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Abstract

The typical approach used to evaluate ground resonance stability characteristics of the helicopter is based on the use
of a modal representation of the fuselage, derived either experimentally or by means of some mathematical model.
When this model includes also the effects of damping, that can arise, for example, from the inclusion of the landing-
gear oleo strut, the resulting modes are, generally speaking, complex. Complex modes are also assumed by most
algorithms implemented in the modal analysis packages that calculate fuselage modal characteristics from
experimentally measured FRFs.
In this work, a method to deal with complex modes in a coupled rotor-fuselage stability analysis is presented. For
simplicity, only the motion in the rotor plane has been considered (blade lead-lag and hub in-plane translations). This
technique overcomes the limitations of presently used codes which accepts only real (or normal) modes, and gives
the user a more straightforward interface with the output of the fuselage modal analysis codes (both analytical and
experimental). Furthermore, the use of complex modes, which contain also the information on the phase delay spatial
distribution, allows to obtain a more representative fuselage model. The stability of the resulting coupled rotor-
fuselage system can be analysed both with Floquet theory or using multiblade coordinates, as appropriate depending
on the specific case considered.

1 Introduction

Ground resonance analysis of the helicopter involves
the evaluation of the stability characteristics of a set of
equations that describe the dynamics of the coupled
rotor-fuselage system. The degrees of freedom that are
considered in the classical analysis [1,2,3] are the
translations of the rotor hub centre in the rotor disk
plane and the lead-lag motion of the blades, that can be
assumed almost as a rigid motion around the hinge for
articulated and soft-in plane rotors.
Even within this basic frame, the analytical derivation
of the equations of motions that describe the dynamic
behaviour of the fuselage supported by its
undercarriage, taking into account the various
geometrical and structural parameters of the
configuration being analysed, can be a laborious task.
Therefore, a commonly used approach is based on the
use of some general purpose structural modelling tool
to get the dynamic characteristics of the fuselage in
terms of its eigenmodes. This is also the same kind of

information that can be derived from experimental
dynamic tests of the airframe on the ground, which in
any case represent an important step in the
development phase of the helicopter, since allows to
obtain more realistic data and also to explore the
possible non-linear effects which may be present [4].
Once the modes of the airframe have been obtained,
either analytically or experimentally, they can be used
as input data for the codes (both in-house developed
[5] and CAMRAD/JA [6]) which perform the stability
calculation taking into account the rotor dynamics. The
assumption which is implied by both codes is that
these modes are “real” (or “normal”) modes, i.e. their
eigenvectors are purely real. In this case, the motion of
different points of the structure, for each mode
considered, is either in-phase or out-of-phase with
respect to each other.
This is not the most general case, however. In fact,
“real” modes analytically exist only when the system
dynamic matrices obey to some specific conditions,
which may not represent the more general case,
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especially when the damping matrix is included in the
analysis. But this is, indeed, the situation which has to
be considered when the final objective is the stability
analysis of the complete coupled rotor-fuselage system
since the knowledge of the damping behaviour of the
airframe is a fundamental issue to be addressed.
Complex eigenvalue analysis is needed to evaluate the
modal damping coefficients of the fuselage, which
result from the inclusion in the airframe model of the
damping properties of the structure, particularly with
respect to the landing gear characteristics.
In the complex modes case, eigenvectors turn out to be
complex too, with phase delays between the various
degrees of freedom of the model which can assume, in
principle, any value in the range from 0 to 2π. Nodes,
i.e. points of the structure with null motion are
replaced by the so called “galloping nodes”, and the
motion of each individual point of the model, instead
of being an oscillation along a line, is represented by a
more or less pronounced elliptical trajectory.
The situation is similar also on the experimental side,
since the software packages used to extract the
eigenmodes from the measured frequency response
functions (FRFs) generally adopt a complex modes
modal formulation.
Therefore, using complex modes directly as input data
for the stability analysis codes, without having to
introduce some approximate real mode representation
of the dynamics of the airframe, could be a useful
possibility from the user point of view.
The procedure to include complex airframe modes in
the coupled rotor-fuselage ground resonance stability
analysis will be presented  considering a rotor model
having only rigid lead-lag motion DOF. This
simplified assumption is used to retain only the basic
behaviour of the system dynamics, but the method can
be applied also to more general rotor models.

