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Abstract 

A modular approach for the numerical simu­
lation of the aeroelastic behavior of a multi­
bladed helicopter rotor in forward flight is pre­
sented. For this purpose the structural dynamic 
model STAN is now extended to deal with multi­
ple blades in arbitrary motion and furthermore 
coupled with the three-dimensional finite volume 
Euler solver for unsteady, compressible flows, 
INROT. 

For the accurate prediction of the three­
dimensional flow field the rotor wake has to be 
described appropriately. In the present approach 
two different methods, a Chimera technique and 
a free wake model to provide the boundary con­
ditions at the outer grid boundary, are used to 
capture the wake. 

The solution of the surface coupled two-field 
problem is found by the use of a staggered time­
marching procedure. A higher-order staggered 
algorithm is presented that takes full advantage 
of the underlying characteristics of the applied 
solution methods. 

To validate the coupled approach a B0-105 
model rotor in low-speed and in high-speed level 
flight is investigated. The experimental data 
is based on the European cooperative research 
project HELINOISE. 
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coriolis and centrifugal force vector 
aerodynamic moment vector 
flow boundary conditions 
structure state 
time 
absolute velocities 
cell volume 
flapping angle 
degrees of freedom vector 
relative error sum 
lagging angle 
blade torsion angle 
body-fitted coordinates 
density 
time 
conservative variables vector 
azimuth angle 

Introduction 

A helicopter rotor in forward flight is a com­
plex multi-disciplinary system. The three­
dimensional flow field at the helicopter rotor is 
compressible and to a high degree unsteady. The 
advancing blade is subjected to a high Mach 
number environment at small angles of attack 
whereas the retreating blade has to deal with low 
dynamic pressures at high angles of attack in a 
viscous dominated flow regime. Another impor­
tant fact is that the wake trailed by a rotor blade 
lifting surface does not conveniently waft away to 
the behind in a more or less continuous fashion, 
but eventually remains close enough to interact 
with succeeding blades. The dynain.ic behavior 
of the complete helicopter rotor is determined by 
the elastic properties of the various blades and to 
a smaller extend by the design of the rotor hub. 

Early studies of rotary wing aeroelasticity 
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sought to identify the salient features of a partic­
ular problem using a theoretical representation 
as simple as possible. Simple models are ideal, 
if they work. They are efficient, user friendly 
and promote the understanding of the underly­
ing physics. However, the answers that they pro­
vide were found to be not completely satisfactory 
and, over the years, particularly with the growing 
capability of the computer, theoretical models 
have been gradually refined and improved. It is 
now recognized that good aeroelastic modelling 
requires a comprehensive representation of rotor 
dynamics and aerodynamics as well as sound nu­
merical and computational procedures. 

Todays aerodynamic methods are ranging 
from blade-element theory over potential meth­
ods with a prescribed or fLxed wake geometry and 
the transonic small disturbance method to Eu­
ler and Navier-Stokes methods. One the other 
hand, the dynamic behavior of the rotor blades 
can be calculated by multiple rigid-body systems 
over elastic beam elements and finite-element 
beam elements up to multiple three-dimensional 
finite-element structures. 

Applied Solution Methods 

Elastic Blade Analysis 

The elastic analysis of the rotor blades is based 
on the dynamic model STAN using multiple rigid 
bodies connected with hinges. In this frame­
work, the dynamic behavior of the blades is ap­
proximated only by their first natural modes and 
eigenfrequencies. The connecting hinges are pro­
vided with springs and dampers - their charac­
teristics represent the elastic properties of the 
blade. The considered degrees of freedom are 
flapping, lagging, and blade torsion. 

Using d'Alembert's principle, the governing 
equations of motion can be deduced from sim­
ple momentum balances at the hinges. A de­
tailed derivation can be found in [3]. The result­
ing system of second-order ordinary differential 
equations reads 

(1) 

The vector o contains the dependent variables 
for flapping /3, lagging (, and blade torsion r!b. 
The vectors f1 and m1 denote the aerodynamic 
forces and moments, respectively. Equation (1) 
is solved via an explicit fourth-order Runge­
Kutta method. 

