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Abstract 

A methodology for the finite-state linear descrip­
tion of unsteady aerodynamic loads acting on 
the main rotor, when the rotor-fuselage config­
uration is perturbed from its equilibrium condi­
tion, is presented. In fixed-wing aircraft aerody­
namics, the finite-state coefficients are time inde­
pendent. For helicopter rotors this is true only 
for the limited case of hovering conditions with 
state variables describing a motion normal to the 
rotor disk. Otherwise, the finite-state description 
coefficients are time dependent and, in partic­
ular, periodic. Here, we present a methodology 
for the reconstruction of aerodynamic finite-state 
coefficients for hovering rotors subject to per­
turbation motion both (i) normal to the rotor 
disk and (ii) in the plane of the rotor disk. It is 
based on a boundary-element solution of the aero­
dynamic field induced by the Lagrangean vari­
ables of interest (for instance, amplitude of struc­
tural vibration modes, displacements of the hub, 
angles of rotation of the rotor disk). Under the 
assumptions of incompressible, potential flows, in 
this work, frequency-domain aerodynamic loads 
are determined by a boundary-element formula­
tion for the velocity potential, coupled with the 
Bernoulli theorem. Numerical results for the val­
idation of hovering rotor finite-state approxima­
tion of aerodynamic loads arising from in-plane 
and out-of-plane disturbances are included. 

Introduction 

The objective of this paper is the presentation of 
an efficient tool for the description of unsteady 
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aerodynamics loads acting on the main rotor 
when a hovering rotor-fuselage is perturbed from 
an equilibrium condition. This tool is based on: 
(i) a boundary-element formulation for the anal­
ysis of unsteady potential aerodynamic forces 
and (ii) a finite-state description of these via 
a matrix-fraction approximation of the aerody­
namic matrix relating the vector of the aerody­
namic forces to that of the Lagrangean variables. 
The formulation is valid for both rigid-blade and 
elastic-blade rotors, while the numerical results 
are limited to rigid-blade rotors. 
The most important application of this tool is 
in flight dynamic, aeroelastic and aeroservoelas­
tic modeling. In order to obtain a reliable aeroe­
lastic analysis, an essential feature is an accurate 
aerodynamic load prediction. In this field, early 
work has dealt with two-dimensional incompress­
ible flow configurations. In particular, for hover­
ing rotor configurations, a methodology still wide­
ly used (in connection with a strip-theory) is that 
developed by Loewy [1], as an extension of the 
Theodorsen [2] formulation for fixed-wing analy­
sis. The advancing-rotor configurations can also 
be treated in terms of lift-deficiency functions as 
indicated in the extended Loewy and Greenberg 
theories and the cascade-wake-model theory (see, 
e.g., Dinyavary and Friedmann [3]). Approximate 
methodologies based on dynamic-inflow models 
(extension of the momentum theory) allows for 
fast and reliable predictions of unsteady aerody­
namic loads on rotors (see, e.g., Gaonkar and 
Peters [4]), even though simplified models are 
used for the wake effects. 
Aerodynamic formulations for rotor analysis 
starting from the principles of conservation of 
mass and momentum have also been developed. 
In particular, a general boundary integral time· 
domain formulation for unsteady, compressible, 
potential flows for rotors has been developed in 



