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Abstract 
A time domain identification method based on set-membership theory for rotorcraft flight dynamics modeling 
is developed in this paper. In order to solve the difficulties in applying standard set-membership identification 
algorithm to identify the flight dynamics model of a rotorcraft due to its inherent complexity, an improved 
Optimal Bounding Ellipsoid (OBE) method is established. The basic OBE algorithm for multi-input multi-
output system is derived firstly, and then an indirect OBE algorithm for state space model is established. The 
concept of generalized noise is introduced and the noise bound optimization is implemented. Finally, the 
established identification method is used to identify the flight dynamics models of a helicopter and a quad-
rotor aircraft separately. The results show that the method developed in this paper is able to identify the flight 
dynamics model of a rotorcraft with high accuracy as well as robustness. 
 
 
 
 
1. INTRODUCTION 

Identification technology has become a very 
powerful tool in rotorcraft flight dynamics 
modeling. It can provide models with higher 
confidence than theoretical modeling technique. 
The principle of system identification is to obtain a 
model or a set of models from experimental data 
based on the parameter estimation theory. The 
accuracy of an identified model is determined by 
many factors such as the quality of the experiment 
data, selection of proper model structure and 
suitable identification strategy. The first attempt to 
apply system identification technique to the 
rotorcraft flight dynamics modeling was developed 
more than 50 years ago [1]. A series of research 
works in this area have been carried out recently. 
Most of these works were concentrated on linear 
flight dynamics model identification. For many 
applications such as handing quality assessment 
and flight control system design, a linear flight 
dynamics model is good enough. For linear flight 
dynamics model identification of a rotorcraft, the 
unknown parameters to be identified are 
aerodynamic stability derivatives and control 
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derivatives which determine the static and 
dynamic characteristics of the rotorcraft near 
certain trim condition. Since the rotorcraft is 
heavily coupled, at least 6 degrees of freedom 
(DOFs) model are required which results in large 
numbers of parameters to be identified. The 
identification of rotorcraft flight dynamics model is 
a difficult problem, especially for high order 
models. There are different techniques both in 
time domain and frequency domain that solve the 
problems of identifying rotorcraft flight dynamics 
model well. These methods are called 
conventional identification methods in this paper. 
The conventional identification methods [2-9] are 
mostly based on the least square and the 
maximum likelihood estimation. These estimators 
usually require the information of mean value and 
covariance of the noise or error vectors in the 
model, but it is difficult and sometimes even 
impossible to obtain such information during the 
flight test. In order to solve this problem, the 
conventional methods either assume ideal 
random noise or no noise. This is absolutely not 
true in the real flight test. Therefore the accuracy 
and robustness of identification are reduced. 

In recent years, there are some research works 
that concentrate on applying new methods to 
aircraft (including rotorcraft) flight dynamics model 
identification such as artificial neural network 
modeling [10] and subspace identification [11]. 
The new methods are quite different from the 
conventional ones, and these methods have many 
benefits that overcome some of the difficulties in 
the conventional methods. The neural network 
modeling does not need a conventional state 
space model structure, so the conventional 
identification procedure is avoided. The subspace 
identification does not require the detailed noise 
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information, and it has already been shown that 
this kind of method will increase the identification 
accuracy when the test data contains high level of 
noise. However, the newer methods have 
deficiencies too. The parameters in neural 
network models lacks of physical meaning, so it is 
not convenient to analyze the model. Some 
research [11] demonstrates the disadvantages of 
using subspace identification alone when applying 
it to identify rotorcraft flight dynamics model, but 
improves when combined with conventional 
methods. System identification methods have had 
significant developments during the past years, as 
new identification theory becomes more and more 
mature. These include one powerful tool - the set-
membership identification. 