The straightforward integration of Equation (1) 
does not produce a periodically converged solu­
tion before several hundred rotor revolutions are 
performed. The reader should keep in mind that 
each integration step of the structural solver im­
plies at least one solution of the complete three­
dimensional flow field - in fact the most time 
consuming part of the coupled solution process. 
Therefore, an essential task of rotary wing aero­
elasticity is to minimize the number of integra­
tions until a converged solution is achieved. Due 
to this the following mnemonic oriented conver­
gence acceleration method is used. The vector 
of inital values of the kN'th (kEN) rotor revo­
lution is composed of the weighted initial values 
from N previous rotor revolutions: 

okN - 1 
O,mod- "N 

L ..... m=l (2) 

The superscripts denote the rotor revolution. N 
is an arbitrary parameter to be chosen. Numer­
ical experiments have shown that N is best set 
to N = 3. In this special case we obtain for the 
modified starting values 

3 11 22 33 
Oo,mod = 500 + 580 + 500 (3) 

6 142-36 
oo,mod = 6oo + 6og + 6oo ( 4) 

The reader can easily verify that in the limiting 
case of a fully converged solution the starting val­
ues remain unchanged. In Figure 1 the relative 
error sum defined as 

1 Nblndo 360° ( !:;,J) 2 

c:=- I: I: -
Nblade n~! V>~A,P 0 

(5) 

is shown for the considered degrees of freedom. 
All degrees of freedom exhibit a very stable and 
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Figure 1: Transient Error Development 

monotone convergence behavior. The conver­
gence history of the blade torsion angle Vt is 
depicted in Figure 2. It can be seen that the so­
lution has converged to its periodic state at the 
end of the third revolution. Finally, two impor-
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Figure 2: Convergence Study of Blade Torsion 

tant properties of Equation (2) should be empha­
sized. First, due to the weighted assemblance of 
actual values out of previous ones, the solution 
development is damped in such a way that over­
shots will be prevented. This is not different to 
other underrela.xation schemes. The second and 
more important feature is that periodicity over 
a rotor revolution is enforced. Here we take ad-

vantage of the physical fact that for a fixed flight 
condition the solution has to be periodic. 

Rotary Wing Aerodynamics 

The three-dimensional, unsteady Euler equa­
tions are used to analyze the flow field around 
the helicopter rotor. They are formulated in a 
hub attached, non inertial rotating frame of ref­
erence with explicit contributions of centrifugal 
and coriolis forces. 

The computational grid of a rotor blade is sup­
posed to have an arbitrary motion relative to the 
rotating frame of reference. This is due to the 
cyclic pitch control as well as to the actual blade 
degrees of freedom. Thus, the Euler equations 
are formulated using time invariant body fitted 
coordinates [2, 23] : 

8¢ 8e ..L of ' 8g - k 
OT + 8~ ' 01) T 8( - . (6) 

This so-called arbitrary Lagrangian-Eulerian 
(ALE) formulation allows each grid point to 
move with a distinct velocity in physical space, 
relative to the rotating reference system. The 
vector of the conservative variables, multiplied 
by the cell volume, is given by 

<P = v. (p, pu, pv, pw, e) . (7) 

Here the velocity and energy are given in terms 
of absolute quantities. Kramer [12] showed that 
using absolute quantities obviates systematic nu­
merical errors and therefore preserves uniform 
flow when using a rotating frame of reference. 
The flux vector components of e, f, and gas well 
as the force vector k can be found in [23, 27]. 

For the finite-volume cell centered scheme, the 
flow variables are assumed to be constant within 
the cell. Since their values undergo a variation 
throughout the flow field, discontinuities arise at 
the cell boundaries. The evaluation of the fluxes 
at the cell faces is done by an approximate Rie­
mann solver developed by Eberle [6]. The uni­
formly high-order non oscillatory (UN 0) scheme 
[11] is used for the spatial discretization. 

DY 6.3 



Wake Modelling 

The comprehensive simulation of multi-bladed 
rotors in forward flight has to take into account 
the reciprocal influence of the blades. The vari­
ous blades affect themselves through their wakes, 
generated when lift is produced. Especially in 
flight situations with little downwash like low­
speed level flight or descend flight the rotor 
blades strongly interact with their own wake sys­
tem. In such cases the distinct vortices of the 
flow field have to be resolved and low-order mod­
els like global momentum theory are no longer 
applicable. In the present approach two different 
methods, both of them able to give an accurate 
prediction of the wake system, will be used to 
capture the wake. 