the past by the authors (see, e.g., Ref. [5]). Specif­
ically, the velocity potential around a hovering 
rotor is determined by the corresponding bound­
ary integral formulation; then, aerodynamic loads 
are evaluated through Bernoulli's theorem. The 
rotor aerodynamic solution is strongly influenced 
by the wake geometry; here, the wake geometry 
is assumed to be prescribed with the shape given 
either by the generalized wake model introduced 
by Landgrebe [6], or by the simple helicoidal­
surface function. 
A linear finite-state aerodynamics modeling is 
an approximation of the aerodynamic operator 
around a given reference configuration, which 
allows one to recast the dynamics equation in 
state-space format. The most common approach­
es used in the literature for fixed-wings are those 
introduced by Roger (7] and Karpel [8]. More 
recently a least-square fraction-matrix approxi­
mation technique was introduced by Ghiringhelli 
and Mantegazza [9] (see also Morino et al. [10]), 
to which the reader is referred for a review of the 
state of the art. 
Indeed, for aircraft dynamic analysis, it is desir­
able to have an approximation of the aerody­
namic forces in a finite-state format in order to 
express the dynamics of the system considered 
(aerodynamic forces included) in standard state­
space form. Note that such representation is use­
ful for the stability analysis and is essential for 
the design of control laws. 
Next consider hovering-rotor configurations. If 
the perturbation motion is normal to the rotor 
disk the basic methodology of Refs. [9] and [10] 
is still applicable. However, in this case, a large 
number of augmented states is reqnired, due to 
the complexity of the wake geometry. Venkate­
san and Friedmann [ll] developed the finite-state 
approximation of the Loewy's deficiency func­
tion based on the Bode-plot approach, togeth­
er with a least square procedure. A new finite­
state formulation has been introduced by Peters 
and Gao [12] and Peters and He [13] for the 
description of the wake-induced velocity over the 
rotor disk. This approach is based on an induced­
flow expansion of the induced flow derived direct­
ly from the potential-flow formulation (the coef­
ficients of the expansion are the aerodynamic 
states). According to Refs. [12] and [13], the 
advantages of this formulation are: (i) no numer­
ical fitting of frequency-response or indicial func­
tions is needed; (ii) few states are needed for a 

convenient aerodynamic approximation; (iii) the 
resulting equations are easily coupled with struc­
tural or control equations. The limitations are: 
(i) the rotor is assumed to be a thin, undeformed 
disk; (ii) only normal-disk loads can be described; 
(iii) only cylindrical wakes are implemented. This 
methodology is applicable also to forward flight 
case. 
1n the present work, the finite-state approxima­
tion of Refs. [9] and [10] (in connection to the 
boundary-element approach mentioned above) is 
extended to the case of rotors. 1n particular, 
in addition to the case of hovering blades with 
perturbation motion normal to the rotor disk 
(time-independent-coefficient finite-state model), 
the case of hovering blades with in-plane per­
turbations (periodic-coefficient finite-state mod­
el) is considered. Numerical results are presented 
in order to assess the finite-state approximation 
used here for both fixed-wing and rotary-wing 
configurations. 
The theoretical formulation was developed jointly 
by the three authors. The implementation and 
the numerical results are obtained by De Troia, 
as part of his doctoral work [14]. 

Aerodynamic Formulation 

The aerodynamic formulation is based on the 
assumptions of incompressible, quasi-potential 
flows. These are flows that are potential every­
where in the field except for the wake points (see, 
e.g., Ref. [5] for details of this section). Thus, if v 
denotes the velocity of the fluid particles, it is pos­
sible to introduce the potential function <p such 
that v = V'<p, for x E V\Sw, where V denotes 
the fluid region, and S w denotes the wake sur­
face. Combining the above equation with continu­
ity equation, V' • v = 0, one obtains the following 
Laplace equation 

V'2<p = 0 for x E V\Sw. (1) 

The formulation is presented for a frame of ref­
erence connected to the undisturbed air. Thus, 
we have <p = 0 at infinity. 1n addition, we need 
boundary conditions on body and wake. The 
body is assumed to be impermeable, and accord­
ingly the boundary condition on the body surface, 
SB, is (v- v B)· n = 0, where v B is the velocity 
of the points of S B, and n is the unit normal to 
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S B. Recalling that v = 'V <p, one obtains 

8cp 
-=v ·n 8n B 

for x E SB. (2) 

Boundary conditions on the wake are obtained 
from the principles of conservation of mass and 
momentum across a surface of discontinuity, such 
as Sw. These yield v · n = v w · n and D.p = 0. In 
turn, in terms of velocity potential <p, these yield 

(3) 

on the wake surface, and 

D.cp = constant (4) 

following a wake material point. At the trailing 
edge we impose that .6.cp on the body equals D.cp 
on the wake. 
Starting from this differential formulation, apply­
ing the boundary-integral-equation technique, 
and using Eq. (3), the potential-flow solution for 
a lifting body satisfies the following equation: 

r (acp aG) <p(x) = ls B 8n G- 'P 8n dS(y) 

