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Abstract 

The stability of an isolated hingeless rotor in for
ward flight is investigated, both experimentally and 
analytically. The test model has four soft-inplane and 
torsionally soft blades, and is tested at realistic tip 
speeds. The collective pitch and shaft angle are set 
prior to each test point, and the rotor is trimmed 
as follows: the longitudinal and lateral cyclic pitch 
controls are adjusted through a swashplate to mini
mize the 1/rev flapping moment at the 12% radial sta
tion. Key measurements in the database include the 
cyclic pitch controls, steady root-flap moment and lag 
regressive-mode damping for two coning angles with 
advance ratio, shaft angle and collective pitch varia
tions. A modal approach, the ONERA dynamic stall 
models of lift, drag and pitching moment, and a three
dimensional state-space wake model are used. The 
cyclic pitch controls and the corresponding periodic re
sponses are predicted by the periodic shooting method 
with damped Newton iteration; this method is based 
on the fast-Floquet theory and generates the equiva
lent Floquet transition matrix (EFTM) as a byprod
uct. The eigenvalues and eigenvectors of the EFTM 
lead to the frequencies and damping levels. All the 
structural and aerodynamic states are included from 
trim analysis to eigenanalysis. A major finding is that 
dynamic wake dramatically improves the correlation 
of the lateral cyclic pitch control. 

Nomenclature 

Unless otherwise stated, the symbols below are di
mensionless: 
a linear lift curve slope 
ad, am damping factors in dynamic stall drag and 

pitching moment models 
b airfoil semi-chord, (divided by R) 
c airfoil chord, (divided by R) 
cd, Cd0 airfoil drag coefficient and constant 

profile-drag coefficient 

"Paper presented at the 23rd E'ILropea.n Rotorcra.jt Foru.m, 
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quasisteady drag coefficient 
airfoil lift and pitching moment 
coefficients 
airfoil pitching moment coefficient at 
zero angle of attack 
quasisteady pitching moment 
coefficient 
thrust coefficient 
thrust level 
or blade loading 
eXtrapolated linear-lift coefficient 
quasisteady lift coefficient 
dynamic-stall-lift damping parameter 
phase shift parameter in dynamic 
stall lift model 
hinge offset, (divided by R) 
phase shift parameters in dynamic stall 
drag and pitching moment models 
gravity 
unit vectors associated with 
inertial frame XYZ 
unit vectors associated with 
undeformed blade coordinate system xyz 
mass radii of gyration of blade cross 
section about its principle axes 
blade span, 1 - eh, (divided by R) 
sectional aerodynamic forces 
total horizontal and vertical forces 
mass per unit length, (divided by mr) 
reference mass per unit length, (kg/m) 
aerodynamic pitching moment 
total pitching moment 
total flap moment at e I, 
(divided by p00 b0.2R4 ) 

n-th harmonic cosine component of M 
n-th harmonic sine component of M 
steady component of M 
number of aerodynamic elements 
root cutout, (divided by R) 
frequency parameters in dynamic stall 
drag and pitching moment models 
radial station of the i-th 
blade, (divided by R) 
rotor radius, (m) 
in plane (lag) bending deflection, 
(divided by R) 
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dynamic stall lift frequency parameter; 
also out of plane (flap) bending 
deflection, (divided by R) 
radial distance measured from the rotor 
center, (divided by R) 
blade airfoil angle of attack 
shaft angle, positive rearward, ( deg) 
quasisteady stall angle, ( deg) 
blade precone, (deg) 
Lock number (blade inertia parameter) 
pitch-rate coefficient 
blade pitch angle 
collective pitch angle, ( deg) 
lateral and longitudinal cyclic pitch 
angles, (deg) 
time-delay parameter 
flap bending stiffness, (divided by mr02 R4 ) 

advance ratio 
rotor solidity 
azimuthal location of the i-th blade 
air density (kgfm3 ) 

rotor angular speed, (radfsec) 
lag regressive-mode damping level 
time derivative of ( ) 
spatial derivative of ( ) 

Introduction 

The provision for adequate lead-lag damping is an 
important element of rotorcraft design; this requires 
an accurate prediction method. Since aerodynamic 
and inertial forces are delicately balanced in the in
plane direction, lag-damping prediction is sensitive to 
the approximations in modeling the aerodynamic and 
structural components such as wake and torsional dy
namics. It is sensitive to the trim results as well; that 
is, to the control inputs and the corresponding peri
odic responses. Given this sensitivity, it is virtually 
imperative that the theoretical calculations are corre
lated with a comprehensive database from simplified 
models whose properties are accurately characterized. 
The present study addresses such calculations under 
wind-tunnel trim conditions as well as generation of a 
database and correlations. In particular, an isolated 
hingeless rotor with four blades is tested at realistic 
tip speeds; the blades are soft-inplane with a low tor
sional stiffness and are of simple airfoil and planform 
design. Compared to bearingless hubs and advanced
geometry blades, the design of the hub-flexure-blade 
assembly is far simpler (details to follow). This sim
plicity and the isolation of the body or rotor-support 
motions from the blade motions help keep the focus on 
aerodynamic aspects. To provide a better appreciation 
for this work, we begin with a mention of the related 
developments on isolated hingeless-rotor stability. 

