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Abstract. The Ornicopter is a single rotor helicopter without a reaction torque. The single 
rotor provides full flight control capabilities, hence a tail rotor is not required. This is 
achieved by forcing the rotor blades to flap up and down once per revolution. By flapping the 
blades up and down in a controlled manner, the aerodynamic forces that act on the rotor blade 
are used to drive the rotation of the rotor. Thus no torque needs to be applied to the rotor 
shaft, and as a result, no reaction torque will arise. 
The forced flapping motion of the rotor blades is generated by a so called flapping 
mechanism. The dimensions of such a mechanism depend directly on the amplitude of the 
forced flapping motion required for torqueless rotation of the rotor. Hence an accurate 
prediction of the amplitude of the forced flapping motion required is very important. 
Furthermore, the effect of forced flapping on the stress distribution in a rotor blade needs to 
be investigated in order to design rotor blades suitable for the Ornicopter. 
Rigid blade theory is available for the prediction of flapping amplitudes and in addition a 
modal superposition approach has also been developed. However, experiments have shown 
that these theories do not predict the flapping amplitude with sufficient accuracy. 
Furthermore, these methods do not yield satisfactory information about stress distributions in 
the rotor blade. 
This paper presents an alternative method for analyzing the forced flapping motion of an 
Ornicopter rotor blade. The method employs an existing planar beam finite element for 
geometrically nonlinear dynamic analysis. Simple external force models are presented for the 
centrifugal load and for the aerodynamic loads. The method is validated by comparing the 
results with experimental data obtained from a radio controlled Ornicopter demonstrator 
model. Finally the method is used to analyze two different flapping load cases for a full size 
rotor blade based on a Schweizer 300C helicopter blade. 
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NOTATIONS 

A  Cross-sectional area R  Rotor radius 

sA  Shear reduced area T  Rotor thrust 

c  Blade chord 

pdC  Average profile drag coefficient 
mT  Aerodynamic component parallel to shaft 

plane, evaluated at element center 

αl
C  Average lift slope u  Displacement in local x-direction 

eD  Global element displacement vector U  Displacement in global X-direction 

ed  Local element displacement vector v  Displacement in local y-direction 

mD  Drag evaluated at element center V  Displacement in global Y-direction 

E  Modulus of elasticity mV  Airspeed evaluated at element center 

zEI  Flexural rigidity X  Global X-coordinate 

eF  Element external force vector mX  Global X-coordinate of element center 

aeroeF ,  Element aerodynamic force vector  

centreF ,  Element centrifugal force vector α  Angle of attack 

flF  Flapping force β  Rigid blade flapping angle 

G  Shear modulus β̂  Rigid blade flapping angle amplitude 
I  Mass moment of inertia RBFβ  Residual bending flexibility correction  

zI  Area moment of inertia of cross-section γ  Lock number 

k  Induced power correction factor ε̂  Flexible blade root angle amplitude 

0k  Element stiffness matrix (local) ρ  Air density 

eK  Element internal force vector σ  Rotor solidity 

0l  Undeformed element length θ  Global element orientation 

mL  Lift evaluated at element center 0θ  Collective pitch angle 
m  Mass per unit length ϕ  Local inflow angle 

eM  Element mass matrix (global) φ  Local cross section orientation 

flm̂  Amplitude of nondimensional flapping 
moment 

Φ  Global cross section orientation 

flM  Flapping moment Ω  Rotor rotational speed 

N  Number of rotor blades  

mN  Aerodynamic component normal to 
element, evaluated at element center 

 

flP  Flapping power  

iP  Induced power  

pP  Profile drag power  

shP  Rotor shaft power  

shQ  Average rotor shaft torque  

eshQ ,  Shaft torque due to element  
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1 INTRODUCTION: A SINGLE ROTOR HELICOPTER WITHOUT REACTION 
TORQUE 

The helicopter tail rotor has always been considered a necessary evil. Without it, a 
conventional helicopter would be uncontrollable. Yet the tail rotor is an expensive 
contraption, it consumes a lot of power yielding nothing in return and it provides only 
marginal control authority under unfavourable wind conditions. On top of that, it is noisy, 
vulnerable and dangerous. The ideal solution to all these problems would be to design a main 
rotor that eliminates the need for a tail rotor. 
The Ornicopter is such a revolutionary design. The Ornicopter is a helicopter that is fully 
controlled using only a single (main) rotor. 