1 8G 
- D.cp a dS(y ), 

Sw n 
(5) 

where G is the unit source G = -1/ 41T IIY - xll. 
Equation (5) is an integral representation of <pin 
the field in terms of <p and 8cp I 8n on S B and D.cp 
on Sw. Ifx tends to the surfaceSB, we obtain, in 
the limits, an integral compatibility relationship 
between t.p and 8cp I 8n on S B, and D.cp on S w. In 
our case 8<pl8n on S sis known from Eq. (2) and 
D.cp from the preceding time history (see Eq. ( 4)); 
hence the compatibility relationship corresponds 
to a boundary integral equation for cp on S B. 

Once cp on S B has been obtained, the application 
of the unsteady Bernoulli theorem gives the pres­
sure distribution over the body surface, and hence 
the aerodynamic loads acting on the body. The 
boundary element method used here consists of a 
zeroth-order (i.e., piecewise constant) discretiza­
tion of the above integral formulation. 

Finite-State Modeling for Rotary Wings 

with Blade-Frame Fixed Perturbations 

For hovering rotor configurations, where the wake 
surface is assumed to be fixed with respect to 

the body, it is possible to recast Eq. (5) in 
the frequency-domain. Then, using the linearized 
Bernoulli theorem and under the assumption of 
blade perturbation motion (like, e.g., flapping, 
pitching and lagging) or rotor disk (fuselage) out­
of-plane perturbation motion (like, e.g., linear 
velocity aligned with the rotor axis) one obtains 
a linear relationship between the set of state vari­
ables defining such body motion (and thereby the 
body boundary condition for <p, see Eq. (2)) and 
the consequent generalized aerodynamic forces 
acting on the body. This may be recast in terms 
of the socalled aerodynamic transfer matrix, as 
discussed below. 

Aerodynamic Matrix 

The aerodynamic matrix, E, which in the fre­
quency domain relates the dimensionless vector 
of the state variables, q = { ij;} (where q; are the 
dimensionless Lagrangean variables of the blade 
motion), to the vector of the generalized aerody­
namic forces, e, is obtained by the product of a 
set of frequency-dependent matrices. Specifically, 
we have 

where qD = pf/.2 R 2 12 is the reference dynamic 
pressure (denoting with n the angular velocity of 
the rotor) and p the density of the air, where­
as s = sjfl is the reduced Laplace-transform 
variable. In addition, E 1 ( s) gives the normal­
wash, X = {)rp I 8n, in terms of the state vari­
ables, E 2(s) corresponds to the above mentioned 
discretization of the operator in Eq. ( 5), E 3 ( s) 
relates the pressure distribution with the values 
of the potential on the body surface (unsteady lin­
earized Bernoulli theorem), and finally E 4 yields 
the generalized aerodynamic forces from the pres­
sure distribution. 
The expressions of the matrices involved in Eq. 
(6) have been presented in [15] for the fixed-wing 
case, and extended in [16] to fixed-axis rotors in 
uniform rotation. 
In Figs. 1 and 2, we present the com­
parison between load prediction from the 
boundary-element methodology described and 
from Loewy's theory [1]. In these figures real and 
imaginary parts of the flapping moment coeffi­
cient due to a unit flapping-mode displacement, 
Mf3f3, for a rotor wake with pitch h = 0.5c, where c 
denotes the chord length are illustrated (in all the 
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figures k = Sm[s]). The results obtained with the 
BEM formulation presented have been computed 
by assuming a. simple helicoidal wake geometry. 
For the wake pitch considered, our results and 
those from the Loewy's approach agree quite well 
(however, the agreement deteriorates as the wake 
pitch increases as expected, given the assump­
tions of Loewy [1] on the wake vorticity spatial 
distribution). Other terms of the aerodynamic 
matrix have the same behavior. 
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Figure 1. M~~ vs k for hjc = 0.5. Present results: BEM 
and Loewy/ strip-theory method. 
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Figure!!. M~~ vs k for hjc = 0.5. Present results: BEM 
and Loewyjstrip-theory method. 