2 Review of real vs. complex modes

Complex eigenmodes analysis is a well know
technique [7,8,9,10] and for the purposes of this work
only a brief review of the theory and of the main
results will be presented.
Let us consider a second order dynamic system that
can described by the following set of N linear, constant

coefficients, differential equations:

0=++ KxxCxM ���            (1)
where x  is the vector of the N degrees of freedom and

M,C,K are the [NxN] simmetric mass, damping and
stiffness matrices of the system. The structure of these
matrices is, generally speaking, full, i.e. they can
contain various coupling terms between different
DOF.

Looking for solutions of the form x t x eo
j t( ) = ω  to

the undamped form of the system:

0=+ KxxM ��            (2)

leads to the following eigenvalue problem:

M K xoω2 0+ =            (3)

from which the eigenvalues ω and corresponding
eigenvectors xo of the system can be found.
Considering the modal matrix Φ of the eigenvectors, it
can be shown that this matrix has the following
orthonormalization properties with respect to the
system mass and stiffness matrices:

Φ ΦT
mM M=    and Φ ΦT

mK K=            (4)

where Mm and Km are the so-called modal mass and
modal stiffness diagonal matrices.
Coming back to the original system (1), it is possible
to see that in the case of proportional damping, i.e.

when the damping matrix can be expressed as a linear

combination of the mass and stiffness matrix:

C M K= +α β
the eigenvector matrix Φ can be used to diagonalize

also the damping matrix

Φ ΦT
m m mC M K C= + =α β            (5)

where the modal damping matrix Cm is again a
diagonal matrix. The condition of proportional
damping is not very common since it implies a very
peculiar variation of modal damping with the modal
frequency [7], characterised by a minimum damping

ratio of αβ  occurring at βαω /min = rad/sec

and greater damping values for lower and higher
frequencies, which is not exhibited by typical actual
structures.
For the most general form of system (1) the procedure
to extract complex eigenvalues/eigenvectors starts

with the addition of the following set of N identities:

0=− xMxM ��            (6)

In this way, the original second order system of N
equations can be transformed to the following set of

2N first order equations:
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Introducing the state vector  (of dimension 2N):
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the system can be written compactly as:

[ ] [ ] 0=+ yByA �            (8)
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In the presence of the damping matrix, solutions of

system (8) will be of the form:

IR
t

o ieyty λλλλ +== with)(            (9)

����� ��� ��� �	
����� � �� ��� � ���� 
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accounts for the time decay of the solutions.
Substituting (9) into system (8) gives rise to the

following eigenvalue problem:

{ } { }oo yy
U

KMCM λ=






 −− −−

0

11

         (10)

The solutions, in terms of both eigenvalues and
eigenvectors, are now, in general, complex. The
eigenvector matrix Ψ  which now has dimension
[2Nx2N] can be shown to have the following
orthonormalization properties with respect to the

dynamic state matrices A and B:

m
T

m
T BBAA =ΨΨ=ΨΨ and          (11)

Am and Bm are diagonal complex matrices (the so-
called modal_A and modal_B matrices), and can be

shown to satisfy the following relation: mm AB Λ−=
where Λ  is the diagonal matrix of the eigenvalues.
When the system dynamic matrices M,C,K are real, it
follows that eigenvalues and corresponding
eigenvectors appear either as complex conjugate pairs,
or as purely real (distinct or not).
This is no more true when one consider the case of
structural damping included as complex terms of the
stiffness matrix. However, the use of structural
damping in the form of complex stiffness should be
carefully evaluated when analysing the system stability
since it goes beyond the limits of applicability of the
mathematical model which is confined to the analysis
of steady-state harmonic oscillations [9] and could
lead to unstable eigenvalues of the airframe itself.

3 Stability analysis using real modes

Let us consider the classical equations of motion of an
articulated rotor with Nb rigid lagging blades coupled,
at the rotor hub centre, to a dynamic support (fuselage)
[1,2,3] (see fig. 1).