In the early '80s, McNulty experimentally investi
gated the stability of a soft-in plane hingeless rotor with 
three blades (Ref. 1). The collective pitch 00 , shaft an
gle o:, and advance ratio f.1. were manually set prior to 
each test run; the model has no cyclic pitch control, 
and it was operated untrimmed. The strengths of the 
experiment were its structural simplicity and aerody
namically demanding conditions. In fact, the first tor
sion frequency was kept as high as possible, and the 
hub-flexure-blade assembly closely approximated the 
rigid flap-lag model with root restraint. Moreover, the 
database included dynamically stalled conditions with 
advance ratio as high as 0.55 and shaft angle as high as 
20°. These strengths motivated many investigations 
right until today (Refs. 2-8) and helped isolate the 
nonlinear dynamic stall aspects of the stability prob
lem. A case in point is a recent study by Chunduru 
et a/. (Ref. 8) who correlate with nearly the complete 
database of Ref. 1 and review the aeroelastic stabil
ity studies through 1995. In this study (Ref. 8), the 
rigid flap-lag as well as elastic flap-lag-torsion repre
sentations are used, and the airfoil aerodynamics are 
represented by the ONERA dynamic stall models and 
the rotor wake by a three-dimensional finite-state wake 
model. The developments since 1995 include the works 
of de Andrade et a/. (Ref. 9) and Cho et a/. (Ref. 10), 
both on torsionally soft blades in the hovering condi
tions. In Ref. 9, the lag-damping predictions with a 
finite-state wake model are correlated with Sharpe's 
database (Ref. 11) and the wake is found to improve 
the correlation. Reference 10 is an analytical inves
tigation based on a "large deflection-type beam the
ory" that does not involve an ordering scheme; that 
is, without kinematic limitations on the magnitude 
of displacements and rotations. Moreover, a three
dimensional unsteady vortex lattice method with a 
prescribed wake geometry is used to model the flow 
field. A major finding is that three-dimensional tip re
lief and wake dynamics significantly affect the stability 
predictions. 

Despite the strengths, MeN ulty's experiment 
(Ref. 1) exhibited significant weaknesses as well. It was 
conducted at low tip speeds; the lack of a swashplate 
contributed to unrealistic flight conditions of negative 
thrust conditions for the bulk of the database; and 
no data are available to validate the predicted opera
tional parameters such as thrust level or hub moment. 
To remove these weaknesses, the US Army Aeroflight
dynamics Directorate recently conducted experiments 
on isolated hingeless rotors in hover and forward flight 
(Ref. 12). Moreover, they also recognize the increas
ing need for a database on torsionally soft blades in 
trimmed flight. Thus, specifically stated, the primary 
objective is to generate a database on the trim and 
stability of a torsionally soft rotor operating at realis
tic tip speeds (Ref. 12). The rotor is trimmed with a 
conventional swashplate; specifically, the longitudinal 
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and lateral cyclic pitch controls are adjusted to mini
mize the 1/rev flap moment at the 12% radial station. 
The trim data of the cyclic pitch controls and steady 
root flap moment, and the stability data of the lag 
regressive-mode damping level are generated for two 
coning angles over a comprehensive range of collective 
pitch (0° s; e0 s; 6°), shaft angle (0° s; "'• s; 6°) and 
advance ratio (0 s; p. :S 0.36). Reference 12 describes 
details of the experiments such as the model proper
ties, test procedures and generation of the database 
that was still being updated, and it also includes cor
relations with the lag regressive-mode damping levels, 
primarily in hover. In this context, special mention 
must be made of two recent studies by Tang and Dow
ell (Refs. 13 and 14), who use a moving-block-type 
approach to predict the lag-damping levels and cor
relate with the data of Ref. 12. The dynamic inflow 
and ONERA dynamic stall models are used in Ref. 13, 
and in Ref. 14 the dynamic inflow model is replaced 
by a finite-state wake model. However, in both stud
ies (Refs. 13 and 14), the rotor is untrimmed in the 
sense that the measured values of the lateral and lon
gitudinal cyclic pitch controls are used. In particular, 
Ref. 14 shows that the finite-state wake model corre
lates better than the dynamic inflow model. 

With this background, we spell out the contribu
tions of this paper: 

l. Updates the database of Ref. 12 as well as extends 
it to include an additional configuration with zero 
precone; see Table 1, which describes the five ex
perimental test configurations for which calcula
tions are shown. Also provides corrected informa
tion on cyclic pitch measurements of the database 
of Ref. 12. 

2. Develops a flap-lag-torsion analysis based on the 
fast-Floquet themy (Ref. 6) to correlate with the 
database on trim and stability, and demonstrates 
the strengths and the weaknesses of the predic
tions. 

3. Identifies the effects of quasisteady stall, dynamic 
stall and dynamic wake on trim and stability and 
shows how these effects participate in the correla
tion. 

Experimental Rotor 
The test model is a soft-inplane hingeless rotor with 

torsionally soft blades. The 7.5-ft diameter rotor has 
four blades of an NACA 0012 airfoil section with a 
3 .4-in chord. The blades have a rectangular planform 
with zero-degree pretwist and droop; see Fig. 1. The 
model also has a provision to vary the blade precone. 
The blade mass-center, tensile, aerodynamic and elas
tic axes are nearly coincident with the control axis, 
which is at the quarter-chord point. Table 2 summa
rizes the rotor properties of the experimental model. 

• Rcgico 1 Rcgic11 2 Rcgi011. 3 Regico4 

Figure 1: Hub-Flexure-Blade Assembly of the Exper
imental Rotor and Schematic 

As seen from Fig. 1, the blade comprises four distinct 
regions. The first region is a hub section with very high 
stiffness values. The second region is a root-flexure sec
tion, which accommodates the blade flap and lead-lag 
motions. The third region is a short transition sec-

Table 1: Test Configurations for the Updated 
Database in Trimmed Flight 

Test Collective Shaft Blade Advance 
Config- Pitch, tilt, Precone Ratio, 
uration eo a, {3p, p. 

(deg) (deg) (deg) 
a 3u ou 2u 0.0-0.31 
b 30 -30 20 0.0-0.31 
c 30 -60 20 0.0-0.31 
d 5.9° -60 20 0.0-0.36 
e 30 oo oo 0.0-0.187 