Constant-Coefficient Finite-State Modeling 

From the expression of the boundary-element 
formulation in frequency-domain used for the 
potential-flow solution, it is possible to observe 
that the elements of the matrix E(s) are typically 
transcendental functions of the reduced Laplace­
variable s. Hence, the transfer matrix is relatively 
easy to use in problems regarding the identifica­
tion of instability margins (e.g., V-g plots), but 
not in dynamic-response problems or for design­
ing a control device. In order to overcome these 
limits of applicability, it is convenient to deter­
mine a finite-state model for the aerodynamic 
operator. 
Here, following the procedure introduced in [9] 
(see also [10]), we take advantage of the fact that, 
for high-frequencies and displacement state vari­
ables, the leading term is of order 82 (stemming 
from the derivative that appears in the boundary 
condition and in Bernoulli's theorem). Thus, we 
choose a. finite-state model for the hovering rotor 
aerodynamic matrix given by a matrix-fraction 
approximation of the type 

The matrices A;, D; and R; are real and fully 
populated (except for D N that coincides with the 
identity matrix) and are determined by a. least­
square approximation technique. This consists of 
setting 

n 

where k = Sm[s], whereas Wn denote suitable 
weights, and 

N-1 

+ L R.,.sn (9) 
n=O 

is a weighted measure of the error (E- E). In 
order to apply the matrix-fraction approxima­
tion of the aerodynamic matrix and derive the 
time-domain relationship between the generalized 
forces, e, and the state variables, q, it is possible 
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and convenient to recast Eq. (7) in the following 
form 

where H depends upon the R;'s, G upon the 
D;'s, whereas F T = [I, 0, ... , 0) (see [9) or [10) 
for details). 
Note that the accuracy of the approximation 
depends upon the number, N, of matrices used in 
the matrix-fraction term in Eq. (7). The appro­
priate value of N depends upon the characteris­
tics of the functions to be approximated. In our 
case, these functions corresponds to the elements 
of the matrix E in terms of the frequency and, 
for the problem of an hovering rotor, they show a 
wavy behavior (see, e.g., Figure 1 ), which requires 
a high value of N. This, in turn, may induce an 
instability (i.e., real part greater than zero) in 
some of the eigenvalues of the matrix G in Eq. 
(10); these are spurious poles which are intro­
duced by the interpolation procedure. In order 
to overcome this problem the iterative procedure 
of Ref. [9) is adopted. This consists of: (i) diag­
onalization (or block-diagonalization) of G, (ii) 
truncation of the unstable states (the matrix G 
is modified into a smaller matrix G), and (iii) 
application of an optimal fi! ite_ratiye p_rocedur_e 
to determine new matrices A 2,Al>A0,F, and H 
that replace, respectively, A 2,A1,Ao,F, and H 
(whereas G remains unchanged throughout the 
iteration). Hence, the matrix-fraction finite-state 
approximation assuring a good and stable fit of 
E( s) has the final form 

E(s) = s2 A.z+ .sA1 + A0 + :H (si- G r1 
:F. (11) 

Then, from Eq. ( 11) it is possible to derive the 
time-domain expression of generalized forces in 
terms of the state variables, which is given by the 
following set of constant-coefficient linear differ­
ential relations 

e = qD(Azii+At<i+Aoq+Hr) (12) 

r = Gr + Fq, (13) 

where r is the vector of the augmented-state vari­
ables, introduced by the finite-state approxima­
tion, and ()" denotes differentiation with respect 
to the dimensionless time variable i = nt. 
In conclusion, Eq. ( 11) allows for a uniform ely 
valid frequency-domain expression for the gen­
eralized aerodynamic matrix and hence for the 

transfer function of the dynamic system. This 
methodology is strictly valid for the case of 
wings and hovering rotors with blade perturba­
tion motion and/or out-of-plane disk (fuselage) 
perturbation motion. In the following we extend 
the formulation at the case of hovering rotors with 
in-plane disk (fuselage) perturbation motion. 