1.1 Forced flapping of the rotor blades 
 
The Ornicopter principle is based on bird flight. Birds are able to generate both a lifting force 
and a propelling force by flapping their wings. The movement of a bird wing however is 
extremely complicated and it is impossible to accurately mimick this movement using an 
Ornicopter blade. Nevertheless a very useful and simple approximation can be obtained by 
forcing the Ornicopter blade to flap up and down at a constant pitch angle. 
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Figure 1: Lift and drag forces acting on an 
Ornicopter blade element during one revolution 
when a constant collective pitch angle is applied 

Figure 2: Due to forced flapping, part of the 
aerodynamic resultant is used to propel the 
Onricopter rotor blade 

 
The movement of an Ornicopter blade during one revolution is depicted in Figure 1. During 
one revolution of the blade, the blade is forced to flap both up and down once, resulting in the 
undulating path shown. If a constant pitch angle is applied the aerodynamic forces will 
(averaged over one revolution) result in an upward force and a propulsive force that 
counteracts the blade drag. This propulsive force is achieved because the forward horizontal 
component of the lift force that occurs when the blade is flapping downwards is much larger 
than the backward horizontal component of the lift force that occurs when the blade is 
flapping upwards. Thus by setting all the Ornicopter blades at a constant pitch angle and 
flapping them up and down, a propulsive force is created that will rotate the blades around the 
rotor hub and an upward force is created that will counteract gravity (Figure 2). 

1.2 Absence of a reaction torque 
 
So why is it that, when the blades are propelled by a flapping motion, there is no reaction 
torque acting on the fuselage? This can be explained by comparing a conventional helicopter 
with an Ornicopter. 
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In a conventional helicopter, rotor blade drag is counteracted by the torque that is exerted on 
the rotor shaft, as depicted in Figure 3. The rotor thus rotates due to the torque that is 
transferred from the fuselage to the rotor. As a result there will also be a reaction torque from 
the rotor on the fuselage, and this reaction torque will have to be counteracted by an anti-
torque device. 
For the Ornicopter configuration the drag acting on the rotor blades is counteracted by the 
propelling force produced by the forced flapping motion of the blade, as depicted in Figure 4. 
Thus no direct torque is transferred from the fuselage to the rotor. As a consequence there will 
neither be a reaction torque from the rotor on the fuselage. And hence an anti-torque device 
(tail rotor) is no longer necessary. 
 
 Drag 

Drag Reaction torque  
on fuselage 

Driving torque on rotor 

(a) 

Drag 

Drag 

Driving torque = 0 

Reaction torque = 0 

Propelling force 
Propelling force 

(b) 

 
Figure 3: Forces and moments acting on a 
conventional helicopter 

Figure 4: Forces and moments acting on an 
Ornicopter 

 

1.3 Flapping mechanism and yaw control 
 
Obviously some mechanism is required in order to generate the forced flapping motion of the 
rotor blades, that is, to convert engine power into flapping power. This is referred to as the 
flapping mechanism. An example of such a flapping mechanism, as implemented in the 
experimental radio controlled Ornicopter demonstrator model, is depicted in Figure 8. 
The most straightforward way to provide flapping power to the rotor blades is via the rotor 
shaft. By directly coupling the flapping mechanism to the rotor shaft, a 1-P (once per 
revolution) flapping motion is achieved, taking advantage of resonance. There is somewhat of 
a paradox here, because a torque is applied to the rotor shaft in order to prevent a reaction 
torque from arising. This can be explained as follows. 
As with a conventional helicopter, the engine applies a torque to the rotor shaft, which in turn 
causes the rotor to rotate. However, due to the presence of a flapping mechanism, part of the 
power applied to the shaft is used to flap the blades up and down. The amount of power 
diverted to this flapping motion is directly related to the amplitude of the flapping motion, 
which can be controlled with the help of the flapping mechanism. Now, if the correct flapping 
amplitude is chosen for a constant power setting, the amount of power used for flapping will 
be equal to the amount of power transferred to the rotor shaft by the engine, and as a result the 
torque applied to the shaft will be fully counteracted within the flapping mechanism. The net 
result is that the rotor is now driven by the forced flapping of the blades only. 
This way of transferring flapping power to the rotor blades has another advantage. At constant 
power setting, a small deviation from the equilibrium flapping amplitude implies that power 
required for flapping becomes larger or smaller than the power transferred to the rotor shaft. 
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As a result a small reaction torque will arise. Thus by manipulating the flapping amplitude, 
the amount of reaction torque and the direction of the reaction torque can be controlled. 
Hence the forced flapping amplitude is a control variable, taking over the role of tail rotor 
pitch in conventional helicopters. 