tion, which is relatively stiff and provides transition 
from the blade root-flexure to the airfoil section. The 
fourth region is the NACA 0012 blade portion. Table 
3 details the stiffness and mass distributions in each of 
these regions. The model is designed so that the test 
data correspond to the stability of an isolated rotor. 
The separation between the lag-regressive mode fre
quency and the lowest test-stand frequency is 7.1Hz, 
which is far above the lag regressive-mode frequency. 
The collective pitch angle (80) and shaft tilt angle (a,) 
are set prior to each run and are known parameters. 
The rotor is operated trimmed with lateral and lon
gitudinal cyclic pitch controls. The cyclic pitch con
trols are exercised through a conventional swashplate 
mechanism that controls pitch on the blade root cuff 
at a location inboard of the flap-lag flexure motions 
(Fig. 1). The rotor is operated at 1700 rpm, which 
in hover gives a Reynolds number of 1.2 x 106 and 
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Mach number of 0.6 at the blade tip. In forward-flight 
tests, the shaft angle is set first and the rotor speed is 
brought up to the desired value. Then, the collective 
pitch is set, wind tunnel air speed is increased slowly to 
the desired forward-flight speed while the cyclic pitch 
controls are adjusted to maintain low-oscillatory flap
ping loads. When the desired forward-flight speed is 
reached, the collective pitch is readjusted to get the 
desired value and the cyclic pitch controls are further 
adjusted to minimize the 1/rev flapping moment at the 
12% radial station. Then, low-amplitude cyclic exci
tation is applied. The frequency and magnitude of the 
excitation are adjusted so that the maximum lead-lag 
response (but below the structural limit) is attained. 
The excitation is shut off and the ensuing transient is 
recorded for 2 seconds. The recorded signals are an
alyzed using the moving-block analysis technique to 
obtain modal damping and frequency. 

Table 2: Details of the Experimental Rotor 

Number of blades 
Airfoil section 
Hover blade-tip Mach number 
at 1700 rpm 
Hover blade-tip Reynolds number 
at 1700 rpm 
Rotor radius, ft 
Blade chord, in 
Nonrotating fundamental 
flap frequency, Hz 
N onrotating fundamental 
lead-lag frequency, Hz 
Nonrotating fundamental 
torsion frequency, Hz 
Blade precone, deg 
Blade pretwist, deg 
Blade droop, deg 
Blade sweep, deg 

Analysis 

4 
NACA 0012 

0.6 

1.2x106 

3.75 
3.4 

4.499 

14.405 

64.362 
0.0 and 2.0 

0.0 
0.0 
0.0 

Elastic Flap-Lag-Torsion Equations 

The flap-lag-torsion equations of motion are nonlin
ear partial differential equations, which are given in 
Ref. 6. A Galerkin-type scheme is used, which trans
forms these partial differential equations into a set of 
ordinary differential equations in terms of generalized 
coordinates. Orthogonal, nonrotating normal modes 
are used, which are developed by a Myklestad-type ap
proach with identical mass and stiffness distributions 
of the experimental rotor; see Table 3. In-vacuo con
ditions are assumed and these modes are normalized 
with a tip deflection of one. As shown in Table 3, the 
stiffness distributions for the transition region (region 
3) are not given because these distributions change 
continuously over this region and it was not possible 

to measure them (Ref. 12). In the present correlation 
work, a linear variation for stiffness properties is as
sumed in the transition region while computing the 
mode shapes. Using these normal modes, the equa
tions of motion are transformed into a set of modal 
equations in terms of the generalized coordinates. The 
Galerkin-type integrals associated with this transfor
mation are evaluated numerically and also are given 
in Ref. 6. Moreover, the first two spatial derivatives of 
the mode shapes of bending deflections are computed 
from the slopes and bending moments, which are gen
erated along with mode shapes in the Myklestad-type 
approach; for additional details, see Ref. 6. 

Aerodynamics 

The flow field is approximated by the dynamic stall 
and wake theory, which is a combination of the ON
ERA dynamic stall models for the airfoil lift, drag and 
pitching moment and a 3-D wake model for the rotor 
down wash (Refs. 15-17). This theory lends itself well 
to a finite-state representation and accounts for prac
tically all the linear and nonlinear unsteady effects. 
In particular, the dynamic stall models include the ef
fects of large angle of attack and reverse flow, and the 
wake model includes the effects of the finite number of 
blades, trailing vorticity and shed vorticity. Moreover, 
the lift and pitching-moment components associated 
with the apparent-mass effects are separately treated 
so as not to confuse them with the corresponding cir
culatory components. To help isolate the effects of 
dynamic stall and wake, we also approximate the flow 
field by the dynamic stall and quasisteady stall the
ories and include a mention of these three theories. 
This also shows explicitly the successively increasing 
degree of sophistication in approximating the flow field 
and the comprehensive aspect of the dynamic stall and 
wake theory. 

Dynamic Stall Theory 

According to this theory, the lift r,, drag r a and 
pitching moment r m can be expressed as a combina
tion of the linear and nonlinear or stalled components 
(Refs. 15 and 16): 

ft=ft1+ft2, fd=fd1+fd2, fm=fm 1+fm2(1) 

These six components, two each in lift, drag and pitch
ing moment, are given by Eqs. (2)-(4). 
Lift: 

(2a) 

2- . 2 ( 2) k r l2 + 2dwkf l:l + w 1 + d r lz 

= -w' (1 + d2
) [U llc, 

+ ek(U:r:cosa+U:vsina).6.c:: 

( 
· · ) 8llc-+ ek Uysina-U:s;COSQ' aa-] (2b) 
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Table 3: Structural Properties of the Experimental Rotor 

Region Radius Mass Polar 
r/R (slugs( ft) Inertia/ft 

(slugs- jt) 
1 0.000-0.104 - -

2 0.104-0.216 0.00575 2.42xlo-' 

3 0.216-0.306 0.00981 4.12xlo-' 

4 0.306-1.000 0.00633 3.57x lo-s 

Drag: 

(3a) 

k2 f' d, + adkt d, + r~r d, =- [r~U fled+ Edkl:i",] (3b) 

Pitching Moment: 

(4a) 

+ 
• 2 

amkf m 2 + Tmf m 2 

= - (r;',.U Ll.cm + EmkU,] (4b) 

The algebraic structure of Eqs. (2a), (3a) and (4a) 
is revealing. In particular, the linear components r t 1 , 

r d, and r m, follow the classical thin-airfoil theory, and 
f: in Eq. (2a) represents an airfoil rotation rate relative 
to airmass and includes complete geometric rotations 
of the airfoil. By comparison, the nonlinear compo
nents r l2' r d2 and r m2 are driven by Clcz' b..ca and 
~em, respectively, which represent the differences be
tween the corresponding linear and quasisteady-stall 
characteristics. They also involve the airfoil dynamic
stall characteristics. In the sequel, a brief account of 
these characteristics is given for an NACA 0012 airfoil. 