Finite-State Modeling for Rotary Wings 

with Fuselage-Frame Fixed Perturbations 

For hovering rotors with perturbation motion in 
the plane of disk it is not possible to express the 
aerodynamic operator in the frequency domain. 
This is due to the presence of additional periodic 
terms, of rotational frequency n, in the imperme­
ability boundary conditions induced by change of 
orientation of the blades with respect to the per­
turbation velocity during one revolution. Addi­
tional periodic terms in the aerodynamic operator 
also arise in the expression of generalized forces 
if these are referred to the in-plane modes of the 
whole rotor. Indeed, denoting withe the vector of 
generalized aerodynamic forces acting on a rigid 
blade expressed in the blade frame, and with f 
the vector of the same forces expressed in the air 
frame1 , the two are related by 

cos ill sinflt 0 0 0 0 
sin f/.t - cos ill 0 0 0 0 

f= 0 0 1 0 0 0 (14) 0 0 0 cos ill sinflt 0 e 

0 0 0 sin ill -cosOt 0 
0 0 0 0 0 1 

Note that this periodicity would also arise in the 
case of blade-frame fixed disturbances discussed 
in the preceding section. Nevertheless, in that 
case the finite-state modeling described in the 
preceding section may be applied for the vector 
e, and then the periodic finite-state modeling is 
determined by Eq. ( 14). 
On the other hand, a different finite-state model­
ing technique has to be applied in order to take 
into account the periodicity induced by the body 
boundary conditions. Denoting with u and v the 
in-plane components of the linear perturbation 
velocity of the rotor disk (or fuselage center of 

1 The first (last) three components of e and f are the 
physical components of force (moment); the third compo­
nent of force (moment) is in the direction normal to the 
rotor disk plane. 
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mass), and with p and q the in-plane components 
of the angular perturbation velocity of the rotor 
disk (or fuselage) in the same frame, we have 

v~ = (ucosfit+vsinfit)iB 

+ (usinfit- vcosfit)jB 

+ (qcosfit- psinfit)ziB 

+ (p cos Qt + q sin fit)zj B 

+ p(sinfit- qcosfit)xkB 

- p(cosfit+qsinfit)ykB (15) 

where x, y and z are the Cartesian coordinates 
of position vector in the blade frame with base 
unit vectors iB,jB and kB. Combining Eq. (15) 
with Eq. (2) one obtains the following perturba­
tion boundary conditions 

x(x, t) = v~ · n = L ,P;(x, t)q;(t) 
i 

where ,P;(x, t) ~;(x) expJ0 ' +c.c. Setting 
q;(t) = ij; expJW' +c.c., we have 

x(x,t) = X'(x)expJWt +x+(x)expJ(O+w)t 

+ x-(x) expJ(!l-w)t +c.c. 

(for details see [14]). From :\'0 , x+ and x-, one 
can determine three different aerodynamic matri­
ces of the type of that of Eq. (6), and then three 
different finite-state models of the type of that 
expressed by Eqs. (12) and (13). Finally, combin­
ing these approximations as specified in Eq. (16), 
one obtains the time-domain finite-state model 

e(t) = A 1(t)q + A0 (t)q + Hr (16) 
r = Gr + F(t)q (17) 

where the matrices A 1 , Ao and F are periodic 
function of time; on the other hand, the matri­
ces H and G are time independent (see [14] for 
details). 

Numerical Results 

First, we have accomplished a finite-state approx­
imation for the aerodynamic generalized forces 
in the case of time-independent operator. In 
this case, we have considered a two-bladed rotor 
with collective pitch angle B, = 8', and a 
helicoidal wake geometry. First, in the matrix­
fraction approximation we considered a number 
of poles Np = 26 (number of eigenvalues of the 