1.4 Basic Ornicopter theory 
 
During the past couple of years, research has mainly been focused on developing and studying 
the underlying theory of the Ornicopter [1][2][3][4][5]. A thorough understanding of this 
theory is necessary in order to be able to understand the effects of forced flapping on rotor 
performance, rotor loads, vibrations etc. The basic theoretical model for the Ornicopter is 
based on rigid blade theory. A short summary of the theory described by [2] is given here. 
 

Figure 5: Centrally hinged rigid blade model with 
root flapping moment 

Figure 6: Flow components and aerodynamic forces 
acting on a blade element at distance r from the 
shaft 

 
The forced flapping principle is best illustrated using a centrally hinged, uniform, rigid blade 
at constant rotor rotational speed in hover condition. Based on the model depicted in Figure 5 
and Figure 6 with a flapping moment flM  applied at the root, the following expression for the 
rotor shaft power can be derived: 

flpish PPPP −+=  (1) 
where bflfl NPP ,=  is the total flapping power for N  blades, iP  is the induced drag power; 

22 R
TkTPi ρπ

=  (2) 

and pP  is the profile drag power; 

( ) 23
8
1 RRCP

pDp πρσ Ω=  (3) 
In these expressions, k  is the induced power correction factor, T  is the rotor thrust in hover, 
ρ  is the air density, R  is the rotor radius, 

pDC  is the average profile drag coefficient and 
)/( RNc πσ =  is the rotor solidity. 

The power that goes into forced flapping for a single blade is found with the help of blade 
element theory [2] to be equal to: 

2
3

,
ˆ

16
βγΩ

=
IP bfl  (4) 

where I is the mass moment of inertia of the blade with respect to the flapping hinge, Ω  is 
the rotor speed, IcRCl /4

,αργ =  is the Lock number, where α,lC  is the average lift slope and 
c  is the blade chord, and β̂  is the forced flapping amplitude. 
The average shaft torque at constant rotor speed can then be expressed as: 
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Ω
−+

=
Ω

= bflpish
sh

NPPPPQ ,  (5) 

Hence in order to reduce the average shaft torque to zero, the flapping power should equal the 
sum of induced drag power and profile drag power. 
The flapping amplitude β̂  required for torqueless rotation ( 0=shQ ) is therefore: 

γ
β 3

)(16ˆ
Ω

+
=

NI
PP pi  (6) 

The corresponding non-dimensional flapping moment is: 

βγ ˆ
8

ˆ =flm  (7) 

These expressions for the rigid blade flapping amplitude and corresponding flapping moment 
could be used as a first approximation in the preliminary design process of a flapping 
mechanism. 
However, because the size of a flapping mechanism is directly determined by the flapping 
amplitude, accuracy of the prediction is very important. Experiments with an Ornicopter wind 
tunnel model and with the radio controlled Ornicopter demonstrator model [6], which is 
depicted in Figure 7 and Figure 8, have shown that the actual flapping amplitude (measured at 
the flapping hinge) required for torqueless rotation is much larger than the one predicted using 
Equation 6. This could be expected because an actual rotor blade is flexible and will therefore 
deform under the influence of the flapping loads. The qualitative effect of blade flexibility on 
root flapping angle is illustrated by Figure 9. 
 

Figure 7: The radio controlled Ornicopter 
demonstrator model on a fixed base test stand 
equipped with strain gauges [6] 

Figure 8: Close-up of the flapping mechanism of 
the radio controlled Ornicopter demonstrator 
model 

1.5 Rigid blade theory vs. Flexible blade theory 
 
The influence of blade flexibility has been investigated by [4] using a modal superposition 
method. A two-mode approximation (rigid body mode and first bending mode) of a centrally 
hinged blade in zero-lift condition with a flapping moment applied at the root yields 
considerably better results than rigid blade theory, as far as the root flapping amplitude is 
concerned. 
According to [4] the root flapping amplitude required for a flexible blade ( ε̂ ) is much larger 
than that for a rigid blade ( β̂ ), but on the other hand the root flapping moment for the flexible 
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blade is smaller. However, the amount of power required for flapping is not influenced by 
blade flexibility (when neglecting structural damping). 
To illustrate the effect of blade flexibility on flapping requirements, the rigid blade prediction 
of the flapping amplitude required for the Ornicopter demonstrator model in the zero-lift 
condition is depicted in Figure 10, together with the flexible blade prediction, as a function of 
rotor speed. 
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Figure 9: Root flapping angle for a rigid blade 
(β) and for a flexible blade (ε) 

Figure 10: The effect of blade flexibility on the root 
flapping amplitude required for torqueless rotation for 
the Ornicopter demonstrator model at zero lift 