Chimera Technique 

One possible approach is to implicitly capture 
the wake of a helicopter rotor by the use of a 
sufficiently large computational domain which is 
able to resolve and transport the complete wake 
without further modeling. A separate grid is 
wrapped around each rotor blade. The indi­
vidual blade grids are placed inside a base grid 
which covers the entire computational domain. 
The embedded grids exchange information at 
their boundaries with the base grid and hence 
with each other. Figure 3 shows the grid config­
uration of a four-bladed B0-105 helicopter ro­
tor. The Chimera technique was incorporated 

Figure 3: Chimera Grids 

m the flow solver INROT by Stangl [23]. Due 

to the large number of grid points the computing 
time increases accordingly. Furthermore, addi­
tional time is needed for the search of transfer 
cells in the various grids. In order to minimize 
the required computing time, INROT was par­
allelized for shared memory architectures [27]. 
Each of the grids shown in Figure 3 is assigned 
to a processor. In order to achieve a good load 
balancing the base grid is divided into separate 
blocks, each with approximately the same num­
ber of grid points as the blade grids. 

Free Wake Boundary Prescription 

If the use of a computational domain enclosing 
all blades is not desired or possible, a free wake 
model can be used to provide the boundary con­
ditions for a single blade grid in order to generate 
the wake which will subsequently be transported 
into the computational domain. Wehr showed in 
[26] that this procedure is indeed able to correcly 
capture the wake. The overall algorithm can be 
divided into three consecutive steps. 

(j) First, the wake generated from the com­
plete rotor over several revolutions is com­
puted with the linear free wake vortex lattice 
method Rovu1 by Zerle [28]. 

@ Second, the solution from step (j) is used to 
calculate the far field boundary conditions 
for the Euler calculation over a complete ro­
tor revolution. Therefore it is necessary to 
position the computational grid of the Eu­
ler solver according to a prescribed motion 
of the rotor blade. 

® Third, the Euler solver INROT in conjunc­
tion with the dynamic module STAN com­
putes the compressible, non linear flow field 
around the investigated blade as well its 
transient aeroelastic response. 

Using the aforementioned procedure a realistic, 
three-dimensional flow field of a multi-bladed 
helicopter rotor can be computed. Figure 4 
shows the vortex lattice after 21/4 rotor revolu­
tions in low-speed forward flight. At ,P = 90°, a 
portion of the outer boundary of the Euler grid 
is shown, providing a view at the vortices of the 
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Figure 4: Wake Structure and Euler Grid 

free wake inside the computational domain. The 
boundary conditions enforce the emergence and 
convection of these vortices in the course of so­
lution phase @. 

The only drawback of this algorithm, when 
used in the framework of a fluid structure cou­
pling process, is that the movement of the blade 
has to be prescribed in step <1l as well as in step 
@. During phase @ the motion of the blade is 
likely to change. Now the already determined 
boundary conditions do no longer exactly repre­
sent the actual physical scenario. Increasing dis­
crepancies between the actual and the initially 
presumed rotor position will cause growing in­
accuracies in the overall outcome of the calcula­
tion. To circumvent this problem step <D-@ has 
to be repeated in an iterative manner until con­
vergence is achieved. 

Fluid Structure Coupling 

During one rotor revolution the blades of the 
helicopter rotor are exposed to fast varying air­
loads. They affect the movement and deforma­
tion of the blade. In turn, the actual shape and 
velocity of the blade surface determines large 
parts of the flow field. We can state that the 
physical interaction between the fluid and the 
structure is restricted to the wetted surface of 
the blade. The time dependent state of the flow 
defines the boundary conditions of the structure 
through the surface forces, whereas the actual 
state of the structure determines the boundary 

conditions of the fluid flow through its shape and 
velocity. 

In very simple and small-scale structural prob­
lems the coupled system can be solved in a way 
that combines the fluid and structural equations 
of motion into one single formulation. This 
monolithic set of differential equations describes 
the fully coupled fluid structure system as a 
unity. However, we have to deal with the non­
linear Euler equations. The governing equations 
for the structure may be linear or non linear. It 
has been pointed out in [14] that the simultane­
ous solution of these equations by a monolithic 
scheme is in general computationally challenging, 
mathematically suboptimal and from the point 
of software development unmanageable. 

