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Abstract 

In this paper parametric transfer function models are evaluated for B0-105 helicopter 
using iterative multi input/multi output algorithms in frequency domain. The accuracy of 
the identified models are presented in bode diagrams. The identified results are compared 
with those estimated by the working group 18 of AGARD. 

1.0 Introduction 

At the TUD and NLR, system identification for fixed wing aircraft has been practiced for 
many years. So far time-domain techniques have been the main approach (1]. However, for 
helicopters, the coupling between symmetric and asymmetric movements (mainly due to the 
presence of the rotor) and the extra degrees of freedom of the rotor (flapping and lead-lag 
hinges) result in models, with a large number of parameters. Simultaneous estimation of all 
these parameters poses a big problem. Some of these problems can be reduced, using 
frequency-domain techniques. Some of the key benefits of frequency-domain analyses are: 

• The coupling properties of MISO-systems can be conditioned to multiple SISO-system, 
thereby giving greater insight into the behavior of the system and making it possible to 
identify smaller models. 

• The "quality" of the identified non-parametric transfer-functions can be assessed, via the 
coherence-function. 

• The frequency range of fit can be restricted and/or frequency-weighting can be applied. 

• The model structure (transfer-functions) can be based on visual inspection of the 
non-parametric transfer-functions. 

• The non-parametric transfer-functions are unbiased in the presence of measurement and 
process noise. 

• Time-delays can be estimated directly. Higher order models with widely spaced dynamic 
modes (e.g. fuselage and rotor modes) can be identified more easily. 
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• Different input signal performance can be compared before conducting system 
identification 

For these reasons a software-package for frequency-domain analyses and system identification 
for helicopters was developed, on a personal computer, using Matlab 4.0 for Windows. These 
algorithms are based on the new theoretical and software developments at TUD [2 to 6]. 
Extensive graphical user interfaces with on-line help facilities were built to facilitate the 
interaction between the analyst and the computer. As frequency domain analyses is graphics 
intensive, user friendly graphic routines are implemented for good insight. The package is 
built in a modular fashion: 

First the time history records are Fourier-transformed and the MIMO system is conditioned 
to multiple SISO-systems by an iterative procedure resulting in partial PSD coherence and 
non-parametric frequency responses. The PSD and frequency responses are smoothed to 
reduce their variances. Different smoothing algorithms have been implemented for this 
purpose. Once they are calculated, the (partial) PSD, coherence and frequency responses can 
be visualized conveniently with various plot options. From these plots, the analyst is able to 
determine whether the conditioning was adequate or whether the number or order of the 
inputs should be adapted for adequate modelling. 

The next step in the identification process is to find parametric transfer-functions, that 
accurately describe the non-parametric frequency responses. All parametric transfer-functions 
must have one common denominator, since the ultimate goal is to find one state-space model, 
combining all transfer-functions. The denominator is built from a number of first- and 
second-order subsystems. For each subsystem, corresponding eigen-movements exist. Often 
only a few states are excited by a particular subsystem, for example, the dutch-roll (second 
order) mainly results in the rolling and yawing. In each transfer-function, some subsystems 
are more dominant than the others. If in two transfer-functions the same subsystems are 
dominant, these transfer-functions are fitted simultaneously. 

In order to determine the model structure for a specific transfer-function, the parametric 
model is built in a stepwise manner from all possible influencing modes. This can be achieved 
by the analyst by clicking checkboxes corresponding to the desired modes (possibly including 
a time delay) in a menu with the aid of a mouse. At the same time the analyst can visually 
inspect the resulting bode plots which are instantaneously updated and displayed. In this way 
the analyst can iteratively build the model structure to the desired degree of adequacy. The 
procedure can be repeated for all possible transfer functions. These are updated to obtain one 
common denominator. Finally all transfer-functions are combined into one state-space model. 
This is readily achieved from the fitting procedure, which yields one common denominator 
for all transfer-functions. The analyst can then conduct time domain simulation to verify his 
model. 

In this paper the parametric models were developed for the B0-105 helicopter and the 
accuracy of the models are presented in bode diagrams for various combination of"control 
inputs (lateral, longitudinal and pedal) to outputs (measured rates and speed components). 
The identified models are compared with those obtained by WG-18 of AGARD [7]. 

2.0 Results and discussion 
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In this paper the discussion into the theoretical and software developemnt is not done. The 
readers are referred to the details given in papers [2 to 6]. Only the intermediate and end 
results are presented. 