 
The size of an Ornicopter flapping mechanism is proportional to the flapping amplitude. This 
makes the flapping amplitude a major design driver for the Ornicopter. Hence an accurate 
prediction of the actual root flapping angle required for torqueless rotation is very important, 
even in the preliminary design phase. 
Furthermore, the stress distribution in the rotor blade due to forced flapping loads needs to be 
determined if a suitable rotor blade is to be designed for use on an Ornicopter. 
Rigid blade theory, although very useful for basic performance calculations, is not applicable 
here. The modal summation method on the other hand does yield reasonable accuracy for the 
zero lift condition, but application to lifting conditions and other load cases requires a lot of 
effort and the results are yet to be proven. 
All in all, there is reason enough to look into another method of rotor blade analysis. 
 
2 A FINITE ELEMENT APPROACH TO FORCED FLAPPING 

As an alternative to the analytical methods, a geometrically nonlinear finite element (FE) 
method has been employed in order to allow a more detailed analysis of rotor blade behaviour 
under forced flapping conditions. This has several advantages over the analytical methods, for 
example: analysis of non-uniform structures is relatively easy, flapping mechanism geometry 
can be taken into account and the stress distribution in the blade can be investigated. 
The finite element method employed is based on the planar beam element developed by [8]. 
The resulting FE rotor blade model is discussed next.  
 

2.1 A planar Timoshenko beam element for large rotations 
 
The planar beam element presented by [8] is a standard Timoshenko beam for small 
deflections, applied in a type of co-rotational formulation. This implies that the element is 

β 

ε 
rigid blade 

shaft plane 

flexible blade 
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subject to rigid body rotation and deformations are calculated with respect to the rotated 
configuration. This way, assuming that the elements are small enough, deformations (strains) 
can remain small, which justifies the use of linear elastic theory. 
The Timoshenko beam element is different from the well known Euler-Bernoulli element 
(also known as EBT, engineering bending theory) in that it takes into account the effects of 
shear deformation on bending behaviour, as depicted in Figure 11. The orientation of a cross-
section of the Timoshenko element is independent of the deflection, allowing the use of linear 
shape functions for the deformations U , V  and Φ  (Figure 13), which simplifies calculations 
considerably (whereas in EBT, the cross-sections remain perpendicular to the neutral line, 
making φ dependent on v and thus requiring a higher order shape function for φ). The 
deformed Timoshenko element thus remains straight, as can be seen in Figure 11. 
 

 
Figure 11: The Bernoulli –Euler element vs. the Timoshenko element (source: [10]) 
 
The Timoshenko beam element from [8] is depicted in Figure 12 in undeformed configuration 
(with length 0l ) and in deformed configuration (for clarity, the deformed configuration is 
depicted as a curved line). The local reference frame in the deformed configuration is defined 
so that the local x-axis coincides with the neutral axis of the deformed element. And since 
deflection is described by a linear shape function, the only non-zero deformations in the local 
reference frame are the elongation of the element ( u ) and the rotation of the cross-section 
(φ ). The deflection of the element is taken into account in the orientation of the local 
reference frame with respect to the global reference frame, denoted by the angle θ . 
 
The element nodal deformation vector in global coordinates is denoted 

T
jjjiiie VUVUD ),,,,,( ΦΦ=  and due to the choice of local reference frame the element 

nodal deformation vector in local coordinates is reduced to T
jjie ud ),,( φφ= . By inspection 

of Figure 12 and Figure 13, the two are related as follows [8]: 
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ee llVVlUUuDd 0
2

00
2

00 )sin()cos()(  (8) 

and the finite rotation angle θ  is defined in terms of U  and V  as: 

2
00

2
00

001

)sin()cos(

sin
sin

Φ+−+Φ+−

Φ+−
= −

lVVlUU

lVV

ijij

ijθ  (9) 
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Figure 12: Definition of reference frames 
(source:[8]) 

Figure 13: Global displacement relations 

 

2.2 Equations of motion 
 
The equations of motion for the beam element can be determined with the help of Hamilton’s 
principle. Therefore the kinetic energy and potential energy expressions T  and V  need to be 
established. The kinetic energy is best determined in terms of global coordinates, whereas the 
internal potential energy is best determined using local coordinates because the deformation 
of the beam element is defined with respect to the local reference frame. Referring again to 
[8] for derivations, the expressions for the kinetic energy T  and the internal potential energy 

intV  are:  

ee
T
e DD M2

1T =  (10) 

)()(V 02
1

02
1

int ee
T

eee
T
e DdDddd kk ==  (11) 