For the quasisteady stall characteristics, we follow 
the measurements of Critzos et al. (Ref. 18) at a 
Reynolds number of 1.8 x 106 . In Ref. 3, Barwey 
et al. present analytical expressions to approximate 
the quasisteady-stall characteristics of an NACA 23012 
airfoil. These expressions with some modifications for 
an NACA 23012 airfoil are used here. For the lift 
model, the quasisteady lift coefficient c~. and extrap
olated lift coefficient c,, are given by 

c::::1 = a sin a cos 0! 

c.:::, =asina.,.,coscru 

c.=, = a sin a.,., cos a~~ sin 2a 

(Sa) 

(5b) 

(5c) 

45° :::; a:::; 135° (5d) 

Flap Lag Torsion 
stiffness stiffness stiffness 

(lbs- jt2 ) (lbs- WJ (lbs- jt2 ) 

very high very high very high 

52.076 268.58 22.188 

- - -

53.728 1698. 90 26.395 

C.:, = -a sin a!~ cos a.,., 

where a = 6.28 and a, = 14°. 

Axial 
stiffness 

(lbs) 
very high 

1.022xl06 

-

4.796x lOs 

(5e) 

(5f) 

For the drag model, the quasisteady drag coefficient 
ca. and the constant drag coefficient ca0 are: 

Cd0 = 0.01 

Cd, = 1.05- (1.05- Cd0 ) cos 2a 

(6a) 

0° :::; a:::; 360°(6b) 

For the pitching moment model, the quasisteady 
moment coefficient em. is given by 

Cm. = Cm0 - 0.0582257ta.n-1 (a- au) 

a~~ < a :::; 20° 

Cm, = Cm0 - 0.55sin(a- 20°)- 0.0842201 

(7a) 

(7b) 

cos( a- 20°) 20° <a:::; 101.2941° (7c) 

Cm, = Cm0 - 0.55641 cos(0.75(a -101.2941°)] 

101.2941° <":::;no' (7d) 

Cm, = 0.3461497(0.1(a- n0°)) 

170° <a :::; 180° (7e) 

where Cm 0 = 0.0. Figure 2 shows the variations of 
the quasisteady lift, drag and pitching moment coef
ficients. It also includes a comparison with the test 
data from Ref. 18 and with the extrapolated linear-lift 
coefficient c,, according to Eq. (5a). 

The dynamic stall parameters in Eqs. (2)-( 4) are 
identified on the basis of wind-tunnel experiments; 
these are A1 61 d1 e and win the lift equation 1 aa, ra and 
Ea in the drag equation and 8m 1 Gm 1 rm and Em in the 
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Now, concerning the apparent-mass terms Lo and 
M0 , we separate them from the circulatory terms 
(Ref. 15). This is conveniently done in the local airfoil 
coordinates shown in Fig. 3, and the corresponding lift 
components Lz and Ly, and pitching moment M can 

· be expressed as 

Lv= U.[r,, +f<,]+U.(rd, +fd,]+Lo (lla) 

L. = -u.[r,, + r,,J +U. [rd, + rd,] (lib) 

M = 2b [U (r m, + r m,)] + Mo (lie) 

In Eqs. {lla) and (llc), Lo and Mo represent apparent 
mass lift normal to the chord and noncirculatory pitch
ing moment, both at the three-quarter chord point, 
and are given by 

Lo = bs [u. +~be] (lid) 

Mo = 2b2 [5mUy + Smb€] (lie) 

where s and Sm are apparent mass parameter and non
circulatory pitching moment parameter~ respectively. 
For later reference, we also introduce the blade sec
tional circulatory lift L;: 

L, = u (r,, + r,,) (llf) 

Quasisteady Stall Theory 

0 60 120 180 240 300 360 

According to this theory, we include only the 
quasisteady stall effects by considering the airfoil
section quasisteady stall characteristics. Equa
tions (12a)-(12c) are obtained by suppressing the dy
namic stall characteristics in Eqs. (2)-( 4); that is, 

Angle of Attack, a (deg) 

Figure 2: Variation of Airfoil Lift, Drag and Pitching 
Moment Coefficients for an NACA 0012 Airfoil Section 

pitching-moment equation. Following earlier studies 
(e.g., Ref. 13), we use the following expressions for 
these parameters: 

.\ = 0.15 (Sa) 

8c;:
1 

a 
(8b) 15=---aa 2 

w 2(1 + d2) = [0.2 + 0.1 (L'>c,)'j' (8c) 

2dw = 0.25 + 0.1 (L'>c,)2 (8d) 

e = -0.6 (L'>c,)2 (8e) 

ad= 0.32 (9a) 

Td = 0.2 + 0.1 (L'>c,)2 (9b) 

10.6 

ft 1 = a(Uy+bi)cosa; ft2 = -U.6.c.:: 

Dynamic Stall and Wake Theory 

(12a) 

(12b) 

(12c) 

This is the baseline theory, which represents a com
bination of the dynamic stall theory and a three
dimensional finite-state wake theory of Peters, Boyd 
and He (Ref. 17). At a radial station r; and az
imuth position 1/Ji 1 the instantaneous wake or down
wash .\ (r;, 1/J;, t) is given by a complete set of radial 
shape functions 1>} (r;) and spatial harmonics cos(rlf;;) 
and sin(rlf;;): 

= = 
.\ (r;,r/>;, t) = L L Jo (rk) ~j (r;) 

r=O i=r+ 1, r+3 

[ acj( t) cos( n,&;) + ;9j ( t) sin(q!>;) ](13) 



Lift 

Chord Line 

Figure 3: Schematic of Airfoil-Section Aerodynamics 

where the cosine component aj(t) and the sine com
ponent f3j(t) are the wake states. These states are 
given by 

M ( &;} + VL;;-' (a;} = 0.5 { r;'"} 

M (fij} + VL;-1 (,Bj} = 0.5 {r;''} 

(14a) 