The theory of set-membership identification was 
first proposed by Fogel [12] in 1979 and further 
developed in [13-22]. The set-membership 
identification theory is based on the Unknown-But-
Bounded (UBB) noise assumption, where the only 
knowledge required about the noise is bound. No 
ideal noise assumption is needed. Even the data 
contains colored noise, and this will not affect the 
identification result. Therefore, this kind of 
identification method is especially beneficial for 
the rotorcraft flight dynamics modeling since the 
rotorcraft flight test data is usually contaminated 
considerably by measurement noise. 

There are plenty of papers that summarize the 
set-membership identification method, but most of 
these papers are concentrated on theoretical 
algorithm development. Research on application 
of set-membership identification to complex 
systems such as aircraft flight dynamics modeling 
are very few, and it has been shown that it is not 
easy to use this method to decouple fixed wing 
aircraft identification [16]. So it will be difficult to 
apply this method to rotorcraft flight dynamics 
modeling. The aim of this paper is to develop a 
comprehensive method based on set-membership 
identification that can be applied to rotorcraft flight 
dynamics modeling. The standard set-
membership identification methods can only be 
applied to those models which have explicit 
relationships between model outputs and 
parameters to be identified. The rotorcraft flight 
dynamics model is represented as state space 
differential equation that does not meet the 
requirement of set-membership identification. In 
order to solve this problem, the first part of this 
paper develops an indirect identification algorithm. 
Then a comprehensive set-membership 
identification method with two steps is established 
for the identification of rotorcraft flight dynamics 
model. The first step is transformed the rotorcraft 
flight dynamics model into linear algebraic 
equation form to satisfy the requirement of set-

membership identification. An Optimal Boundary 
Ellipsoid (OBE) algorithm is used to identify the 
model directly. Secondly, indirect identification 
methods are applied to the state space equation 
form flight dynamics model to refine the results by 
setting previous identified parameters as initial 
values. Moreover, in both identification steps, the 
concept of generalized noise is introduced, and 
the noise bound is determined by an optimization 
algorithm. Finally, the method is applied to identify 
the flight dynamics models of a light helicopter 
and a quad-rotor aircraft in hover condition.  

 

2. SET-MEMBERSHIP IDENTIFICATION 
METHOD 

Set-membership identification is used to identify 
the following affine-in-parameters model which 
has the form: 

(1)     
T y θ x ε  

Where y  is the measured 1m  vector, x is the 

measured 1n  vector, θ is the n m matrix of 

parameters to be identified, ε is the 1m  

bounded noise vector. The bounded noise vector 
can be described as: 

(2)     ε σ  

Based on Eq. (1) and inequality (2), two 
hyperplanes at each sample time t can be 
obtained: 

 T

t t t

   H θ y θ x σ

 T

t t t

   H θ y θ x σ  

The true values of parameters must be laid 
between these hyperplanes. The intersection of 
these hyperplanes over time forms a sequence of 
polytopes. The task is to use a mathematic 
function to describe these polytopes which is the 
feasible solution set (FSS) of parameters to be 
identified. It is usually not possible to give 
accurate description of these polytopes, and 
approximate representation is always used to 
solve this problem. The most frequently used 
method is the optimal bound ellipsoid (OBE) 
method, which attempts, at each t, to use a bound 
ellipsoid to tightly bound the exact polytopes in 
some sense. The principle of OBE method can be 
illustrated geometrically as shown in Fig. 1. 
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Fig. 1 Geometric Illustration of OBE Method 

The bound ellipsoid at each sample time t can be 
described as: 

(3)      T
1 / 1c c

t t t t t    θ θ θ P θ θ  

Where
c

tθ is the center of bound ellipsoid at time t,

tP is the covariance matrix at time t and t is a 

weighting coefficient at time t. 

2.1. OBE Algorithm for Multi Input Multi 
Output System 

Ref. 17 gives a standard OBE algorithm for a Multi 
Input Single Output (MISO) system. However, the 
helicopter is a Multi Input Multi Output (MIMO) 
system. An extended OBE algorithm for MIMO 
system can be derived as follows. 