In these expressions, eM is the global element mass matrix and 0k  is the local element 
stiffness matrix. 
According to [8], the standard consistent mass matrix for the Timoshenko element 
corresponding to global coordinates is: 
 

⎥
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6
M  (12) 

here m  is the mass per unit length, A  is the cross-sectional area and zI  is the area moment of 
inertia of the cross-section. 
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The local stiffness matrix for the Timoshenko element according to [8] is: 
 

⎥
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⎥
⎥
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l
EI

z

RBF

RBFz

RBF

RBF

z

RBF

RBFz

RBF

RBF

e

β
β

β
β

β
β

β
β

k  (13) 

where 2lGA
EI

s

z
RBF =β  represents the residual bending flexibility method which is employed to 

prevent shear locking. Here sA  is the shear reduced cross-sectional area, E  is Young’s 
modulus and G  is the shear modulus of the material. 
Application of Hamilton’s principle yields the following equations of motion [8]: 

eeeee FDKD =+ )(M  (14) 
where )( ee DK  is the nonlinear internal force vector which results from the internal potential 
energy expression and eF  represents the external loads. The internal force vector is best 
evaluated using symbolic computation software. 
The element matrices and vectors can be combined using standard finite element assembly 
techniques to form the equations of motion for the complete system. These equations of 
motion can be integrated using a standard time integration scheme. In this paper a fourth order 
Runge-Kutta scheme is used. 

2.3 External loads 
 
In order to simulate a rotor blade under forced flapping conditions, the Timoshenko element 
described above is used to represent a hinged-free beam. This beam is subjected to three types 
of loads: a centrifugal load, an aerodynamic load and a forced flapping load. 
The centrifugal load and aerodynamic load are represented by nodal forces based on the 
models depicted in Figure 14 and in Figure 15 respectively. The centrifugal load vector is 
derived using energy equivalence, while the aerodynamic load is evaluated at the element 
mid-point and then distributed evenly over the nodes. 
 
Based on the following centrifugal load distribution along the global X  coordinate: 

XApc
2Ω= ρ  (15) 

the equivalent centrifugal load vector for the beam element becomes: 
T

ii
centre l

X
l

X
lAF ⎟

⎠
⎞

⎜
⎝
⎛ ++Ω= 0,0,cos

3
1

2
,0,0,cos

6
1

2
cos 000

2
, θθθρ  (16) 

where iX  is the global X  coordinate of the first node of the element. 
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Figure 14: Centrifugal load model  Figure 15: Aerodynamic load model, with velocity 

distribution normal to the element 
 
The aerodynamic force vector is found using Figure 15 and Figure 6, based on simple blade 
element theory. The centre of the element is located at: 

2
ji

m

XX
X

+
=  (17) 

The airspeed encountered by the element at this point is defined by: 
222 )cos()( mindmm vvXV −+Ω= θ  (18) 

and by inspection of Figure 6 the angle of attack can be expressed as: 

m

mind
m X

vv
Ω

−
−=−= − θ

θϕθα
cos

tan 1
00  (19) 

where ϕ  is the local inflow angle, indv  is the induced airspeed at the element,  mv  is the local 
normal component of the absolute velocity of the element centre, and 0θ  is the collective 

pitch. Assuming a symmetric airfoil with chord c  and constant lift slope αlC , the lift over an 
element of length 0l  evaluated at the mid point can then be expressed as: 

0
21

00 2
1cos

tan clV
X

vv
CclqCL mair

m

mind
lmmlm ρ

θ
θα αα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

−
−== −  (20) 

If an asymmetric airfoil is used, the airfoil lift coefficient can be approximated using: 
)( 0=−= Lmll CC ααα  (21) 

where 0=Lα  is the zero-lift angle of attack. 

Assuming a constant average profile drag coefficient pdC  the profile drag evaluated at the 
mid point becomes: 

0
2

2
1 clVCD mairdm p ρ=  (22) 

With the help of the local inflow angle ϕ , the resultant aerodynamic force can be expressed 
in terms of a component mN  normal to the element and a component mT  parallel to the shaft 
plane: 

ϕϕ sincos mmm DLN −=  (23) 
ϕϕ cossin mmm DLT +=  (24) 

mX  

mv
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The lumped aerodynamic force vector expressed in global coordinates then becomes: 
T

mm
aeroe

NN
F ⎟

⎠
⎞

⎜
⎝
⎛= 0,

2
,0,0,

2
,0,  (25) 

and the element contribution to the shaft torque is: 
mmshe TXQ =,  (26) 

 
The forced flapping load can be applied at any node by defining a nodal force vector flapF  as 
a function of time. Alternatively, a flapping mechanism can be incorporated in the FE 
discretization, prescribing the motion displacement of a single node as a function of time. 
The total external force vector is then equal to the sum of the centrifugal force vector, the 
aerodynamic force vector and the flapping load vector. 

