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ABSTRACT

Comparisons between 1-D and 3-D analyses are conducted systematically for advanced geometry blades which have
tip sweep, tip taper, and planform variations near the root with various materials and effects of boundary conditions in
order to better understand the differences between the two approaches and physics behind them. 1-D beam analysis
is conducted using the RCAS rotorcraft comprehensive analysis with VABS calculated 2-D cross-sectional properties.
3-D finite element analysis is conducted using a commercial code MSC/Marc. Natural frequencies are calculated at
various rotor rotational speeds and the differences are quantified. There is very good agreement between the 1-D
and 3-D analyses for free-free aluminum beams, even for a very short beam with beam length five times chord (L =
5×c). The 1-D analysis accurately captures the planform variation near the root for an aluminum beam. In general,
the differences between the 1-D and 3-D analyses occur when there is coupling, either generated from geometry (tip
sweep) or material (composite), especially for high frequency modes. Without coupling, the 1-D analysis appears to
capture free vibration characteristics of various advanced geometry beams and blades reasonably well for at least the
six lowest frequency modes when the beam length is greater than ten times chord.

1. INTRODUCTION

Rotorcraft aeromechanics analysis is a challenging problem
due to coupling of the complex structural deformations of
rotor blades with the three dimensional and highly unsteady
aerodynamic environment. Rotorcraft comprehensive
analyses [1–5] have been widely used to model a broad
spectrum of rotorcraft attributes, including performance,
airloads, structural loads, air flow fields, and hub loads.
Most rotorcraft comprehensive analysis codes use 1-D beam
elements for rotor blade dynamics modeling. Traditional
approaches rely on the fact that rotor blades are typically
long slender structures with slowly varying elastic properties.
This enables the use of 1-D beam theory for aeroelastic
analysis. This method is efficient and accurate as long as
the cross-sections are small compared to the wave-length
of deformations along the beam. Modern rotor blades
have begun to depart from simple straight planforms by
incorporating tip sweep and taper. Cantilever (hingeless,
bearingless rotors) blades involve planform and cross-section

variations at the blade root. Use of composite material
also complicates analysis due to material anisotropy [6].
Such configurations raise the question of validity of 1-D
beam methods. More sophisticated structural models such
as plates, shells, and brick elements will require increased
computational effort. Therefore it is worth assessing the
need for additional sophistication of 3-D analysis. Interested
readers are referred to recent efforts to develop a paralleland
scalable solution procedure for a 3-D finite element method
(FEM) based rotor dynamics analysis [7] and to develop
a geometrically exact 2-D shell element for rotorcraft
comprehensive analysis [8,9].

Truong calculated modal frequencies of ERATO blade (a
French acronym for “Etude d’un Rotor Aéroacoustique
Technologiquement Optimisé”) using both 3-D finite
element analysis and 1-D beam analyses, and compared the
results with experiment [10]. The 3-D finite element analysis
was conducted using MSC/Marc and the 1-D analysis was
conducted using MSC/Marc (beam model) and Eurocopter’s



aeroelastic code R85, which is a predecessor of the
comprehensive helicopter aeroelastic code HOST [5]. The
predicted modal frequencies using the 3-D analysis showed
better correlation with the experiment than with the 1-D
analyses. The findings of this study motivated the present
cooperative research. The US Army Aeroflightdynamics
Directorate (AFDD) and the French Office National d’Etudes
et de Recherches Aérospatiales (ONERA) have conducted
research to investigate the differences between a 1-D beam
model approach and a 3-D finite element approach under
the auspices of the United States/France Memorandum of
Agreement on Helicopter Aeromechanics. The objective of
this effort is to better understand the accuracy of current
rotor blade structural modeling and identify the level of
sophistication required to model modern rotor blades.

AFDD used a geometrically exact, shear flexible, anisotropic
beam element implemented in the Rotorcraft Comprehensive
Analysis System (RCAS). The new element, termed
the RCAS geometrically exact composite beam (GCB)
element [11], goes beyond the original RCAS nonlinear
beam (NLB) element. The GCB element is specifically
intended for composite blades and it is designed to be
compatible with Variational Asymptotical Beam Sectional
Analysis (VABS) [12], a code developed by Cesnik, Hodges,
and their co-workers at Georgia Institute of Technology for
determining beam cross-section elastic and mass constants.
The development of RCAS GCB element assumed that the
cross-sectional strain energy is given in terms of elastic
constants. These can be calculated by finite-element-based
cross-sectional analyses such as VABS. Thus, the strain
energy is given in terms of certain elastic constants as they
vary along the beam. The complete process includes creating
a cross-section mesh, transforming that mesh to an input file
format for VABS, running VABS, and inputting the VABS
output file into the inertial and elastic property file for RCAS.