Alternatively, the fluid structure coupling can 
be accomplished by partitioned procedures [4]­
[10], [13]-[21], [24], [25]. The fluid and struc­
ture partitions are processed by different pro­
grams with interactions only due to the external 
input of boundary conditions, provided at syn­
chronisation points. In the meantime the fluid 
and the structure evolves independently, each 
one of them using the most appropriate solution 
technique. This approach offers several appeal­
ing features, including the ability to use well­
established solution methods within each disci­
pline, simplification of software development ef­
forts, and preservation of software modularity. 

The exchange of boundary conditions - surface 
forces to the structural code and blade motion 
to the fluid solver - is best done consistent with 
the integration scheme used. Therefore, integrat­
ing from time level tn to tn+l, the implicit flow 
solver INROT is provided with boundary condi­
tions from time level tn+l, whereas the explicit 
dynamic solver STAN obtains exchange data from 
time level tn. Piperno proved in (18] that the in­
consistent treatment of boundary conditions re­
duces the accuracy of the coupled system and 
eventually ·deteriorates the stability limit. 
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Staggered Algorithms 

In [7, 18] various staggered algorithms for 
the explicit flow /implicit structure treatment of 
boundary conditions are presented. Staggered 
schemes of this type, as well as algorithms for 
explicit/ explicit or implicit flow/ explicit struc­
ture, permit the integration of the coupled sys­
tem by solely two consecutive integration steps, 
one for each solver part. In [4] an adaption of 
the basic staggered scheme presented in [7, 18] 
to implicit flow/ explicit structure solvers was 
presented. This scheme, denoted FSC1, is re­
peated in Figure 5 for convemence. In the de-
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Figure 5: Fluid Structure Coupling Scheme 1 

picted scheme, the superscripts correspond to the 
timelevel. S, s, F, and f represent the state 
of the structure, the boundary . conditions for 
the fluid flow, the state of the fluid, and the 
forces on the structure surface, respectively. The 
filled arrows - represent heavy computations 
with high computational costs, i.e. updating the 
state of the fluid with known boundary condi­
tions. The hollow arrows -!> represent com­
putations with moderate or low computational 

costs, i.e. advancing the structure state, comput­
ing the boundary conditions for the flow, or cal­
culating the surface force from the known vari­
ables of the fluid flow. The dashed lines indicate 
that additional information is needed. For exam­
ple to determine the state of the structure sn+l 
not only the forces fn have to be known but also 
the previous state of the structure sn. The ele­
mentary steps are as follows. 

CD Advance the structural system to S"+l un­
der a fluid induced load f". 

@ Transfer the motion of the blade surface 
sn+l to the fluid system. 

@ Advance the fluid system to Fn+l 

@ Compute the forces on the structure f''+ 1 . 

Such a partioned procedure can be described as 
a loosely coupled solution algorithm. Piperno 
proved in [18] that even when the underlying 
flow and structural solvers are second-order ac­
curate in time, coupling schemes of the FSC1 
type are only first-order accurate. For this rea­
son other authors [16, 19, 24, 25] advocate iterat­
ing on steps (j)-@ until the governing equations 
of motion are satisfied. Then the coupled system 
is advanced to the next time step. In the field 
of helicopter aerodynamics multiple iterations of 
the flow solver are beyond the boundaries of the 
overall computing time. Therefore, a higher­
order predictor-corrector staggered scheme was 
developed that takes full advantage of the un­
derlying characteristics of the employed solvers 
and the physics of the flow. Since the comput­
ing time of the dynamic code is negligible com­
pared to the time needed for the flow field com­
putation, the predictor-corrector procedure is re­
stricted to the structure step only. The overall 
computing time remains almost unaffected. The 
algorithm additionally takes care of the physi­
cal fact that the typical time of evolution for the 
fluid is considerably smaller than for the struc­
ture. Rapid changes of the flow are easily cap­
tured by the coupled scheme since the predicted 
structure state is corrected at the end of the time 
step. The FSC2 algorithm depicted in Figure 6 
consists of the following six steps. 
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Figure 6: Fluid Structure Coupling Scheme 2 

CD Predict the structural state s;+l under a 
fluid induced load fn. 

@ Transfer the predicted motion of the blade 
surface s;+l to the fluid system. 

® Advance the fluid system to Fn+l. 

@ Compute the forces fn+l on the structure. 