Figure 1: Rotor model schematic and DOF.
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equations can be written, for convenience, in a
compact matrix form as follows:
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where IR, CR and KR are diagonal matrices representing
the rotor dynamics and having the following
expression of the diagonal terms:

I j j I C j j C K j j K e SR j R j R j j( , ) ; ( , ) ; ( , )= = = + Ω2

 Sj, Ij, and Cj, Kj  are, respectively, the jth blade first
and second mass moment of inertia with respect to the
hinge, and the angular damping and stiffness
coefficient, e � ��� ����� ����� ��� � ��� �����

angular speed. MH, CH and KH are the structural
matrices of the airframe with dimensions [NHxNH],
and assuming to have ordered the degrees of freedom
in such a way that the x and y translation of the hub
centre appears as first and second term of the vector
xH.
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The other matrices which appear in the equations are:
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where bj Njtt )1(2)( −+Ω= πψ
and Mk is the mass of the kth blade.
These matrices contain also some other zero rows (for
i≥3). However, since these terms will have only the
effect of removing the explicit dependency from the
airframe DOF different from the x and y hub
translations, for simplicity of notation, they have not
been indicated.

Knowing the normal modes of the support, it is
possible to expand the motion of the hub centre as a
linear superposition of the modal contributions:

[ ]{ }ηΦ=Hx

where the modal matrix [Φ] contains the components
of the support eigenvectors corresponding to the x and

y in-plane degrees of freedom at the hub:
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for the M modes considered.
Now it is possible to introduce the following global
transformation matrix:
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Applying this transformation, and premultiplying by
QT the set of equations (12), leads to the following

system of 2N equations:
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where RHH MMM +=*  represents the mass matrix

of the airframe with the addition of the (concentrated)
rotor mass mR at the hub centre.
These equations now contain only the modal
characteristics of the airframe, expressed by the modal
matrix [Φ] of the eigenvectors at the rotor hub centre,

and the diagonal, real valued, modal mass *
mM ,

modal damping Cm and modal stiffness Km which

replace the products [ ] Φ⋅⋅Φ HHH
T KCM ,,*  in

virtue of the orthonormalisation properties of the real
modes.
Due to the definition of the augmented mass matrix of

the airframe *
HM , there are two options to account for

the rotor mass contribution to the airframe modal
mass. The first assume that the rotor mass mR is
included as a concentrated mass in the airframe model
(or test item). The second considers the airframe
without the rotor mass, and adds the rotor inertial

forces weighted by the airframe mode shapes:

ΦΦ+ΦΦ=ΦΦ= T
RH

T
H

T
m mMMM **

System (15) is still periodic, with the periodicity
included in the SS and SC coupling matrices. It can be
analysed for stability using Floquet theory [12]. In the
case of an isotropic rotor it can be converted, using
multiblade coordinates [11,13], to a set of constant
coefficients equations whose (complex) eigenvalues
will give frequencies and damping ratios of the
coupled rotor-fuselage system.

4 Stability with complex airframe modes

We have seen the form of the transformation that can
be applied in the case of real fuselage modes, and we
also know that for the complex modes case, the
orthonormalization properties of the eigenvector
matrix is valid only for the first order dynamic
matrices A and B. The basic idea of the procedure
presented here to include airframe complex modes is
based on a transformation similar to the one used for
the normal modes, in the sense that it will produce a
new set of equations which will contain only modal
parameters and modal variables for the support
dynamics, but extended to the general case of complex
modes, plus rotor-related physical degrees of freedom
and characteristics. The difference with the previously
seen method lies in the fact that the transformation,
instead of being applied to the original second order



63.5

form of the system, will be applied to the support
partition of the first order form of the coupled rotor-
fuselage system that can be obtained adding to

equations (15) the following identities:
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The two systems (15) and (16), written reordering the
equations in order to partition the support from the
rotor degrees of freedom, can be expressed in the

following way:
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It is convenient to rewrite this set of first order

equations in a more compact form as:

[ ]{ } [ ]{ } 0=+ yByA yy �          (18)

having introduced the new state vector:
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and partitioning the dynamic matrices Ay and By in the
rotor and support (hub) components:
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This system of first order equations has twice the
dimensions of the original system, and is still periodic
in time due to the presence of the SS and SC sub-
matrices. Again, when the rotor is isotropic, i.e. when
all the blades have the same characteristics, it is
possible to use the multiblade coordinates
transformation to eliminate this periodicity and obtain

a system of constant coefficients equations to analyse
for stability. It is convenient to introduce the
multiblade transformation at this point of the
procedure, along with the complex modal variable
change for the airframe dynamics. In this way all the
computations will be condensed in a single global
transformation operation acting simultaneously, even
if separately and in a different way, on the whole
system equations and variables.
The multiblade transformation, for an isotropic rotor

with 3 or more blades, is defined as follows:

{ } [ ]{ }bQMB=ζ          (19)

where b is the vector of the Nb multiblade rotor DOF,
and:
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(the last column of the matrix is present only when the
number  of blades is even).
The general form of the transformation that will be
applied to the state vector y of system (18) can be
written as:

{ } [ ]{ }qTy =    with    [ ] 
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support at the hub centre. QR is the rotor
transformation matrix which, depending on the
particular case being analysed, can be:

− isotropic rotor: MBR QQ =

− nonisotropic rotor: UQR =
To apply the transformation defined by eqs. (20) to the
system (18), it is necessary to take into account the
possible explicit dependency of the T matrix from the
time variable t (which is due to the rotor transform
matrix QR in the multiblade coordinates case).

Therefore, the derivative of the state vector will be:
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With the change of variable defined by eqs. (20) and
(21), and premultiplying system (14) by TT we obtain:
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or, shortly:

[ ]{ } [ ]{ } 0=+ qBqA qq �         (22)

where the new dynamic state matrices Aq and Bq have
the following partitioned expressions:
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Now it is possible to see that using the
orthonormalisation properties of the airframe complex
�����"����� �����	� ��� ���� �

TAHH � ��� �
TBHH �

will be replaced by the diagonal modal_A and
modal_B matrices which represent the analogous of
the modal mass, stiffness and damping terms of the
“real” mode case. The other elements of the Aq and Bq

matrices depend from the rotor characteristics, the
rotor-fuselage coupling terms and the rotor
transformation matrix which can be evaluated from the
rotor characteristics and from the complex support
eigenvector matrix.

From the form of the final system (22) matrices it is
possible to see that although the method has been
applied here to a rotor having only the lead-lag rigid
DOF, it can be extended to more general rotor models
following the partitioning scheme that has been
adopted and changing appropriately the expression of
the rotor-related matrix QR and of the coupling
matrices AHR, ARH and BHR, BRH.

5 Analysis of a 2 DOF fuselage model

The procedure described above will be applied to a
rotor support having two planar DOF (x and y
translations in the rotor disk plane). This simple case
allows to check the stability results obtained with the
complex airframe mode approach, versus the results of
a direct stability analysis of the system equations
expressed in physical coordinates.
The airframe dynamics at the rotor hub centre can be

described by the following equations:
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A first run has been made using for the system
parameters the values listed in table 1 (taken from ref.

[2] considering the nonisotropic hub case).

Support characteristics Rotor data
mx = 550 slugs Nb = 4
my = 225 slugs Mb = 6.5 slugs
kx = 85000 lb/ft Sb = 65.0 slug.ft
ky = 85000 lb/ft Ib = 800.0 slug.ft2

kxy = 0 lb/ft e = 1.0 ft
cx = 3500 lb.sec/ft Kb = 0.0 ft.lb/rad
cy = 1750 lb.sec/ft Cb = 3000.0 ft.lb.sec/rad
cxy = 0 lb.sec/ft

Table 1: Values of the parameters for the nonisotropic
uncoupled (real modes) hub case

In this case the support equations are uncoupled, since
the structural coupling terms kxy and cxy have been
neglected. The support matrices are therefore diagonal
and the resulting modes real.