 
First, the FSS of Eq. (1) can be obtained easily by 
substituting Inequality (2) into Eq. (1): 

(4)  
2

2
1 1

: ( )
t t

T T

i i i i i i

i i

tr 
 

 
    

 
 θ y θ x σ σ  

Where t is a weighting coefficient which can be 

used to define the shape of the ellipsoid, 
2

is 

the vector norm operator, and tr(·) is the trace of a 
matrix. 
 
The left side of above solution set is expanded 
and after some mathematical manipulation, a 
standard bound ellipsoid equation can be 
obtained as shown in Eq. (5). 

(5)     1 / 1
T

c c

t t t t ttr      
  

θ θ θ P θ θ  

Where, 

(6) 
1

t
c T

t t i i i

i




 θ P x y  

(7) 
1

1

t
T

t i i i

i





P x x  

(8) 
1

1 1

( ) ( ) ( )
t t

T T cT c

t i i i i i i t t t

i i

tr tr tr   

 

   σ σ y y θ P θ  

It is more convenient to rewrite Eq. (6), Eq. (7), 
and Eq. (8) as iterative form shown below for 
programming: 

(9) 

1

1 1
1

1

1

1

1
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θ θ P x e

P x x P
P P

x P x

e e
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Where, 1

cT

t t t t e y θ x is the model prediction 

error at time t. 
 
Finally, the bound ellipsoid is optimized by solving 

the weighting coefficient t . An optimized ellipsoid 

must be the smallest figure that bound the 
polytopes well. There are different criteria for 
optimization, and one commonly used criterion is 
the volume of the ellipsoid. Ref. 17 gives the 
definition of ellipsoid volume and for our case it 
can be defined as Eq. (10).  Where, det(·) is the 
determinant of a matrix. 

(10)  det( )vol t t  P  

Substituting Eq. (9) into Eq. (10) and minimizing 
the volume of the ellipsoid by letting

/ 0vol t     , one can obtain the optimized 

weighting coefficient t as the largest positive root 

of the following 2nd order algebraic equation if 
such exists. If there is no positive root, the data at 
time t did not provide useful information and no 

updating of the parameter vector c

tθ is required. 

When this situation occurs, it indicates the two 
hyperplanes at this data point do not intersect with 
the current bound ellipsoid. 

(11) 
2

2 1 0 0t ta a a     

Where, 

(12) 
2

2 1( 1) ( ) ( )T T

t t t t ta n tr   σ σ x P x  

(13) 1 1 1 1(2 1) ( ) ( )T T T T

t t t t t t t t t t ta n tr tr    
     σ σ e e x P x x P x  

(14) 0 1 1( ) ( )T T T

t t t t t t t ta n tr tr   
    σ σ e e x P x  

Combines above equations, The OBE algorithm 
for MIMO system now can be obtained as shown 
in Fig. 2. 
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Fig. 2 OBE Algorithm for MIMO System 

 

2.2. Indirect Identification Algorithm for State 
Space Model 

The linear flight dynamics model of a rotorcraft is 
represented as the state space equation below: 
 

(15)  X AX BU  

Where, X is the state vector, U is the control input 
vector with equivalent time delays, A and B are 
the stability matrix and control matrix respectively, 
which contain the parameters to be identified. 

 
It is difficult to find the explicit relationship 
between the state vector and the parameters to 
be identified from Eq. (15), so it is impossible to 
use the OBE algorithm directly to identify such 
model. In order to solve this problem, an indirect 
identification method is developed. First, add an 
observation equation, shown as Eq. (16). 
 

(16)  Y X εC  

 
Where, Y is the observation vector, C is 
observation matrix, X is state vector in Eq. (15) 
and ε is the bounded noise vector. 

 
Since X is the function of all parameters to be 
identified, assume the parameter vector θ , and let

c
θ be the estimation of θ . Then at c

θ , X can be 

expanded as a first order Taylor series as below: 
 

(17) ( ) ( ) ( ) c

c c T




  

 θ θ

X
X θ X θ θ θ

θ
 

 
Then, Eq. (16) can be rewritten as Eq. (18) 
 

(18) ( ) ( ) c

c c T




   

 θ θ

X
Y CX θ C θ θ ε

θ
 

 

Let ( )c Y Y CX θ , c




 θ θ

X
X C

θ
, and

c  θ θ θ . Then an indirect identification model 

can be obtained as Eq. (19). 
 