ONERA used commercial codes MSC/Marc for the 3-D
finite element analysis and MSC/Patran for the generation
of meshes using 3-D bricks, thick shells, and beams.
MSC/Marc is a nonlinear finite element code that provides
capabilities for studying dynamic structures undergoing large
deformations and it includes both geometric and material
nonlinearities. It is a general-purpose code for simulating
a wide range of engineering applications and manufacturing
processes.

This paper compares the state-of-the-art rotary wing
structural analysis results with 3-D finite element resultsfor
beams and blades with various materials and geometries, and
addresses the validity of 1-D beam analysis. Many previous
studies were mostly devoted to development of beam theories
and validation with limited experimental and 3-D analysis
results. The most logical way to assess the limitation of
1-D beam theories for rotor blade application is to directly
compare 1-D and 3-D modeling approaches for relevant
blade geometries. The present authors systematically

compared 1-D beam and 3-D analysis results for both
isotropic and composite straight blades with various lengths
and quantified the differences and also explored the adequacy
of 3-D modeling assumptions and practices [13, 14]. As
a continuation of previous work conducted by the present
authors, this paper focuses on quantifying the differences
between 1-D beam and 3-D finite element analysis for
advanced geometry blades which have tip sweep, tip taper,
and planform variations near the root. In addition to those,
the effects of boundary condition are also examined for
straight beams. Comparisons of natural frequencies at
various rotor rotational speeds between the two analyses are
conducted systematically to better understand the differences
and physics behind them.

2. 1-D ANALYSIS

It will be useful to briefly discuss VABS and RCAS
beam elements. A rotor blade has its length much
greater than the other two dimensions and thus has often
been treated as a beam, a 1-D structure, to reduce the
computational costs associated with the analysis. In order
to perform this idealization without loss of accuracy, one
has to capture the behavior associated with the two omitted
dimensions (the cross-sectional coordinates) by correctly
accounting for the cross-sectional geometry and material
distribution. VABS is able to calculate the one-dimensional
cross-sectional stiffness constants, with transverse shear
and Vlasov refinements, for initially twisted and curved
beams with arbitrary geometry and material properties.
The variational asymptotic method (VAM) developed by
Berdichevsky [15] is the mathematical basis of VABS and
is used to split a general 3-D nonlinear elasticity problem
for a beam-like structure into a 2-D cross-sectional analysis
and a 1-D nonlinear beam analysis. It allows one to replace
a 3-D structural model with a reduced-order model in terms
of an asymptotic series of certain small parameters inherent
to the structure. These small parameters area/l and a/R,
wherea is the characteristic length of the cross-section,l
is the characteristic wavelength of deformation along the
longitudinal direction, andR is the characteristic radius of
the initial curvature and twist. The main small parameter for
straight blades isa/l . As l corresponds to the characteristic
wavelength of deformation, it will decrease as the mode
number (n) increases, roughly proportional to L/n where L is
the length of a beam. It is then expected that the accuracy
of the 1-D theory deteriorates as a beam length becomes
shorter, and especially for higher modes. VABS development
and comparison with other composite beam theories are
described in Refs. 16-21.

The generalized strain energy per unit length accounting for



transverse shear and trapeze effect is shown below;
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whereγ11 is the extensional strain measure, 2γ12 and 2γ13

are the transverse shear strain measures of the cross-section,
κ1 is the elastic twist strain measure, andκ2 and κ3 are
bending strain measures. This is referred to as a generalized
Timoshenko model [19]. Assuming that the elastic constants
are correctly determined, it is accurate as long asa3

≪ l3 and
thus is more accurate than the classical model, particularly
for the second and higher modes dominated by bending.
Cross-sectional analyses are usually linear, but the ”trapeze
effect” is a nonlinear effect caused by extension-torsion
coupling in beams undergoing large axial forces due to
large centrifugal forces. It slightly increases the effective
torsional stiffness and thus the rotating torsional frequencies.
Reference 22 provides a more detailed description on how
the trapeze effect is modeled in VABS.