Figure 2: Results of the analysis for the uncoupled
nonisotropic hub case.
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Figure 2 shows the results of the stability calculation
performed using three different approaches:
− direct analysis with physical DOF;
− analysis with real airframe modes;
− analysis with complex support modes.
These graphs can be compared with fig. 5 of ref. [2] to
see that the three methods give in this case the same
results in terms of system frequencies and dampings.
The difference with ref. [2] lies in the fact that the
present analysis consider all the rotor modes, including
also, in this particular case, the collective and
reactionless lead-lag modes.
Working with this simple 2 DOF support model it is
possible to control the “degree” of complexity of the
hub mode shapes simply changing the value of the off-
diagonal coupling term cxy of the support damping
matrix. This allows to make a comparison with the
stability results that would be obtained using
approximate real modes for the support dynamics in
place of the actual complex modes calculated from the
support equations.
To perform this comparison it is necessary to specify
in which way complex modes can be converted to real
modes. Two different possible methods have been
considered.
The first – “undamped system modes” - takes the real
eigenvectors at the hub centre from the undamped
form of the airframe dynamics (this can be done
performing for example, a NASTRAN SOL 103
analysis) without changes, and modifies the
eigenvalues to account for the appropriate modal
damping by assigning the values obtained from the
complex analysis of the airframe to the eigenvalues
corresponding to the same or most similar
eigenvectors.
The second – “amplitude normalisation” - considers
the complete set of complex eigenvectors and
eigenvalues (obtained either analytically or
experimentally) and transform the complex mode
shapes to real format keeping only the modulus of the
eigenvectors, with a proper handling of the signs (this
can be done, for example, looking at the residues).
This operation correspond to force an alignment of the
eigenvector phases along a given reference angle.
The first method can be applied only to analytical
models since it requires the knowledge of the mass and
stiffness matrices to calculate the undamped system
modes. The second one is more linked to the
experimental modal analysis package, which offer the

possibility of exporting the extracted modes using
either complex or real format in a universal file.
Both these methods are approximate, since in any case
the phase delay relations between different DOF will
be altered by the conversion of the eigenvectors to a
real format with respect to the actual distribution
contained in the original complex mode shapes.
Therefore, it is possible that some differences in the
final results can be found as a result of the
“normalisation” procedure. These differences should
be less evident when the airframe modes are less
complex which corresponds to a support dynamics
such that the hub in-plane modal trajectories are closer
to a line or to a very thin ellipse. On the other side, for
a more complex mode, the centre of the hub will show
an elliptical modal path with lower eccentricity (i.e. a
“fatter” ellipse), and in this case the conversion of the
eigenvector to the real format will produce a greater
alteration of the eigenvector.
The effect of the degree of complexity of the airframe
modes has been analysed considering the values of the
simplified 2 DOF model parameters listed in the
following table 2.

Support characteristics Rotor data
mx = 400 kg Nb = 4
my = 400 kg Mb = 50.0 kg
kx = 3e+5 N/m Sb = 70.0 kg.m
ky = 1e+5 N/m Ib = 230.0 kg.m2
kxy = 0 N/m e = 0.25 m
cx = 600 N.sec/m Kb = 0.0 N.m/rad
cy = 400 N.sec/m Cb = 3000.0 N.m.sec/rad

Table 2: Values of the parameters

The rotor considered in this example is a four bladed
rotor, with a first lead-lag frequency �lag=0.28 /rev,

which is in the typical range of articulated rotors.
Two different values of the out-of-diagonal term cxy of
the damping matrix have been considered:
a) cxy = -1000 N.sec/m;
b) cxy = -3000 N.sec/m.
These values are not necessarily representative of a
realistic case, being used in this example only to
modify the complexity of the support modes.
However, the results of the stability analysis are not
affected by these assumptions.
The complex support modes corresponding to the two
values of the coupling parameter cxy are listed in the

following table 3.
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Case a):
cxy=-1000

Case b):
cxy=-3000

Mode 1 Mode 2 Mode 1 Mode 2

Eigenvalue
�

(1/sec)
-0.7452
+27.203i

-0.5048
+15.904i

-0.6979
+25.668i

-0.5521
+16.855i

Frequency
�d

(Hz)
4.3294 2.5312 4.0852 2.6825

Damping
ratio

�
(%)

2.7384 3.1724 2.7178 3.2741

Modal_a ����Ii 54.406i 31.808i 51.336i 33.709i

Modal_b �����
1480.0

+40.544i
505.87

+16.056i
1317.7

+35.825i
568.18

+18.612i

x
0.0502

+8.9e-6i
-6.5e-5
+0.004i

0.0522
+0.0001i

-0.0003
+0.0151iComplex

eigenvector
y

2.5e-6
-0.0069i

0.0505
+1.9e-7i

0.0001
-0.0246i

0.0557
+3.4e-5i

Table 3: Calculated complex modes of the support.

Figures 3a) and 3b) show the hub centre modal
trajectories associated to the calculated eigenvectors. It
is possible to see that the more complex mode shapes
associated to the higher value of cxy produce more

circular modal paths.

Figure 3: Hub centre modal trajectories for
the two values of cxy considered.