(19) 
T  Y θ X ε  

 
Eq. (19) has the same structure as Eq. (1). So, 
one can use the above MIMO system OBE 

algorithm to identifyθ in this model. However, in 

order to do this, we still need to calculate X in Eq. 
(19), and this can be done by solving the 
parameter sensitivity equation as shown in Eq. 
(20). 
 

(20) 
d

dt

    
   

    

X X A B
A X U

θ θ θ θ
 

 

Based on above analysis, the identification of Eq. 
(15) can be done indirectly by using following 
algorithm: 

1) Set initial value of 0θ , 0P , 0 and c
tθ , let 1t  ; 

2) Solve Eq. (15) using Gill algorithm to get

( )c
tX θ , thenY is obtained; 

3) Solve Eq. (20) to get
( )

c
t



 θ θ

X θ

θ
, then X is 

obtained; 

4) Use MIMO system OBE algorithm described in 
Fig. 5 to identify Eq. (19), then the estimation of
θ is obtained; 

5) Let 1

c c

t t  θ θ θ and t=t+1, go to 2) 

 

3. APPLICATIONS TO HELICOPTERS AND 
QUAD-ROTOR  AIRCRAFT IN HOVER 

The rotorcraft flight dynamics model contains 
large numbers of parameters to be identified and 
these parameters have different sensitivity to 
model responses, so it is not easy to identify 
these parameters. In order to solve this problem, 
a two-step identification method is developed. 

 
In the first step, let all accelerations be the model 
output. Put all other model responses as well as 
control inputs into the model input vector. Then a 
simple parameterized model can be obtained as 
Eq. (21). 
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(21)  
T

m  y x εθ  

 

Since the rotorcraft is unstable in hover condition, 
the pilot will need make compensations during the 
flight test in order to keep the rotorcraft stable. 
This indicates that in the test data, the 
compensation controls and correlative responses 
are not negligible. The data used in the 
identification should contain measurements from 
all control channels. This brings two problems. 
First, the responses data in main excitation 
channel have a large signal to noise ratio while 
usually have a low signal to noise ratio in other 
channels. This will decrease the identification 
accuracy of relevant parameters in these 
channels. Second, a fully coupled model is 
required in the identification which means a large 
amount of parameters need to be identified. 
Moreover, these parameters have large 
differences in sensitivity to the model responses 
which mean it is difficult to identify all these 
parameters at the same time. 

 
In order to solve these problems, conventional 
identification methods usually introduce a model 
structure identification procedure before final 
parameter estimation. The purpose of model 
structure identification is to eliminate all 
insensitive parameters that are difficult to identify. 
So after model structure identification, an 
optimized model structure can be obtained and it 
is not difficult to identify the remaining parameters 
with high accuracy. It is also very convenient to 
use the model structure identification technique in 
set-membership identification method, but this 
procedure is quite time consuming especially in 
time domain. Considering the noise bound 
determines the size of the ellipsoid, and the size 
of the bound ellipsoid determines the size of FSS, 
which affects the accuracy of point estimation of 
parameters. Based on this, a more efficient 
technique is developed in this paper to solve the 
problems mentioned above. 
 
First, the generalized noise is defined in this 
paper. The generalized noise consists of physical 
noise and non-physical noise. The physical noise 
is the measurement noise in the test data, while 
the non-physical noise contains several individual 
components. Typical non-physical noise includes 
the random measurement errors of on board 
sensors, the model approximation error, and the 
errors due to numerical calculations etc.  
 
Second, the noise bound has large influences on 
identification accuracy in OBE algorithm. 
Therefore, the value of noise bound should be set 
properly. In previous research, the noise bound 

was determined upon engineering experiences. In 
this paper, an optimization algorithm is 
established to improve the noise bound. 
 