® Advance the structure one more time to the 
corrector state s~+l, now under the fluid 
induced load fn+l_ 

® Take the average of predicted and corrected 
values as the final structure state 

sn+l = ~ . (sn+l + sn+l) 2 c p • (8) 

Figure 7 shows the torsional moment acting on 
a rotorblade, computed with coupling scheme 

FSC1 as well as FSC2 using different integra­
tion step sizes D..,P = 1", 5" and 10°. Using the 

0 60 120 180 

'¥ 
240 300 360 

Figure 7: Comparison of Coupling Schemes 

smallest step size of D..,P = 1° the results ob­
tained with FSC1 and FSC2 show no difference. 
The situation changes when larger step sizes are 
used. Coupling scheme FSC2 still gives the same 
results even when the step size is increased to 
D..,P = 10°. This is not the case when scheme 
FSCl is used for coupling. Then a systematic 
numerical error become evident. The amplitude 
as well as the phase of the curve change at larger 
stepsizes. 

In order to retain the advantage of software mod­
ularity, given by the use of partitioned proce­
dures, the fluid and the structure code are kept 
as separate programs. They communicate with 
each other by means of message queues. Message 
queues are part of the UNIX-System VR4 inter­
process communication routines. When the com­
putation gets started, two message queues are set 
up. One queue is used to provide the structural 
code with aerodynamic loads, the other one to 
transfer the blade coordinates and velocities to 
the fluid solver. Each message that will be put 
on the message queue stack is provided with an 
identifier for the blade the transmitted data be­
longs to. Further details of the implementation 
can be found in [5]. 
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Results and Discussion 

The validation of the coupled codes is done on 
a B0-105 model rotor. The test campaign at 
the DNW, carried out within the framework of 
the European cooperative research project HE­

LINOISE, provides an extensive database for dif­
ferent flight conditions simulated with a 40% ge­
ometrically and dynamically scaled model of the 
B0-105 helicopter [22]. 

The rotor under consideration is a four-bladed 
hingeless rotor with a diameter of 4 m, a root 
cut-out of 0.350 m, and a chord length of 
0.121 m. The rotor blade uses a NACA 23012 
airfoil with the trailing edge modified to form a 
5 mm long tab to match the geometry of the full­
scale rotor. The rotor blades have -8° of linear 
twist, a standard square tip, and a solidity of 
0.077. The nominal rotor operational speed is 
1040 rpm. 

The elastic rotor blade is represented with three 
degrees of freedom accounting for flapping, lag­
ging an.d blade torsion. 

The Chimera technique uses four blade grids 
and a base grid for the discretization of the en­
tire flow field. These grids have already been 
shown in Figure 3. The number of grid points 
are summarized in the following table. 

Blade Grid Base Grid 
65.47. 18 85. 51.49 

= 54990 = 212415 

Total 
4 . 54990 + 212415 

= 432375 

The calculation is done on a NEC-SX4 super­
computer. When working in parallel with eight 
processors and with a performance of approxi­
mately 600 MFlops per processor one rotor rev­
olution takes about 2h 30min. The number of 
revolutions that have to be performed in order 
to get a converged solution of the coupled sys­
tem depends on the flight conditions. Roughly 
speaking between two and four revolutions are 
sufficient in almost any case. 

When the free wake boundary prescription 
technique is employed a finer blade grid with a 
total number of 129 · 83 · 31 = 331917 grid points 
is used. Furthermore, compared to the Chimera 
blade grids, the distance of the outer boundary 

from the blade is reduced from ten chord lengths 
down to five. This is done in order to get a better 
resolution of the incoming wake. The computing 
time needed for the separate steps of the algo­
rithm outlined in the section Free Wake Bound­
ary Prescription is shown in the following table. 

Free Wake 

lh 

Boundary I 
Conditions 

3h 

Coupled Euler 
Calculation 

2h 

The given values form the basis for the first rotor 
revolution. Further rotor revolutions contribute 
to the total time only with the time needed for 
the coupled Euler calculation. As in the Chimera 
case convergence is achieved after two to four 
rotor revolutions. 

Low-Speed Level Flight 

The first test-case chosen for the validation of 
numerical results is the low-speed level flight, 
HELINOISE DP-344. This test-case is charac­
terized by an advance ratio of J1. = 0.15, a rotor 
thrust coefficient of C, = 0.00446, and a hover 
tip Mach number of Mah = 0.644. Further de­
tails can be found in [22]. 