It should be noticed that the degree of complexity of
the modes is not necessarily linked to high modal
damping values, since in both cases analysed the
damping ratios are in the order of a few percent. The
more circular paths are associated to the condition
where the x and y components of the eigenvector have
phase delay closer to 90° with amplitudes of the same
order of magnitude.
Converting these modes to real (or normal) mode
format using the two methods described above leads to
the eigenvectors listed in the following tables 4a and
4b (eigenvalues remain the same listed in previous

table 3), normalising to unity modal mass:

Case a):
cxy=-1000

Case b):
cxy=-3000

Table 4a):
Undamped

system modes Mode 1 Mode 2 Mode 1 Mode 2

x 0.05 0 0.05 0Real
eigenvector y 0 0.05 0 0.05

Case a):
cxy=-1000

Case b):
cxy=-3000

Table 4b):
Amplitude

normalised modes Mode 1 Mode 2 Mode 1 Mode 2

x -0.0502 0.0040 -0.0522 0.0151Real
eigenvector y -0.0070 -0.0505 -0.0246 -0.0557

Eigenvectors listed in tab. 4a, obtained from the
undamped form of the support equations, are not
affected by the value of the cxy term, since they are
evaluated without considering the damping matrix.
The stability analysis of the coupled rotor-support
system has been performed using both these normal
modes and the complex modes listed in tab. 3, in order
to compare the results obtained with the two
“realisation” procedures.
Figure 4 shows a comparison of the results obtained
for the first case considered (cxy=-1000), which
exhibits moderately complex support modes. For
better legibility of the figure, only the envelope of the
maximum real parts of the final rotor-support system
eigenvalues has been plotted.
In this case the results obtained with the various
methods are almost the same, even if the curves
corresponding to the normal support modes show a
very small, but still visible, difference with respect to
the reference analysis. The application of the complex
airframe modes analysis reproduces exactly the results
of the direct solution of the system equations
expressed in physical coordinates.
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Figure 4: Envelope of the maximum real parts of
system eigenvalues for the case cxy=-1000.

The results for the second case, with cxy=-3000, are
shown in figure 5 for the damping envelope, and figure
6 for the coupled rotor-support system frequencies.
In this case, the increased degree of complexity of the
support mode shapes leads to greater approximation in
the support modes converted to real format with
respect to the original complex mode shapes. This
approximation, along with the associated less accurate
representation of the support damping behaviour,
produces now to greater differences in the final
stability curves that can be seen in fig. 5. Looking at
this figure it is possible to observe that complex
support modes analysis is able to reproduce the
stability results of the direct solution also in this case.

Figure 5: Envelope of the maximum real parts of
system eigenvalues for the case cxy=-3000.

The differences between complex and real support
modal transformation are related to the different
capability of the two methods of reproducing the
dynamic behaviour of the support, particularly for the
effects induced by the damping matrix, being the rotor
model the same for both methods. These differences
appear clearly also from the rotor-fuselage system
frequencies trend towards zero rotor angular speed
plotted in fig. 6, where the rotor induced effects on the
system eigenvalues is lower. In fact it is possible to see
that at low angular rotor speed (in the limit, with the
rotor stopped) the frequencies evaluated with real
support modes differ from the reference, direct
solution, analysis results.

Figure 6: System frequencies (imaginary part of
eigenvalues) for the case cxy=-3000.

6 Conclusions

A method to include complex airframe modes into the
stability analysis of the coupled rotor-fuselage system,
applied here to the study of the ground resonance
characteristics, has been presented. The use of this
modal method produces results which are consistent
with the direct solution of the system equations of
motion expressed in physical coordinates, regardless
of the particular structure of the support dynamic
matrices.
This method can be viewed as an extension of the real
modal representation of the fuselage dynamics and
allows to use in a more straightforward way the
complex support modal parameters obtained either
analytically or experimentally.
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The stability results obtained converting complex
mode shapes to real mode shapes, with the two
different methods described, are close to the exact
solution when the degree of complexity of the modes
being considered is low. The applicability of real
support modes will depend on the particular behaviour
of the actual fuselage configuration being analysed.
The present complex mode method can therefore be
used to evaluate the effects induced by the use of
approximate real mode shapes, comparing the stability
curves obtained using the two approaches.
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