To this end, a cost function for noise bound 
optimization is defined as Eq. (22) 
 

(22)  
0

1
( ) 1,2, ,

T
i T i

i t t i
t t t

J i m
S




 
   

 
 e e  

Where,  
i i cT i

t t t e y θ x , is the model prediction error. 

1

/1
, 1,2,

in
t ji

t

j j

i m
n 

 
 

x θ
S

θ
, is the 

parameter sensitivity function. 
 
Minimize cost function J in Eq. (22) will find the 
noise bound for minimum model prediction error 
and maximum parameter sensitivity. 
 

3.1. Identification results of helicopters 

Flight test data of a light helicopter is used for 
model identification in hover condition. The flight 
test was conducted twice by using longitudinal 
excitation input and lateral excitation input 
separately. Standard data processing procedures 
include low pass filtering, wild value elimination, 
data compatibility examination and data 
reconstruction etc. are carried out before 
identification. 
 
The optimized noise bound is determined based 
on preceding method, and the results can be 
found in Table 1. The bound values in the table 
are relative to the maximum variations of each 
state variable. 

 
Table 1 optimized noise bound of the test 

helicopter 

Generalized 
noise 

Longitudinal 
excitation 

Lateral 
excitation 

uε  1.5% 5.3% 

vε  6.1% 0.9% 

wε  19.5% 14.6% 

pε  5.8% 1.2% 

qε  0.9% 6.1% 

rε  12.2% 8.5% 

ε  6.1% 1.1% 

ε  0.8% 6.5% 

The flight dynamics model identification results 
can be found in Table 2. 
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Table 2 Identification results for the test helicopter 
DER* Value STD** DER Value STD DER Value STD 

Xu -0.0321 0.00014 Zu 0.1241 0.002 Mu 0.0010 0.00014 
Xv -0.0329 0.00011 Zv -0.0519 0.0016 Mv 0.0811 0.00013 
Xw 0.0147 0.00049 Zw -0.4833 0.0055 Mw -0.0152 0.00067 
Xp 1.1137 0.3094 Zp 0.0854 3.6143 Mp -0.7744 0.1637 
Xq 1.2900 0.1296 Zq 0.8446 1.475 Mq -2.9862 0.0978 
Xr -0.3737 0.0299 Zr 2.4377 0.3882 Mr 0.6008 0.0386 

Xδlon -0.0543 0.00048 Zδlon -0.0453 0.0572 Mδlon 0.0593 0.0038 
Xδlat 0.0032 0.00031 Zδlat 0.0029 0.0338 Mδlat -0.0161 0.0015 
Xδcol -0.0069 0.00010 Zδcol -0.0151 0.0149 Mδcol 0.0267 0.0011 
Xδped 0.0264 0.00056 Zδped -0.2042 0.0642 Mδped -0.0237 0.0057 

Yu 0.0201 0.00027 Lu -0.0949 0.00055 Nu 0.0127 0.003 
Yv -0.0901 0.00017 Lv -0.1029 0.0006 Nv -0.0066 0.025 
Yw -0.0139 0.00068 Lw 0.0848 0.003 Nw -0.0253 0.061 
Yp -1.2841 0.7061 Lp -4.9555 0.4914 Np 0.6156 0.9211 
Yq 0.1184 0.2475 Lq 1.8998 0.3860 Nq 0.9480 0.3116 
Yr -0.1942 0.0439 Lr 0.4913 0.1678 Nr -0.1239 0.419 

Yδlon -0.0136 0.0011 Lδlon -0.0094 0.0013 Nδlon -0.0336 0.0015 
Yδlat 0.0028 0.00076 Lδlat 0.0773 0.0041 Nδlat 0.0092 0.0011 
Yδcol -0.0053 0.00017 Lδcol -0.0285 0.0041 Nδcol 0.0082 0.0027 
Yδped 0.0199 0.0009 Lδped -0.0300 0.0014 Nδped 0.0094 0.0091 
τlong 0.1 - τlat 0.06 - τcol 0.04 - 
τped 0.04 -       