2.4 Verification and validation of the FE model 
 
The implementation of the geometrically nonlinear Timoshenko beam element in Matlab has 
been verified by reproducing some of the test cases presented by [8]. The implementations of 
the centrifugal force model and the aerodynamic force model have been verified by 
comparing the FE results for a free flapping rotor blade with the results found using analytical 
rigid blade theory. Furthermore, the flapping behaviour found using the FE model has been 
compared with both the rigid blade theory and the flexible blade theory described earlier. On 
all accounts the qualitative results were satisfactory. For details refer to [7]. 
Of course it is all very nice to have a model of an Ornicopter rotor blade that does what it 
should do in a qualitative sense. However, the question remains whether the quantitative 
results found using the FE model are anywhere near what happens in reality. Therefore the FE 
model has been used to simulate the rotor blade behaviour of the Ornicopter demonstrator 
model, and results are compared here with experimental data available. 
To this end, a detailed representation of the structural properties and aerodynamic properties 
of the rotor blade used on the Ornicopter demonstrator is required. This rotor blade, a “Vario” 
model helicopter blade for use on a four bladed rotor, is a glass fibre composite blade with an 
asymmetrical airfoil and no twist. Since no detailed information is available for this blade, the 
values of important parameters had to be determined experimentally. The rotor blade, together 
with the pitch bearings and attachment to the flapping hinge, is represented by a planar beam 
with properties varying along the length as depicted in Figure 16. 
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Figure 16: Distribution of mass and flexural rigidity 
along the Ornicopter demonstrator model blade 
(including root attachment) 

Figure 17: Experimental data available from the 
Ornicopter demonstrator model in free flapping 
configuration [6] 
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In order to obtain a good initial approximation of the distribution of mass m  and flexural 
rigidity EI  along the blade length, a blade was cut into small pieces which were then 
measured and weighed. The flexural rigidity distribution was then fine tuned by fitting the 
deformed blade shape under static loading conditions to the deformation measured in static 
loading experiments [9]. 
The average aerodynamic coefficients for the blade airfoil are based on experimental data 
obtained from fixed base tests with the radio controlled Ornicopter demonstrator model in free 
flapping configuration. These data, described by [6], are depicted in Figure 17. It should be 
noted that the coefficients determined from these data show quite a large variation due to for 
example the effects of low Reynolds number. In the FE model however, constant values are 
assumed for the lift slope αlC , the lift coefficient at zero angle of attack 0lC , and for the 
profile drag coefficient pdC . This introduces some errors, but the results have shown to be 
quite reasonable. 
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Figure 18: Validation of thrust using experimental 
data from the Ornicopter demonstrator model. 
EIavg is the average flexural rigidity of the rotor 
blade, Rr is the rotor diameter, c is the blade 
chord and εroot is the root flapping angle 

Figure 19: Validation of reaction torque (shaft 
torque) using the experimental data from the 
Ornicopter demonstrator model 

 
The FE simulation results for the forced flapping case with an °9.8  root flapping angle at 
different rotor frequencies are depicted in Figure 18 and Figure 19. These figures also show 
the experimental data obtained from [6]. As expected, some errors occur. The thrust is 
overestimated at low rpm and underestimated at high rpm (higher Reynolds number). The 
torque is overestimated for the zero pitch case at low rpm and it is underestimated for the °4  
pitch case at high rpm. These errors can be attributed mostly to the fact that constant 
aerodynamic coefficients are used. Furthermore, the tip loss factor can be of influence and 
possibly the proximity of the experimental model to the ground could also affect the results. 
Another possible source of errors is that the measurement of the collective pitch angles during 
the experiments was not very accurate, due to play in the pitch control system. The 
measurement error in pitch angle can be as large as °± 5.0 . 
Nevertheless, the figures show quite a good prediction of rotor thrust as well as shaft torque. 
Especially the important points where the shaft torque is reduced to zero are predicted quite 
well. 
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Thus, if experimental data for a conventional rotor are available and if these are used to fine 
tune the parameters of the FE model, the FE model can predict the flapping amplitudes 
required for torqueless rotation with reasonable accuracy. The validation was performed using 
experimental data obtained from a small model rotor operating at relatively low Reynolds 
numbers ( 55 104Re102 ⋅<<⋅ ). For a full scale rotor the effects of low Reynolds numbers 
will be less pronounced, so that the accuracy of the predictions is expected to improve. 
Furthermore, the calculations will usually be performed for a fixed rotor speed, making the 
estimation of aerodynamic parameters easier. 
This implies that the FE model can be employed to study the behaviour of a rotor blade in the 
hover condition and that the results can be trusted not only in a qualitative sense, but also in a 
quantitative sense, if model parameter values are based on accurate experimental data. 
 