The elements of the 6×6 inertial matrix are arranged as
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whereµ is mass per unit length, (xm2; xm3) is the location of
mass center,I22 is the mass moment of inertia aboutx2 axis,
I33 is the mass moment of inertia aboutx3 axis, I23 is the
product of inertia.

The complete RCAS plus VABS analysis process includes
creating a cross-section mesh, transforming that mesh to an
input file format for VABS, running VABS, and inputting the
VABS output file into the sectional property file for RCAS.

The data needed by the 1-D analysis consists of the cross-
sectional 6×6 stiffness matrix, and the cross-sectional inertia
properties. In addition, if the trapeze effect is to be included,
one needs the 4×4 A, B, C, andD matrices.

The original RCAS NLB element uses geometrically
nonlinear (but not exact) equations for extension, twist, and
bi-axial bending (total 4 variables). The trapeze effect is
included, but there are no shear deformation variables. An
ordering scheme is used to simplify the equations of motion.
The order of several geometrical parameters describing the
undeformed beam and the state of the beam’s deformation is
estimated in terms of a dimensionless parameterε so that
ε2

≪ 1. All terms are retained in the kinetic and strain
energies throughO(ε) relative to the leading terms. The
GCB element is geometrically-exact, which means that there
is no need for ordering schemes. The only approximations
are in the formulation of the beam constitutive law, the
discretization process, and the element quadrature. GCB
element uses six primary variables, three force strain
measures (extension and two transverse shear) and three
moment strain measures (twist and two bending).

In RCAS, large motions of the beam are provided for both
NLB and GCB elements by the motion of element frames
that are rigidly attached to their parent elements at their
root. Element deformations are defined with respect to the
element frame and thus the elastic deformations in each
element remain small if sufficient beam elements are used.
The effectiveness of this approach in RCAS addressing both
rigid and flexible body kinematics has been demonstrated in
Ref. 23.

3. 3-D FINITE ELEMENT ANALYSIS

The finite element method (FEM) is a numerical technique
for finding approximate solutions to partial differential
equations. Two key ingredients in the finite element analysis
are mesh discretization and interpolation. The geometry
to be analyzed (continuous domain) is divided into smaller
regions of finite dimensions called finite elements, connected
at discrete points called nodes. The physical variables
associated with the nodes are interpolated over the element,
using polynomials whose order depends upon the number of
nodes assigned to the element.

The quality of the mesh plays a key role in the accuracy of
the results. One of the factors that can affect the quality ofa
mesh is aspect ratio. Aspect ratio is ratio of longest edge
length to shortest edge length. Normally, finite elements
provide more accurate answers when the aspect ratio is
closest to 1. For the present modeling and analysis, it
was kept below 5. For an accurate finite element analysis,
users need to decide what type of finite element would be
appropriate and how fine a mesh would be sufficient. Mesh
convergence refers to the minimum element size required
to ensure that the results of an analysis are not affected by



changing the size of the mesh. This is determined by the
characteristic size (h) of the elements. This is called the
h-refinement of the model. If the mesh is too coarse, the
elements will not be able to capture the behavior of the
structure and there would be a discretization error. On the
other hand, if the mesh is too dense, solution time will be too
high. An ideal mesh would use just enough elements to arrive
at 100% convergence. The alternative to theh-refinement
is increasing the order of the element shape functions (p-
refinement).

MSC/Marc provides linear and quadratic elements for 3-
D solids. The transformation from the linear elements to
the quadratic elements can be done quasi-automatically with
the graphic interface MSC/Marc Mantat. MSC/Marc also
offers a wide range of element libraries including 3-D solid
elements (8-noded and 20-noded hexahedrons, and 4-noded
and 10-noded tetrahedrons, etc.) and various shell elements.
It is interesting to note that the choice of elements is
sometimes dictated by the problem considered. For instance,
if aerodynamic nodal forces and moments are applied into
the 3-D structure, there is no other alternative than using shell
elements for modeling the blade skin, as the nodes of solid
elements have only translational degrees of freedom and do
not carry moments.