matrix Gin Eq. (10)). Using this number of poles, 
the least-square procedure gave some unstable 
poles which induces considerable local inaccuracy 
in the approximation of the aerodynamic matrix, 
in the range. from k = 0 to k = 1. Then, elim­
inating these unstable poles, and re-evaluating 
some of the matrices in the approximated expres­
sion we obtain a very good agreement between 
the caiculated and the approximated aerodynam­
ic forces, as shown in Figs. 3 and 4 for the M1313 
coefficient (the final number of stable poles is 
Np = 19). Note that, if a good accuracy of 
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Figure 9. Real part of Mpp vs k for 80 : 8°. BEM 
results {helicoidal wake) and their finite-state approxima­
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the approximation is desired only in the low fre­
quency ra.11ge, then a lower number of poles may 
be used (see Ref_ [16]). Indeed, in order to have an 
accurate approximation of Re( M .B.B) in the range 
from k = 0 to k = 0.5, only 14 poles are needed 
(see Fig. 5). Note also that fork > 0.5, although 
the accuracy decreases, the overall behavior of the 
curve is well captured. 
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Figure 5. Real part of Mpp vs k for 8 0 = 8'. BEM 
results {helicoidal wake) and their finite-state approxima-
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Figure 6. Nondimensiona.l horizontal force due to horizon­
tal disturbance. Comparison between direct time-marching 
BEM solution and periodic-coefficient finite-state model. 
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Next, we consider the finite-state approxima­
tion for periodic-coefficient operator; numerical 
results are obtained for a single-bladed rotor with 
collective pitch angle (j 0 = 5° and helicoidal wake 
geometry, perturbed by an horizontal velocity in 
air frame. Results obtained by using the time­
domain boundary integral formulation presented 
above are compared with those from periodic­
coefficient finite-state model extracted from the 
BEM results. Figures (6) and (7) present time 
histories of dimensionless horizontal and verti­
cal forces (made dimensionless using ~pQ2R2 ) 
in blade-frame, in presence of an horizontal har­
monic gust (with reduced frequency k = 0.1 ). 
We note a good agreement between direct time­
domain method and periodic-coefficient finite­
state model, as one can see in Figs. (8) and (9) 
(a stretching of previous Figs. (6) and (7)). 

Concluding Remarks 

A boundary-element approach for time- and 
frequency-domain analysis of hovering rotor aero­
dynamics has been presented with a finite-
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Figure 7. N ondimensional vertical force due to horizon­
tal disturbance. Comparison between direct time-marching 
BEM solution and periodic-coefficient finite-state model. 

state model for the aerodynamic matrix based 
on a matrix-fraction approximation. Both time­
independent coefficient models (typical of fixed 
wings and of hovering rotors with blade-motion 
perturbations) and periodic-coefficient models 
(related to hovering blades with air-frame per­
turbations in the rotor disk plane) are presented. 
By coupling finite-state aerodynamics with the 
equations of system dynamics, it is possible to 
recast the complete system in state-space format, 
which is computationally more convenient. 
Numerical results that validate the aerodynam­
ic solution as well as the finite-state mod-
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Figure 9. Nondimensional vertical force due to horizon­
tal disturbance. Comparison between direct time-marching 
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el have been presented. The finite-state model 
results have shown the capability of very accu­
rate approximations of the numerical solutions by 
introducing a certain number of poles (i.e., addi­
tional aerodynamic states). It has been shown 
also that the number of poles may be modified 
according to the frequency range in which higher 
accuracy is required. For periodic-coefficient hov­
ering rotor the accuracy of the finite-state model 
introduced is quite good. 
Finally, note that in Eq. (16) the matrix G rep­
resents the dynamics of the augmented states. 
Hence the fact that G is time independent is in 

agreement with the hovering rotor model used 
since the augmented states take into account 
the wake effects on aerodynamic field. Indeed, in 
general, these effects depend on the wake shape 
and on the vorticity distribution which in turn 
depends on the state variables: therefore, in our 
case the effect of state variables on the augment­
ed states is expressed by the matrix F, whereas 
the effect of the wake shape is expressed by the 
time-independent matrix G. 
For advancing rotors this is not true, the wake 
moves in the body frame and hence also the 
matrix G is periodic in the differential equation 
for the augmented states. 
It is easy to see that the finite-state periodic­
coefficient model of Eq. (16) is valid also for elas­
tic state variable case; this case is discussed in 
Ref. [14]. 
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