(14b) 

where v is the diagonal matrix with vll = Vi = 
J (J1.2 + >.;) and all other elements are given by V = 
[1'2 + (>., + >.m) >.,] fJ(Jl-2 + >.;). A noteworthy fea
ture is that the closed-form expressions are available 
for the diagonal mass matrix M and influence coeffi
cient matrices Lc and L,. Similarly, r.:c and r;:u are 
cosine and sine components of the pressure coefficient, 
which, for a rotor with Q blades simplify to (Ref. 17) 

'"- 1 .(}...1' Li'/>~(r;)r 
Tn -20 fPR3 r, 

;r i=l 0 p 
(!Sa) 

mo _I_ .(}...1' Jo (mk)L;q):;'(r;)d_· ( ·'··)(!-b) 
Tn - ~ ~VR3 r,cos m'f', n 

;r i=l 0 p 

m• _ 1 ..(}... [' Jo (mk) L;¢:;' (r;) ~- . ( ·'··)(!" ) 
Tn -;~Jo pQ2R3 u.r,sm m'f' 1 ::>c 

i=l 0 

where Li is the sectional circulatory lift given by 
Eq. (llf), ]0 the Bessel function of the first kind of or
der zero, and k = ~- Since rotor blades have high as
pect ratio, ] 0 can be set to unity (Ref. 8). We particu
larly emphasize that in the dynamic stall and wake the
ory, the fe, term in Eq. (2a) is deleted. This is because 
it is a one-pole approximation to Theodorsen's wake 
and the wake is completely accounted for in the three
dimensional wake model typified by Eqs. (13)-(15c); 
for details see Ref. 8. The computation of equilibrium
state inflow is based on the momentum theory in the 
quasisteady stall and dynamic stall theories, and on 
the coupled blade-wake-stall equations in the dynamic 
stall and wake theory. 

Z.K 

-_,.Y.J -

Figure 4: Blade Coordinate Systems and Sectional 
Forces 

Trim Analysis 

For the test model the collective pitch and shaft an
gle are known control inputs. Therefore, trim analy
sis per se refers to finding the lateral and longitudinal 
cyclic control inputs by minimizing 1/rev flap moment 
at the 12% radial station and to finding the corre
sponding initial conditions for the periodic responses. 
The shooting method with damped Newton iteration is 
used; it is based on the fast-Floquet theory and gener
ates the equivalent Floquet transition matrix (EFTM) 
as a byproduct. The modal damping levels and fre
quencies are obtained from the eigenvalues and eigen
vectors of the EFTM; for details see Ref. 6. The anal
ysis still requires two additional trim equations that 
satisfy the required trim conditions of minimized 1/rev 
flap moment at 0.12R. For completeness we include a 
brief account of the trim equations. 

Flap Moment Equations 

Consider a generic material point on the blade at 
a radial location x from the hinge offset. As shown 
in Fig. 4, the generic point is subjected to inertial, 
aerodynamic, centrifugal and gravitational forces. It 
is expedient to express the components of each of these 
forces in the undeformed blade coordinate system xyz. 
Let Lu and Lw represent the total horizontal and ver
tical forces (excluding gravitational force) parallel and 
perpendicular to the undeformed x-coordinate, respec
tively. Similarly, let Mv represent the total moment 
acting parallel to the undeformed y-coordinate and 
let ef represent the 12% radial location about which 
the flap moment is computed. Following Ref. 19, we 
predict the flap moment by the force-integration ap
proach, in which the integration of the sectional forces 
and moments over the blade span leads to the total 
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moment. Therefore, the total flap moment is given 
by 

M(e1,,P) = j'{L.[w(x)-w(el)] 
'I 

- (Lw- mg)(x- e1) +.M.)dx (16) 

Now, we express the forces and moment in Eq. (16) a.s 
a. sum of inertial and aerodynamic components. The 
inertial component includes contribution from the cen
trifugal forces a.s well; that is, 

Lu = .C~+£~, Lw = £{..+£~, M., = M!+M: (17) 

where the superscripts I and A indicate that the con
tributions are of inertial and aerodynamic origin. Sub
stituting Eq. (17) in Eq. (16), we get 

M(e1,,P) = [{L~[w(x)-wCeJ)] 
'I 

-L~(x-e1)+M~)dx 

+ [ {L~ [w(x)- w(el)] 
'I 

- L~(x- e1) + .M~) dx 

+ j' mg(x- e1)dx 
'I 

= .M1(e1)+MA(e1) 

+ j' mg(x- e1)dx 
'I 

(18) 

The expressions for sectional inertial forces, £~ and 
£~, are derived from the Newton's second law: 

L 1 = L~i+L!j+L;,k=- j j p,ad~d€ (19) 

where P-1 and a represent the material mass density 
and acceleration vector, respectively. Substituting for 
the blade acceleration relative to an inertial frame 
and performing the cross-sectional integrals, we get 
(Ref. 6) 

L~ =-
6
" [-2mv- m(x + e,) + ,Bp,mw] (20) 
~ 

(21) 

In the derivation of the above equations, the influence 
of the axial deformation is neglected. 

Similarly, the sectional inertial moments can be de
rived from 

M 1 
:::: )v{~i + M~j + M~k 

= - j j p,s x ad~ dE (22) 

where s represents the moment arm (Ref. 6). Substi
tuting for s and a and performing the cross-sectional 
integrals, we get 

M~ = -Sa [-mii' + mv'] 
~ 
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{(k~,- k~ 1 )sin6cosB} 
6a [ _, ·, , J -- -mw +2mB +mw +mf3pe 
~ 

{ k~l sin 2 e + k~l cos2 e} (23) 

Similarly, substitution of Eqs. (20), (21) and (23) for 
the inertial part into Eq. (18) gives 

6
" [' {2mv[w(x) -w(el)] 

I }e
1 

+ m(x + eh) [w(x)- w(el)] 

- ,/Jpom·w[w(x)- w(el)] 

+ mw(x- •J) 
+ 2,/Jp,mv(x- e1) 

+ ,Bp,m( x - e 1 )( x + e,) 

+ mk~::V' sinBcosB 

- mk~2 v
1 sin 8 cos B 

k2 ~I • 2 B k2 I . 2 B +m mzw s1n -m m 2 w sm 

- 2B'mk~2 sin2 8 

- mk;,.,J3p,sin2 B) dx (24) 

