on the state-
space equations structure). They also prove to
provide nice experimental results [2].

The design of a passivity-based controller for (1)
is however quite specific due to both the La-
grangian dynamics and the form of Q(u). More
precisely, the z dynamics in (1) plus the fact that
the inputs in u are not generalized forces, pre-
cludes the dissipativity of the operators:

01:U|—>q
O2:Q(u) = ¢

a property that is crucial in the design of
passivity-based controllers which assure global
tracking control of (¢(t), ¢(t)). However the oper-
ator:

Os:a=Au+Brn=[p 47 (@)
is passive lossless, with:
o= | M22 M23 C—=| C2 ©2
mgy  M33 ez 0
()

1T _ 0 as2
A=l

The proof is easy by noting that M —2C is skew
symmetric [2].

4. Control Design.
For feedback control purpose, we will use both

the structure of the dynamics in (1)-(3), and the
physical property of the operator Os : @ — 7.



In the following we assume that initially |¥(0)| >
§ > 0 and 2(0) < 0, so that A is full rank. The
whole problem including take-off and landing will
be treated for the 7-DOF model (taking ground-
effects into account). Therefore the control design
is done in two steps:

4.1. Passivity-based tracking control of the
rotational part.

The rotational dynamics is given by (see (5)):

M(n)ij + C(n,m)yi = A()u+ B(m)  (6)

It is note worthy that this dynamics also repre-
sents the rotational part of the system when the
helicopter has not taken off, i.e. when z = —L
(see figure 2).
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Figure 2: Mass Centre Localization.

Let us choose u in (4) such that:

@ = M(1ig—Mn) +C(1jg— MAl) — A2 (G+ M) (7)

where 7j = n—n4, n4(t) € C?(IR") is a desired tra-
jectory, Ay > 0, 2 > 0. The input (7) is known
to guarantee that 7,7,7 — 0 asymptotically ex-
ponentially globally [2].

4.2. Altitude control and take-off.

The basic idea is to use 4 (in fact 44) to control
the first equation in (1), i.e.

(®)

- -2 -
Ccoz + ¢r = cgYy U1 + C9y + C10

with uy given by (7).

Assuming that 7P| <&, i =0,1,2, and ¢q = 0
one can approximate u; in (7) as

uf?” = ©)

1 N .
—[c5Va — c1a7a® — c1s]
asi
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From (8) and (9) it is clear that if 4 is constant,
then z(t) = at? + bt + ¢, a,b,c € IR. An event-
based hybrid control strategy for the choice of v,
can be designed to stabilize z and 2 in a neighbor-
hood of desired values zq4, Z4, or at least to make
the helicopter take-off the ground and reach a cer-
tain height. Then one may switch the control to
some nonlinear input guaranteeing global asymp-
totic tracking of z, 2 and ¢, ¢.

There are several crucial choices in this proce-
dure:

1. The input in (7) to control S;otationai-

2. 44(t) and the hybrid strategy to control

Stranslational .

3. na(t) to comply with input saturations u,,
up < 0 and uv?, < uy < wi,. Here ul,
0, i=1,2and u?; > 0.

<
<

4. The identification of physical parameters c;
in particular the drag coefficient of the main
rotor and the slope of the sustentation force
curve.

The technique employed to cope with input satu-
rations is as follows: from (7) and assuming per-
fect tracking (77 = 77 = 0) one sets

A7 3a(t)[M (na)iia + C(na, ma)ia — B(Ya)]
(10)

u =

From this expression one calculates off-time
whether vl <wu; <0 and u?, <uy <u?;. Then
the saturations are respected provided the initial
tracking errors 7(0) and 7(0) and the feedback
gains Ar, Ay are chosen small enough. Moreover
some numerical results presented below show that
the input may saturate during the transient with-
out destroying the stability of the closed-loop sys-
tem.

When 44 = 0, 44 = constant, a sufficient condi-

tion to get a negative u; input in (10) is given
by

(11)

c6 Sin(2¢374) 92 + c1ay3 + c15 > 0

5. Simulation Results.

We have made some simulation experiments in
Matlab/Simulink for the 3-DOF system. Here we



present two of them. For each simulation we have
taken the gain values of the control (7) A\; = 8
and A2 = 10. In all cases we used a fixed-step
ode4 Runge-Kutta solver with step 0.005. Re-
sults concerning the flying mode (2 < —L) are
not presented here but can be easily simulated.
The control of the rotational dynamics in (6) is
in itself a challenging problem.

5.1. Simulation 1.

This is a regulation problem for the desired values
given below with the next initial conditions ¢o =
0 rad, ¢o = 2 rad/s, vo = —5 rad and Y =
—52 rad/s. The helicopter in not taking-off the
ground. In a first case the initial error 4 = 33, for
a second case we have reduced this error to 4 = 7

o ¢pg=—m/4drad

e $a=0 rad/s

o g =0rad/s?
o v4 = —85t rad
o Y4 =—85rad/s
e 54 =0rad/s?

5.2. Simulation 2.

This is a regulation and tracking problem de-
fined below. The helicopter in not taking-off the
ground.

o ¢4 = 10sin(t/10) rad

o ¢g = cos(t/10) rad/s

o ¢q = —3 sin(t/10) rad/s*
® vy = —75t rad

e Y4 =—T5rad/s

e 55 =0rad/s®

5.3. Simulation 3.

This set of figures concern the same regulation
problem as simulation 1 but with decreased values
of A1 and Ay taken equal to 1 and smaller initial
errors.