Figure 8: Wake System DP-344 

Figure 8 shows the system of wake vortices en­
countered. It becomes clear that the coupled al­
gorithm has to deal with various blade vortex 
interactions at different azimuthal and radial lo­
cations. 
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The Figures 9-11 show the resulting blade de­
grees of freedom {3, ( and ilb. The solid lines 
denote the results obtained with the Chimera 
technique whereas the dashed lines denote the 
calculations done with free wake boundary con­
ditions. Except for the flapping angle {3 both re­
sults agree fairly well. The flapping angle seems 
to be quite sensitive to the aerodynamic mod­
elling of the wake. It is probable that better cor­
respondance is achieved if the free wake bound­
ary conditions are re-calculated in a second cycle 
using the actual degrees of freedom. 
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Figure 9: Flapping Angle DP-344 
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Figure 10: Lagging Angle DP-344 
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The spanwJSe forces and moments shown in 
Figure 16 over a rotor revolution are obtained 
when the pressure is integrated over the blade 
section. This is done at the radial blade sections 
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Figure 11: Blade Torsion Angle DP-344 

r I R = 0. 75 and r I R = 0. 79 The x-axis of the 
underlying coordinate system points towards the 
trailing edge of the blade section, the y-axis to 
the blade tip, and the z-axis upwards. A com­
parison is made between the Experiment, the 
Chimera technique, the free wake boundary pre­
scription model, and a calculation done without 
blade dynamics. The uncoupled rigid blade cal­
culation overpredicts the experimental forces and 
moments in almost any case. This is no surprise 
since the blade undergoes torsion in the coupled 
calculation as can be seen in Figure 11. Since the 
angle of attack is directly coupled to any varia­
tion of iib it becomes clear that neglecting blade 
torsion might lead to insufficient results. In com­
parison to iib, the direct impact of {3 and ( on 
the aerodynamic forces and moments is rather 
small. They affect the aerodynamic loads pri­
marily through their time derivates, which are 
quite small if we take a look at Figure 9 and 10. 
At r I R = 0.97 the force and moment distribu­
tions show that blade vortex interactions have 
taken place at 1/J = 80° and 1/J = 280°. The 
results of the free wake boundary prescription 
model evidently give a better resolution of the 
vortices but sometimes lead to an overprediction 
of vortex strength at 1/J = 60°. As mentioned 
earlier this symptom could possibly be corrected 
with an re-calculation of boundary conditions 
using the actual degrees of freedom. In gen­
eral the calculated forces and moments are in 
good agreement with the experimental data ex-
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cept for dMyldr at riR = 0.97. In this case 
the calculated torsional moment is considerably 
smaller than the measured one. Since dlvfy I dr at 
r I R = 0. 75 is in a significantly better agreement 
with the experiment one possible cause for this 
behavior is that in our calculation model we used 
a constant torsional angle over the blade - this 
is not the case for the real blade where the tor­
sion angle varies over the blade axis. This fact 
might also be one possible reason for the signif­
icant drop in dF= I dr and dl'vf= I dr at 1j; = 150° 
which cannot be reproduced by the calculation. 

Comparisons between the experimental chord­
wise pressure distributions and calculated re­
sults are presented in Figure 17 for various az­
imuthal and radial positions. Very good agree­
ment between calculated and measured distribu­
tions is observed. The deviation at 1j; = 360°, 
r I R = 0. 75 is due to the undisturbed inboard 
wake, which is not present in the experiment due 
to the rotor hub. 

High-Speed level flight 

The second test case, used for the validation 
of the coupled approach is a helicopter rotor 
in high-speed level flight, HELINOISE DP-1839. 
This test case is characterized by an advanced 
ratio of /L = 0.337, a rotor thrust coefficient of 
C, = 0.00458, and a hover tip Mach number of 
Mah = 0.674. 

~-

Figure 12: Wake System DP-1839 

The wake system is visualized in Figure 12. Un­
like the previous case the rotor is not subjected 

to blade vortex interactions due to the increased 
downwash since the rotor shaft is tilted forward 
at an angle of 9.8°. We now have the situation 
that shocks occur at the advancing blade. 

The degrees of freedom flapping, lagging and 
blade torsion are shown in the Figures 13-15 over 
one rotor revolution. The results obtained with 
the Chimera method agree very well with those 
calculated with the free wake boundary condi­
tions. Regarding the blade torsion angle short 
wave oscillations are damped when the Chimera 
method is used. This is likely due to the coarser 
and therefore more dissipative grid used in the 
Chimera calculations. 

';) 

" 2. 
00. 