The aerodynamic contribution to flap moment is ob
tained from the sectional aerodynamic forces and mo
ments, which are calculated at the midpoint of each 
aerodynamic element. Hence, we use a discretized 
force-summation scheme instead of a continuous in
tegration of the forces and moments along the length 
of the blade. Thus, in terms of sectional aerodynamic 
forces and moments, the flap moment due to aerody
namic forces can be expressed as 

N., 
.MA(e1,,P) ~ I:[L~{w(xl)- w(el)) 

- L~x 1 + M~]nC.Xn (25) 

In the above equation, X In represents the radial dis
tance of the midpoint from the 12% radial station, and 
.C..xn is the length of the n-th aerodynamic element. 
Expressing Eq. (25) in terms of sectional aerodynamic 
forces and moments, we get 

£: =- (v'L., +w'Lw) 

.C~ = Lw 

(26) 

(27) 

(28) 

where Lv, Lw and M4> are the sectional aerodynamic 
forces and moments described in Ref. 6. Similarly, 
substitution of Eqs. (26)-(28) into Eq. (25) gives 

N., 

MA(e1,,P) ~ I:l-(v'L.+w'L.,)[w(xl)-w(el)] 

(29) 

Thus, substituting Eqs. (24) and (29) in Eq. (18) we 
get the flap moment expression. 

( 
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Trim Equations 

The total flap moment M(e,,.,P) acting at the 12% 
radial station e1 is given by Eq. (18). To obtain its 
1/rev components, we expand it in terms of Fourier 
senes: 

~ 

.M(e,,V>) = .Mo + l).MncCos(nV>) 
n=l 

+.Mn,sin(nli>)] (30) 

For n = 1, we get 

.M(eJ, II>)= .Mo(eJ) + .M 1c(eJ) cos II> 
+.M1 ,(eJ)sinll> (31) 

where 

(32) 

1 1'" .M,(e1 ) =- .M(e1, ,P) sin ,P dll> 
,. 0 

(33) 

Therefore, the required trim conditions are 

11'" .M,c(<J) = ;:- .M(eJ, II>) cos II> dll> = 0 
" 0 

(34) 

1 1'" .M,,(e1) =- .M(e1,V>) sin V>dw = 0 
11" 0 

(35) 

Thus, Eqs. (34) and (35) represent the trim equa
tions, which are solved together with the response
periodicity conditions. 

Mode Deflection Method 

Concomitant to the force-integration method, the 
steady flapping moment at the radial location e f is 
also estimated by the mode deflection method. That 
is; 

(36) 

where A2 is the flap stiffness at radial station e 1. More
over, w 11 is evaluated from the second derivative of the 
mode shape, which comes out as a byproduct of the 
Myklestad approach. Therefore, the steady flap mo
ment is given by 

1 1'" .M0 (eJ) =- M(eJ,Ii>) dV> 
2r. 0 

(37) 

Comparison with Experiment 

Comparisons with experimental measurements in
clude the lag regressive-mode damping level, control 
settings of lateral and longitudinal pitch angles and, 
finally, the steady root flap moment at the 12% ra
dial station. The database refers to the five config
urations identified in Table 1. Other details of the 
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test model are given in Tables 2 and 3. The calcu
lations are based on the quasisteady stall, dynamic 
stall, and dynamic stall and wake theories and on a 
5-5-5 modal representation; that is, five modes each 
in flap bending, lag bending and torsion. A few com
parisons are made with the calculations from a 6-6-6 
modal representation as reference or converged values . 
The two modal representations gave virtually identical 
values of damping level, control settings and root flap 
moment from the force-integration method. However, 
for the flap moment from the mode-deflection method, 
they gave differing values, which are spelled out while 
presenting the results. Blade weight is included in 
the flap-moment calculations; its effect on the calcula
tions of damping levels and control settings is found to 
be negligible. Moreover, the measured structural lag 
damping of 0.5% is also included in the calculations. 
The thrust level CT I~. which is often mentioned in the 
sequel, is based on the dynamic stall and wake theory. 
Although no measurements of thrust-level, CT I~. are 
available, the flap-moment correlation provides an in
direct means of validating the CTI~ results. 

Figure 5 shows the lag regressive-mode damping 
level versus advance ratio for the first three config
urations with the same collective pitch Bo = 3° and 
precone /3pc = 2° but with different shaft angles: 
"'' = 0°, -3° and -6° As seen from the data, the 
damping level increases slowly with increasing advance 
ratio, reaches a maximum at a certain advance ratio, 
and thereafter decreases. Thus, the data exhibit a con
vex trend of damping variation with p.. Moreover, the 
data also show that once a maximum value is reached, 
the rate of decrease of damping with advance ratio in
creases with increasing shaft angle. For example, for 
the second configuration with a, = -3° in Fig. 5b, the 
maximum damping level of 1.04 (1lsec) occurs around 
I"= 0.15, which is about 1.95% ((wn = 5.842 x 10-3) 

critical, and reduces to 1.27% critical at I" = 0.31, a 
35% reduction relative to the maximum. By compari
son, the third configuration with a.s = -6° in Fig. 5c, 
which has a maximum damping level of 1.65% criti
cal at I" = 0.1 becomes almost unstable at I" = 0.31, 
a 92% reduction. Overall, the calculations from the 
quasisteady stall and dynamic stall theories are nearly 
identical and the minor differences between them are 
due to linear unsteady lift effects. This is expected 
since the maximum thrust level CT I~ hardly exceeds 
0.03 for all three configurations. To illustrate further, 
we once again consider the second configuration; the 
thrust level CTI<T is 0.01 in hover, increases to 0.022 at 
I"= 0.15 and thereafter decreases to 0.013 at I"= 0.31. 
The calculations from the dynamic stall and wake the
ory are fairly close to those from the other two theo
ries. Given the low thrust conditions, this is expected 
as well. The differences between the dynamic stall 
and dynamic stall and wake theories for I" < 0.15 
are due to dynamic wake effects; though not substan-
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Figure 5: -Lag Regressive-Mode Damping Correlation 
for Bo = 3° and [3p, = 2° 

tial, they help improve the correlation in that they 
bring the calculations closer to the test data, specif
ically for J1. < 0.2. In particular, the dynamic stall 
and wake theory predicts slight increase in damping 
for 0 :5 J1. :5 0.05. For J1. 2:: 0.2, it gradually merges 
with the other two theories as the low thrust level 
decreases still further with increasing advance ratio. 
Overall, all three theories show good correlation with 
the data except for the third configuration for J1. > 0.2; 
the thrust level (CT/u) is close to 0.015 at J1. = 0.2 
and decreases with increasing advance ratio; in fact) 
it is zero for J1. = 0.31. According to the data, the 
damping level rapidly decreases and the lag regressive 
mode becomes nearly unstable at J1. = 0.31. None of 
the three theories captures this trend accurately. The 