3 EVALUATION OF FLAP FORCING METHODS 

3.1 Description of flap forcing methods 
 
Now that the FE model has been validated, it can be used to study the effects of different flap 
forcing methods on the flapping behaviour of a rotor blade. To illustrate this, two flap forcing 
methods have been analyzed and compared. These flap forcing methods are depicted in 
Figure 20. 
The first method is root flap forcing, as implemented in the Ornicopter demonstrator model. A 
flapping moment flM  is applied at the location of the flapping hinge. This method will 
probably lead to very large stresses due to bending moments in the root. 
The other method is axial flap forcing. A flapping force flF  is applied in a direction parallel to 
the rotor shaft at a certain distance from the flapping hinge. This method is expected to yield a 
more favourable stress distribution in the blade. 
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Figure 20: Flap forcing load cases for a blade 
with hinge offset 

Figure 21: Distribution of mass and flexural 
rigidity along the blade 

 
These flap forcing load cases have been applied to a full scale rotor blade similar to that of a 
Schweizer 300C helicopter. The calculations have been performed for the hover condition, 
using an aircraft mass of 900kg and a rotor speed of 470rpm. The rotor blades are assumed to 
be made of aluminium 2014, prismatic from the root outwards, without twist and using a 
symmetrical NACA 0015 airfoil. The blade has a length of 3.85m. The actual distribution of 
flexural rigidity and mass along the blade length is not known. Therefore a distribution 
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similar to that of the model rotor blade is used. The average flexural rigidity of a Schweizer 
300C rotor blade, according to experiments, is equal to 3500Nm^2 [7]. Based on this value 
and assuming that the root of the blade is reinforced, the distribution of Figure 21 results. A 
hinge offset of 0.4m was used in the calculations and the force in Case 2 was applied at 0.4m 
from the hinge. 
For each flap forcing case, the displacement amplitude of the load application point and the 
load amplitude required for torqueless rotation have been determined. The corresponding 
stress distributions in the blade have also been determined in order to gain insight into 
Ornicopter rotor blade design requirements. 

3.2 Flapping amplitudes and flapping loads required for torqueless rotation 
 
The blade is subjected to a sinusoidal load with amplitude flM̂  in Case 1 or flF̂  in Case 2 
(Figure 20) and frequency Ω (1-P excitation). The deformed shapes of the blade at the 
moment of maximum tip deflection and at the moment of maximum root amplitude are 
depicted in Figure 22 for Case 1 and in Figure 23 for Case 2. The corresponding rigid blade 
result is also shown, as a reference. Note that the deformations are exaggerated in these 
figures due to the scale of the vertical axis. 
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Figure 22: Deformed blade for Case 1, with a 
moment applied to the first node. The two 
instances represent maximum root deflection and 
maximum tip deflection. The dashed line 
represents rigid blade theory for a centrally hinged 
blade. 

Figure 23: Deformed blade for Case 2, with a force 
applied in vertical direction to the third node. The 
two instances represent maximum root deflection 
and maximum tip deflection. 

 
The maximum tip displacement of the blade in both cases approaches the value found using 
rigid blade theory. The root flapping angle in both cases becomes larger than the rigid blade 
angle, as expected. The ratio of flexible blade root amplitude and rigid blade amplitude is 
approximately 2.2ˆ/ˆ ≈rigidflex βε  for both cases, whereas the analytical two-mode 
approximation predicts a ratio of 3.2 (for a uniform centrally hinged blade without lift). The 
flapping moment of 10150Nm found in Case 1 is smaller than the rigid blade value of 
14198Nm, as expected. 
At first sight, there does not appear to be much difference between the two cases in terms of 
blade deformation, although the blade does bend a bit more in Case 1. However, the 
difference between the two flap forcing methods becomes clear when looking at the stress 
distributions. 
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3.3 Stress distribution in the blade 
 
The normal stress distribution along the length of the blade, in the lower skin and in the upper 
skin, is depicted in Figure 24 for Case 1 and in Figure 25 for Case 2. This is the stress at the 
moment in time at which maximum bending deformation occurs. The figures also show the 
stress distribution for the same blade in free flapping, as a reference. Note that for a free 
flapping blade, the stress in the upper skin is almost the same as in the lower skin, hence only 
one line is shown. The corresponding deformed blades are shown in Figure 26. Note that, 
unlike Figures 22 and 23, this is scaled correctly. 
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Figure 24: Normal stress along the blade length in 
the upper and lower skin for Case 1. The stress in 
the blade during free flapping is also shown. 