';) 
~ 

2. 
>.J' 

0 

I 

·" 
I /-t .. I 1\ . 

J I\ 
-'o 

- i I 
!20 I'" 

'¥ 
240 

Figure 13: Flapping Angle DP-1839 

I ,.-.. · .-•... ---.-----,~-· .. - ..... ~-· . ----,-,-.---, 

0.5 

0 

-0.5 

·I ... 

··'\·· .. I/ '···' ... ····r~. ···/· / .. 
: ~~~;/~ : • I I · · ·· • • · 

·1.5 =-1 =-=-=-= ~WBC f--.-f-----t.::._-+---1 
.... · . 

180 
'¥ 

240 
. . 

]{)() 

Figure 14: Lagging Angle DP-1839 

360 

The forces and moments per units span 

DY 6.10 



[) 

5 

I~ 

5 

2 

5 
0 

I • 
. I !' .. - ' 
. 

~ 
', :;kl ' . 

1'-. ' 
' \I,; ' j 

'\-Y -

• 
I 
' 

I 

I 
I 

I 
' 

180 

'!' 

~-~l~oo I-
j - --- F=-WohBC j 

' ,40 300 360 

Figure 15: Blade Torsion Angle DP-1839 

dFx/dr, dFz/dr, dkfy/dr, and dMz/dr are shown 
in Figure 18. A purely aerodynamic calculation, 
indicated by the dotted lines, is in no way capa­
ble of predicting the experimentally determined 
values. The situation changes if the dynamic 
properties of the blade are taken into account. 
The coupled results show the same characteris­
tical course as the experimental data. However, 
between 1jJ = 0° and 1/J = 180° we still have a dis­
crepancy in amplitude and phase, especially at 
r/R = 0.79. The differences between the calcu­
lated results and measured data need further in­
vestigations. It has to be scrutinized if the devi­
ations belong to the simple dynamic model used 
in the coupled approach which cannot account 
for the fully elastic properties of the real blade. 

Figure 19 shows the chordwise pressure distri­
butions calculated with the Chimera method as 
well as the measured ones. In this picture the 
same solution properties as in Figure 18 become 
visible. The coupled scheme is able to capture 
the qualitative characteristics of the experimen­
tal pressure distributions in an acceptable way. 

Conclusions and Outlook 

In this paper we presented an approach for the 
aeroelastic analysis of multi-bladed helicopter 
rotors in forward flight. The dynamic properties 
of the various blades are represented by a rather 
simple model that takes only the first natural 
modes and eigenfrequencies into account. The 

flow field is described by the three dimensional 
Euler equations, numerically solved with a cell 
centered finite volume upwind scheme. 

Two different methods for an accurate predic­
tion of the rotor wake were used. On one hand 
a Chimera technique where the wake is captured 
by the use of a sufficiently large computational 
domain was applied. On the other hand a free 
wake model was used to provide realistic wake 
boundary conditions for a single blade grid. Both 
approaches seemed to give almost equal results 
concerning the predicted flow field as well as the 
resulting dynamic behavior of the blade obtained 
during the coupling process. 

A higher-order staggered procedure was pre­
sented and compared with a first-order scheme. 
The higher-order scheme allows about ten times 
larger time steps without loosing accuracy. 
Moreover, the overall computing time remains 
almost unaffected by the higher-order scheme 
since it take full advantage of the underlying 
characteristics of the applied solution methods. 

The validation of the aeroelastic system is 
done on a B0-105 model rotor in low-speed and 
high-speed level flight. The results show that ne­
glecting the dynamic properties of the blade lead 
to unsatisfactory results. The coupled results of 
the low-speed level flight are in good agreement 
with the experimental data. The flapping an­
gle turned out to be very sensitive to the spatial 
position and strength of the incoming vortices. 
The simple dynamic model currently used is not 
capable to achieve such a good agreement of cal­
culated and measured data as in the low-speed 
flight case. However, the coupled results are 
in much better agreement with the experiment 
than the results achieved with a purely aerody­
namic calculation. It is likely that the above 
mentioned shortcomings belong to the simple dy­
namic model used in the calculation procedure. 

Current work deals with the incorporation of the 
developed methods in helicopter trim calculation 
procedures. Future work will be done on the de­
velopment and application of higher-order cou­
pling schemes with a higher degree of modularity. 
Furthermore a refined dynamic model of a fully 
elastic blade has to be taken into consideration. 
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