-
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Figure 6: Lag Regressive-Mode Damping Correlation 
for B0 = 5.9° and [3p, = 2° (Legend as in Fig. 5) 

calculations show that the damping level is decreas
ing slowly with increasing advance ratio to a value of 
1.3% critical at J1. = 0.31 where the data show neu
tral stability. That the correlation is unsatisfactory at 
near-zero thrust conditions is surprising, and investi
gation is continuing. 

Figure 6 shows the comparison of measured and cal
culated damping levels for the fourth configuration 
with Bo = 5.9°, [3p, = 2° and a, = -6°, and the 
data are available from a near-hovering condition at 
J1. = 0.04 to a fairly high-speed condition at J1. = 0.36. 
Despite some data scattering around J1. = 0.05 and 
0.35, the data show that the lag damping level in
creases for 0.04 :5 J1. :5 0.15 and decreases for J1. > 0.15 
We also mention that the thrust level increases from 
0.034 in hover to a maximum of 0.045 at J1. ""0.1 and 
thereafter decreases to 0.02 at J1. = 0.36. Overall, all 
three theories capture the trend of the data. However, 
the dynamic stall theory and to some extent the qua
sisteady stall theory overpredict the damping levels. 
The differences between the quasisteady stall and dy
namic stall theories are mainly due to linear unsteady 
lift effects. The dynamic stall and wake theory signif
icantly reduces the overpredictions of the quasisteady 
stall and dynamic stall theories and thereby improves 
the correlation. Overall, the dynamic stall and wake 
theory provides good correlation. 

Figure 7 shows the calculated and measured damp
ing levels for the fifth configuration with zero pre
cone and shaft angle. The data are available for 
0 :5 J1. :5 0.187 and show that the damping level mono
tonically increases with increasing advance ratio. This 
trend is captured by the dynamic stall and wake the
ory, although the calculated damping levels are low 
throughout. By comparison, the quasisteady stall and 
dynamic stall theories provide better correlation for 
0 ::; J1. :5 0.1, but they do not continue to raise with ad
vance ratio as do the data. Thus in summary, the dy-
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Figure 7: Lag Regressive-Mode Damping Correlation 
for Bo = 3° and /3p, = 0° (Legend as in Fig. 5) 

namic stall and wake theory provides fairly good corre
lation for this representative portion of the database on 
the lag regressive-mode damping except for the third 
configuration (Fig. 5c) for f.L > 0.2. 

Thus far) in Figs. 5-7, we presented a comparison 
between the calculated and measured lag regressive
mode damping levels. Moreover, it is also important 
to assess the agreement between the calculations and 
the measurements for the trimmed equilibrium condi
tion. During the experiment, the shaft angle, collective 
pitch, and advance ratio were set and the cyclic pitch 
angles were adjusted to provide minimum 1/rev flap 
bending moment at 12% radial station. Therefore, the 
cyclic pitch angles and steady root flap moment pro
vide good measurements to assess the trimmed equi
librium solution. Unfortunately, the cyclic pitch mea
surements reported in Ref. 12 contained a phase er
ror between the once per revolution signal and the 
root pitch angle signal. The cyclic pitch measure
ments reported in this paper are the corrected values. 
Given this background, the next six figures show the 
comparison of calculated and measured lateral-cyclic 
pitch e, (Figs. 8-10) and longitudinal cyclic pitch e, 
(Figs. 11-13); the first three configurations are covered 
in Figs. 8 and 11, the fourth in Figs. 9 and 12 and the 
fifth in Figs. 10 and 13. Figure 8 shows the compar
ison for the lateral cyclic pitch e, for "· = 0°' -3° 
and -6°. The data show known trends: 8, is zero 
at f.L = 0.0, increases suddenly around f.L = 0.05 and 
thereafter slowly decreases with increasing advance ra
tio. The rate of decrease is higher in Fig. Sc than in 
Figs. Sa and 8b. The calculations from the quasis
teady stall and dynamic stall theories are nearly the 
same for all three configurations. They further show 
that the lateral cyclic pitch required to minimize 1/rev 
flapping moment is negative and that its magnitude 
monotonically increases with increasing advance ratio. 
Although these trends of the calculations are at best 
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Figure 8: Lateral-Cyclic Pitch Correlation for 80 = 3° 
and /3po = 2° 

consistent with those of the data for f.L 2: 0.05, over
all they are quantitatively inaccurate. But inclusion 
of wake effects dramatically improves the correlation, 
both quantitatively and qualitatively. In particular, 
the dynamic stall and wake theory predicts the sud
den increase around fl.= 0.05; that is, in the transition 
regime when the flow over the rotor disk is associated 
with a large amount of shed and trailing vorticities. 
With increasing f.L, the dynamic stall and wake theory 
captures the decreasing trend of the data. However, 
this rate of decrease is relatively higher and, hence, the 
calculation needs further examination for J.L > 0.2. 

In Figs. 9 and 10, the data show a variation for e, 
similar to that in Fig. 8; that is, suddenly increasing 
at I' = 0.05 and thereafter decreasing with increas
ing advance ratio. As seen from Figs. 9 and 10, both 
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Figure 10: Lateral-Cyclic Pitch Correlation for Bo = 3° 
and /3p, = 0° (Legend as in Fig. 8) 

the dynamic stall and quasisteady stall theories fail to 
capture this variation and are not acceptable. By com
parison, the dynamic stall and wake theory not only 
captures this variation but also provides fairly good 
correlation throughout. 