5.4. Comments.
From figures 3 to 23 the following comments can

be made: the tracking and regulation error con-
verge towards zero after a transient period that
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seems to be more or less independent of the ini-
tial error on the rotor speed (compare figures 6
and 7, figures 4 and 8, figures 5 and 9). From
figures 10, 13, 22, 23 one sees that the satura-
tion of the inputs during the transient does not
destroy the stability of the closed-loop system,
although such saturating control is certainly not
desirable in practice. The chosen desired angles
and velocities satisfy the constraint (11), and the
saturations are a consequence of the initial errors
and of the feedback gains A; and A. It is known
that one drawback of nonlinear controllers as in
(7) is that tuning the gains is not an easy task in
general [2]. In figures 24 and 29 one sees that de-
creasing the feedback gains and the initial errors
allows one to respect the input saturations and to
improve the transient behaviour.

6. Conclusions.

In this note we have considered the feedback con-
trol of a scale model helicopter mounted on a plat-
form. The resulting model is a 3-DOF Lagrangian
system, with 2 inputs. This is therefore an un-
deractuated system. Some aerodynamical effects
have been incorporated in the model to obtain
the generalized torques as a function of the in-
puts (the collective pitch angles of the main and
tail rotors) and of the main rotor angular velocity.
The complete model also incorporates the tran-
sition from the constrained mode (the helicopter
is at rest on the ground) to the flying mode (the
helicopter is airborne).

The proposed control strategy is based on the use
of nonlinear controllers which assure asymptotic
tracking of suitable (i.e. differentiable enough
and such that the inputs do not saturate) desired
trajectories. Mechanical and aerodynamical cou-
pling effects are taken into account in the model
and in the control action. The dissipativity prop-
erties of the rotational part of the dynamics are
used to partially design the state feedback con-
trol. Numerical simulations are presented and
experiments on a scale model Benzin Trainer are
planned.

Future work will focus on the extension of this
control strategy to the “free” helicopter (the 7-
DOF system), and experimental validation on the
scale model helicopter of the University of Tech-
nology of Compiegne (France). Robustness of
the controllers with respect to neglected dynam-
ics and external disturbances will be tested.

A. Model Parameters.

The values of the constant physical parameters



are given in table 1. We have supposed that
the system evolves in standard atmosphere con-
ditions.

| ¢ | Value | ¢ | Value |

co 7.5 cs 0.6251093

1 0.436087 Coy 0.1207317

C2 1.3872¢ — 4 C10 3.6787

cs3 —4.1428571 c11 —0.0453127
cqy | 7.35875e —2 C12 2.1463432

Cs 0.436826 c13 100
ce | 2.8734857e — 4 || c14 | 1.9630356e — 4
cr —73.575 c1s —0.5181731

Table 1: Physical Parameters.
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yaw angle error convergence yaw angle convergence to —pi/4
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Figure 3: Yaw Angle Error for Simulation 1, Figure 6: Yaw Angle for Simulation 1, 5(0) =
4(0) = 32 rad/s. 32 rad/s.
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Figure 4: Fuselage Angular Speed Error for Sim- Figure 7: Yaw Angle for Simulation 1, 5(0) =
ulation 1, 4(0) = 32 rad/s. 7 rad/s.

rotor angular speed error convergence 3 fuselage angular speed convergence to 0
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Figure 5: Rotor Angular Speed Error for Simula- Figure 8: Fuselage Angular Speed for Simulation
tion 1, 4(0) = 32 rad/s. 1, %(0) = 7 rad/s.
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3 u2 input control variation
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Figure 9: Rotor Angular Speed for Simulation 1, Figure 12: wus Input Control for Simulation

5(0) = 32 rad/s. 4(0) = 32 rad/s.
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Figure 10: u; Input Control for Simulation 1, Figure 13: us Input Control for Simulation
5(0) = 32 rad/s. 5(0) = 7 rad/s.
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Figure 11: w; Input Control for Simulation 1, Figure 14: Thrust for Simulation 1, #(0)
3(0) =7 rad/s. 32 rad/s.

21.7



Thrust variation rotor angular speed error convergence
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Figure 15: Thrust for Simulation 1, 5(0) = Figure 18: Rotor Angular Speed Error for Simu-
7 radfs. lation 2.
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Figure 16: Yaw Angle Error for Simulation 2. Figure 19: Yaw Angle for Simulation 2.
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Figure 17: Fuselage Angular Speed Error for Sim- Figure 20: Fuselage Angular Speed for Simulation
ulation 2. 2.
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Figure 21: Rotor Angular Speed for Simulation Figure 24: Thrust for Simulation 3.
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Figure 22: u; Input Control for Simulation 2. Figure 25: u; Input Controlfor Simulation 3.
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Figure 23: us Input Control for Simulation 2. Figure 26: us Input Control for Simulation 3.
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Figure 27: Yaw Angle for Simulation 3.
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Figure 28: Fuselage Angular Speed for Simulation
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Figure 29: Rotor Angular Speed for Simulation
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