* DER = Derivative 
** STD = Standard Deviation 

 
Fig. 3 Comparison of responses between model prediction and flight test in longitudinal excitation 
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Fig. 4 Comparison of responses between model prediction and flight test in lateral excitation 

 
 

 
It can be found in Table 2, the identification 
accuracy is very good for most of the parameters. 
It also should be noticed that, although in vertical 
channel, the test data are contaminated heavily by 
measurement noise (this can also be proven in 
Table 1, the noise bound in vertical channel is 
much larger than others), the vertical derivatives 
still have good estimation results. This indicates 
the robustness to noise of the established 
identification method is very good too. 
 
The identified model is verified by additional test 
data which are not used in identification progress. 
The results are shown in Fig. 3 and Fig. 4. Still, 
good agreement between the model prediction 
and flight test data can be found.  
 

3.2. Identification results of a quad-rotor 
aircraft 

The developed method is also used to identify the 
flight dynamics model of a model-scaled quad-
rotor aircraft as shown in Fig. 5. The takeoff 
weight of the quad-rotor aircraft is about 3 kg. The 
flight test of this aircraft was also conducted in 
hover condition as shown in Fig. 6.  
 
The generalized noise bound for the quad-rotor 
aircraft can be found in Table 3. It is obviously that 
the average noise bound of the quad-rotor aircraft 
is less than the helicopters.  
 



Page 8 of 10 

 

Presented at 45th European Rotorcraft Forum, Warsaw, Poland, 17-20 September, 2019  

This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2019 by author(s). 

 
Fig. 5 The quad-rotor aircraft for identification 

 

 
Fig. 6 Flight test of the quad-rotor aircraft 

 
 

Table 3 optimized noise bound of the test quad-
rotor aircraft 

Generaliz
ed noise 

Longitudinal 
excitation 

Lateral 
excitation 

uε  0.6% 2.3% 

vε  3.1% 0.7% 

wε  6.5% 7.2% 

pε  2.3% 0.8% 

qε  0.7% 1.9% 

rε  7.2% 6.1% 

ε  2.5% 0.9% 

ε  0.6% 1.8% 

 
The identified flight dynamics model of the quad-
rotor aircraft can be found in Eq. (23). The 
verification of the identified model is also 
performed. The result is shown in Fig. 7. It is 
apparently that the identification accuracy is still 
satisfactory.  

 
 
 

(23)         

0.8798 0 0 0 0 0 0 9.8 0

0 0.8660 0 0 0 0 9.8 0 0

0 0 1.2994 0 0 0 0 0 0

0 0.2672 0 3.5110 0 0 0 0 0

0.2679 0 0 0 3.4467 0 0 0 0

0 0 0 0 0 0.4987 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

u

v

w

p

q

r







    
   

   
   
  

   
     
  
  
  
  
  
    

0 0 0.02367 0

0 0.02016 0 0

0.3628 0 0 0

0 0.11068 0 0
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0 0 0 0

0 0 0 0
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           Time/s 

Fig. 7 Model verification of the quad-rotor aircraft 
 
 

4. CONCLUSIONS 

A method based on set-membership theory for 
rotorcraft flight dynamics model identification is 
developed. The new method does not require 
detailed information of noise and random error, 
but only their bounds. It is more suitable for 
identifying rotorcraft flight dynamics model since 
the test data usually contains high level 
measurement noise. The main work done in this 
paper can be summarized as follows: 

 A standard OBE algorithm for MIMO system 
which can be used to identify linear algebraic 
formed models is derived. 

 An indirect identification algorithm is 
established for systems that represented in 
state space equation form that cannot be 
identified using standard OBE algorithm 
directly. 

 The generalized noise concept is introduced 
and an optimization algorithm is developed 
for optimal noise bound determination 
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Applications of the identification method to 
helicopters and quad-rotor aircraft indicate the 
developed method in this paper has high 
identification accuracy as well as robustness. 
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