In summary, Figs. 8-10 show that it is important to 
include wake effects in the calculation of lateral cyclic 
pitch angle B, and that the correlation in Fig. 8c merits 
further improvement at high speed conditions. 

As seen from the data in Fig. 11, negative B, is re
quired for the present trim condition of minimizing 
1/rev root flapping moment. To fill in the details, we 
begin with Fig. lla; the data show that e, is nearly 
zero up to J1. "' 0.05 and that its magnitude increases 
with increasing J1. thereafter. The calculations from the 
quasisteady stall and dynamic stall theories show that 
e, consistently increases with increasing f.l., and the cal
culations from these two theories are nearly identical. 
Compared to the data, however, this rate of increase 
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Figure 11: Longitudinal-Cyclic Pitch Correlation for 
e, = 3° and {3p, = 2° 

is lower. Moreover, for the first two configuration in 
Figs. lla and llb, these two theories fail to capture 
the finer details in the variations of (} 5 with J.l at very 
low advance ratios. By comparison, the dynamic stall 
and wake theory predicts that 8 s is nearly constant 
for p. :0: 0.075 for all three configurations. Thereafter, 
however, it basically follows the other two theories. 

The data in Figs. 12 and 13 show that the magnitude 
of 85 increases with increasing advance ratio. The cal
culations from the quasisteady stall and dynamic stall 
theories are nearly identical and provide adequate cor
relation. The dynamic stall and wake theory slightly 
improves the correlation for the fourth configuration 
in Fig. 12 for J1. > 0.25 and for the fifth configuration 
in Fig. 13 for J1. :0: 0.03. But compared to the other 
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Figure 12: Longitudinal-Cyclic Pitch Correlation for 
00 = 5.9° and ;3p, = 2° (Legend as in Fig. 11) 

two theories, it also slightly overpredicts for J1. < 0.25 
for the fourth configuration and for J1. > 0.05 for the 
fifth configuration. 

Finally, Fig. 14 shows the comparison with the data 
for the steady flap moment at the 12% radial station. 
The force-integration method is used in Fig. 14a and 
the mode-deflection method in Fig. 14b. The flap
moment variation with advance ratio p. is well pre
dicted by both methods in combination with each 
of the three theories. The thrust level CT I" is low 
throughout, which is 0.01 in hover, reaches a maxi
mum value of 0.017 at Jl. = 0.15 and thereafter reduces 
to zero at Jl. = 0.31. Given such low-thrust conditions, 
the closeness of the calculations from the three theo
ries is expected, and the dynamic stall and wake the
ory fares better than the other two theories. While the 
mode-deflection method fares better for 0 ::; J1. ::; 0.25, 
the force-integration method fares better for J1. > 0.25. 
Despite the overall adequacy of the correlation, partic
ularly by the mode-deflection method, there are appre
ciable differences between the calculations from these 
two methods, particularly at Jl. = 0.1 and 0.31. For 
example, relative to the data, the force integration 
and mode-deflection methods underpredict flap mo
ment by 43% and 5% at Jl. = 0.1 and overpredict by 
10% and 30% at Jl. = 0.31, respectively. Another point 
that merits mention is the convergence of the calcu
lations based on 5-5-5 modal representation. Calcu
lations have been made with 6-6-6 modal represen
tation at Jl. = 0.1 and 0.31. The calculations from 
the force-integration method show little difference in 
steady flap moment from these two representations, 
and 5-5-5 representation basically provides converged 
results. However, the calculations from the mode
deflection method show a difference of 4.3% at Jl. = 0.1 
and 4% at Jl. = 0.31, and the 6-6-6 modal represen
tation brings the calculations closer to those of the 
force-integration method. Therefore, it is conclu_ded 
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Figure 13: Longitudinal-Cyclic Pitch Correlation for 
00 = 3° and ;3p, = 0° (Legend as in Fig. 11) 

that the results in Fig. 14 merit further investigation 
concerning the differences in the calculations from the 
force-integration and mode-deflection methods as well 
as the convergence of the calculations from the mode
deflection method. 

Concluding Remarks 

The preceding correlation is based on the quasis
teady stall, dynamic stall, and dynamic stall and wake 
theories. It covers the data on lag regressive-mode 
damping level, control settings of lateral and longitu
dinal pitch angles and steady root flap moment. All 
the data are presented as a function of advance ra
tio (0 ::; Jl. ::; 0.36). Overall, the dynamic stall and 
wake theory provides the best correlation. The other 
specific findings are as follows: 

1. The quasisteady stall and dynamic stall theories 
predict the damping levels fairly well. By com
parison, the dynamic stall and wake theory shows 
better correlation in that the trend of the damp
ing level with advance ratio is closer to that of 
the data. An exception occurs for the third con
figuration for 0.2::; Jl.::; 0.31; the data show that 
the damping level rapidly decreases for J1. > 0.2 
and becomes nearly zero at Jl. = 0.31. This is pre
dicted by none of the three theories. They predict 
nearly identical damping for 0.2 $ J1. ::; 0.31 and 
show that the damping level decreases very slowly 
with increasing advance ratio; in fact, they predict 
a fairly stable lag regressive mode at Jl. = 0.31. 
That this exception occurs under near-zero thrust 
conditions (0.017 ::; CT I" ::; 0.0) is surprising and 
merits further investigation. 

2. The quasisteady stall and dynamic stall theories 
do not provide a satisfactory correlation of the lat-
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Figure 14: Flapping Moment Correlation for Bo = 3°, 
a, = -6° and [3,, = 2° 

era! cyclic pitch angle. In contrast, the dynamic 
stall and wake theory dramatically improves the 
correlation and provides satisfactory correlation. 

3. The calculations of the root flap moment from 
all three theories are fairly close. The mode
deflection method correlates better than the force
integration method. However, two issues con
cerning the convergence of the calculations from 
the mode-deflection method with respect to the 
number of modes, and the differences in the 
calculations from the mode-deflection and force
integration methods must be resolved. 
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