The parametric models were evaluated in the form of conditioned transfer function models. 
That is, the secondary inputs were removed by conditioning process to keep the variances 
in the estimates to minimum possible. In each evaluation of the transfer function model, the 
judgement of the accuracy is made on the obtained coherence relationship. Therefore, 
smoothing the spectral estimates based on the available measurements is vital in getting the 
best available fit. Different smoothing parameters were set for on axis inputs and off axis 
inputs. Similarly, a relatively higher degree of smoothing was used as a result of poor 
relaisation of speed measurements. In each of the models presented, 2 input/single output was 
considered and was found to be sufficient. This judgement was exercised on the basis of 
output spectral decomposition. A menu selection provided by the software is reproduced here 
(fig 1). This enables quick view of estimated spectrum, coherence and frequency response 
functions. A fitting session menu interactively allows the analyst to select the appropriate 
structure and develop models in an interactive fashion with the aid of a 'mouse'. 

The parametric transfer function is evaluated for the following pairs and compared with the 
AGARD WG 18 flight data base. The approximate flight condition considered here is 
Altitude=3000ft, speed= 80knts, calm air. 

* 
* 
* 
* 
* 
* 
* 

Pitch rate to longitudinal stick; q 10 dong (fig 2) 
Roll rate to lateral stick; p to dlat (fig 3) 
Yaw rate to pedal; r to dped (fig 4) 
Longitudinal speed to longitudinal stick; u to dlong (fig 5) 
Pitch rate to lateral stick; q to d/at (fig 6) 
Lateral speed to lateral stick; v to dlat (fig 7) 
L'lteral speed to pedal; v to dped (fig 8) 

The identification results are presented in the following order (figures 2 to 8): 

* 
* 

* 

* 

* 

The time history plots for each input/output pair 
Spectral decomposition of output, that is the part of the spectral output (S33) 
explained by primary input (CSPKR 1), secondary input (CSPKR2) and the 
extraneous noise (S3312). 
The partial coherence functions of the primary input (GU1), the secondary 
input (GU2) and their combined input in the fonm of mutiple coherence 
function (GYX2). 
The fitted frequency response function (model versus flight) with fitted 
frequency range. 
Time constants, damping ratios and undamped natural frequencies 

An overall presentation of the identification results are given in tables 1 and 2 in respect of: 

* 
* 
* 

Aperiodic Roll mode 
Phugoid motion 
Dutch roll oscillation 
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• 
• 
• 
• 
• 

Aperidoic pitch mode 1 
Aperiodic pitch mode 2 
Lead lag mode 
Rotor flap mode 
Time delay 

Conclusions 

The iterative multi input/multi output algorithms work quite well. The estimates are quite 
close to the results presented by the working group 18. The results are under further 
refinement. 
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Mode of motion AFDD. CERT DLR Glagow Univ. NAE NLR TUD 

Phugoid Osci. [ -0.36,0.30) [-0.17,0.32) [-0.15,0.33) [-0.10,0.35) [-0.14,0.33) [-0.07,0.33) [ -0.4893,0.6741) 

Dutch Roll osci (0.22,2.60) [0.13,2.51) [0.!4,2.50) [0.16,2.27) [0.13,2.58) [0.17,2.17) [0.17,2.55) 

Roll mode 8.32 [0.99,2.89j' 8.49 5.12 8.47 2.38 6.9 

Aperiodic pitch I 6.04 - 4.36 1.98 4.38 !.37 4.63 

Aperiodic pitch 2 0.49 0.66 0.60 0.64 0.63 0.71 0.011 

Lead lag [0.0421,15.8] - - - - - [0.03,15.72) 

Rotor nap [0.509,13.7] - - - - - [0.717,14.98] 

10 tniS case apcnoCJ1c roll moae ana tast pllch moae comome mto an oscuuory moae. 

Table 1; BO-lOS identification results: Time oon::.tants, damping r<Hios and undamped natural frequencies 

Short hand notation 

[( Wn] represents 31 + 2(wn3 + w~ 

( ~) represents 3 + ~ 

Control AFDD CERT DLR Glasgow NAE' NLR' TUD 

Longitudinal 0.113 0.0 0.1 0.044 0.010 0.1 0.1296 

Lateral 0.062 0.0 0.060 0.074 0.060 0.060 0.0310 

Pedal 0.044 0.0 0.040 0.0 0.040 0.040 0.0535 

Collective 0.168 0.0 0.040 0.102 0.040 0.040 -

Table 2: lime delay in seronds 