Figure 25: Normal stress along the blade length in 
the upper and lower skin for Case 2. The stress in 
the blade during free flapping is also shown. 

 
When looking at the outboard part of the blade (nodes 7-13), it appears that the stress 
distributions in both cases are almost equal to the distribution in the free flapping blade. The 
inboard part of the blade on the other hand does show large stress levels in both forced 
flapping cases. 
The influence of load application method becomes clear here. Although the maximum normal 
stress in Case 2 (flapping force) becomes slightly larger than in Case 1 (flapping moment), the 
stress level near the root is much smaller. This is consistent with expectations. 
 
Nevertheless the maximum stress levels are twice as high as in the free flapping case. These 
stress levels come dangerously close to the yield stress for aluminium 2014 which is depicted 
as a reference. Taking into account the fact that this is an oscillating load, it becomes apparent 
that fatigue will probably be a major issue in the design of Ornicopter rotor blades. 
To illustrate this, assume a fatigue limit of 25% of the ultimate stress. For aluminium 2014 
this would be 120MPa. The maximum normal stress in the blade is approximately 360MPa 
(Figure 25). According to a typical endurance curve for aluminium, the blade would not even 
last for 104 cycles. At a rotor speed of 470rpm (8Hz) the blade would fail after 21minutes. 
Thus, the (fictional) blade, as it is presented here, will not be able to cope with the oscillating 
stresses predicted. 
Even though the structural properties of the blade used in these calculations do not accurately 
represent a real blade, it becomes clear that a rotor blade for the Ornicopter will need to be 
specially designed to cope with the flapping loads. With fatigue in mind, probably composite 
blades would be a better choice than aluminium blades. 
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All in all, this shows that the FE method presented here can be used as a qualitative tool for 
the preliminary design of Ornicopter rotor blades and flapping mechanisms. If reliable data 
about the structural properties and aerodynamic properties are available, the quantitative 
results will also show reasonable accuracy. 
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Figure 26: Deformed blades corresponding to the 
stress diagrams, at the moment that maximum 
stress occurs. Note that the axes now have the 
same scale. 

 

 
4 CONCLUSIONS 

This paper stresses the importance of accurate prediction of forced flapping amplitudes and 
forced flapping loads for the design of Ornicopter flapping mechanisms and rotor blades. It 
was shown that existing analytical rigid blade theory and analytical flexible blade theory are 
not very well suited for this purpose. 
Therefore an alternative method was presented. This method is based on an implementation of 
the planar, geometrically nonlinear finite beam element for dynamic analysis presented by [8]. 
External load models were presented that simulate the centrifugal forces and aerodynamic 
forces acting on an Ornicopter rotor blade. 
It was shown that the finite element method presented is able to predict rotor performance to a 
reasonable degree, using measurement data obtained from an experimental Ornicopter 
demonstrator model. With the help of more detailed data for the aerodynamic parameters even 
better results could probably be obtained. 
The finite element method was then employed to evaluate two different flap forcing methods 
for a full scale rotor using an aluminium rotor blade similar to that of a Schweizer 300C 
helicopter. The load cases under consideration were: Case 1, flapping moment applied at the 
flapping hinge and Case2, a flapping force applied parallel to the rotor shaft at approximately 
10% from the flapping hinge. 
Analysis of the bending deformations showed a root flapping amplitude of approximately two 
times the value found using rigid blade theory, whereas the analytical flexible blade method 
predicted a factor three. This result is almost the same for both load cases. 
Analysis of the normal stress distribution in the blade shows that, even though Case 2 yields a 
lower stress level in the root of the blade, both cases experience almost the same maximum 
stress. This maximum stress is approximately twice as large as the maximum stress that 
occurs in a free flapping blade. This in itself is not very bad. However, the level of stress 
together with the fact that it is oscillating at 8Hz is cause for concern with respect to fatigue. It 
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is concluded that the (fictional) rotor blade presented would fail within 104 load cycles. Note 
however that no attempt has been made to optimize the blade for this type of loading. 
In conclusion, the finite element method presented as an alternative to analytical theories 
yields satisfactory results as long as accurate structural and aerodynamic data are available for 
the rotor blade under consideration. The method can be used as a tool in the preliminary 
design of flapping mechanisms and rotor blades for the Ornicopter. 
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