MSC/Marc also can be tailored to user needs through user
defined subroutines written in Fortran. Furthermore, it has
parallel analysis capabilities for all the steps of analysis
(assembly, matrix solution, and stress recovery). MSC/Marc
has been successfully coupled with comprehensive
helicopter aeroelastic code HOST and computation
fluid dynamics (CFD) code for rotorcraft aeromechanics
analysis [24]. 3-D finite element modeling assumptions
and practices relevant to the present study can be found in
Ref. 14.

4. RESULTS AND DISCUSSION

Comparisons between the 1-D and 3-D analyses are
conducted systematically for several problems to better
understand the differences and physics behind them. First,
effects of boundary condition are examined. Then, effects of
tip sweep, tip taper, and planform variation near the blade
root are investigated. It should be noted that both RCAS
NLB element and GCB element are used for the investigation
of boundary condition, however, only RCAS GCB element is
used for the remaining analyses.

4.1. Effects of boundary condition and beam length

Natural frequencies were calculated for an aluminum solid
section beam using 1-D and 3-D analyses. Figure 1 shows
the geometry of the beam investigated. The beam is clamped
to the wall at the root. The width of the cross-section is 3.4-
in and the thickness is 0.85-in and the length of the beam is
twenty times chord (20×c) and ten times chord (10×c). The

Young’s modulus is E = 1.0E+07 lb/in2, Poisson’s ratio isν
= 0.3, and the mass density isρ = 2.538E-04 lb sec2/in4.

RCAS uses 30 elements for L = 20×c and 15 elements for
L = 10×c. The cross-sectional properties were obtained
from VABS using 9-noded quadrilateral elements. It should
be noted that 6×6 mass and stiffness matrices can be
generated analytically for a homogeneous, isotropic, solid
rectangular cross-section. The two methods produced the
same cross-sectional properties. For the 1-D analysis, the
clamped boundary condition was applied by zeroing all the
six variables (three displacements and three rotations) atthe
root node. In the 3-D finite element analysis, the beam is
modeled by brick elements as shown in Fig. 2. For the 3-
D analysis, the clamped boundary condition was applied as
follows. First, all the nodes at the cross-section at the root are
connected to the center node through rigid links using rigid
body element RBE2 in MSC/Marc as shown in Fig. 2. Then,
the clamped boundary condition was applied by zeroing three
displacement degrees of freedom of the center node. Thus,
the clamped boundary conditions modeled by the 1-D and
3-D analyses are not exactly same.

Figure 3 shows the natural frequencies calculated from both
RCAS and MSC/Marc. Comparisons are made for up to
8 modes in this figure and throughout the paper. With
beam length 20×c, there is good agreement between the
two analyses for low frequency modes and most of high
frequency modes, except the fifth flap mode. As expected,
the rotational speed increases the flap frequencies due to
centrifugal force, but has a small influence on the lag and
torsion frequencies. As the beam length is reduced to
10×c, there is a significant increase in frequencies as would
be expected. According to classical beam theory, non-
rotating flap and lag frequencies are proportional to 1/L2 and
torsion frequencies to 1/L. The 1-D beam analysis results
deviate from the 3-D analysis calculations as the beam length
becomes 10×c and the effects of 3-D characteristics become
more important. There is still good agreement between the
two approaches for lower modes, however, the differences
become larger for higher modes.

As previously mentioned, there is a difference in the
boundary condition that constrains the clamped end of the
beam between the 1-D and 3-D analyses. In order to
understand the effects of boundary condition on the natural
frequency calculation, free-free beam analysis is conducted.
This will eliminate any uncertainties associated with the
boundary condition. Table 1 compares non-rotating (zero
RPM) first torsion frequencies of clamped-free and free-free
beams with various beam length. The cross-section geometry
is same as the one in Fig. 1. Analytical solutions can be found

for clamped-free Euler-Bernoulli beam asωT1 = 1
2

π
L

√

GJ
I ,

whereGJ is torsional stiffness andI is moment of inertia,
and the effective length is reduced by half for the free-free
beam. And thus the L = 20×c results for the free-free beam



are identical to the L = 10×c results for the clamped-free
beam. Both RCAS NLB element and GCB element are
used to compare the capabilities of the two elements. RCAS
results are exactly same as the analytical solutions. The
first torsion frequency of the free-free beam of length L is
identical to that of the clamped-free beam of length L/2 as the
mid-span of the free-free beam acts as a clamped boundary.
The 3-D results are quite different from the 1-D results for
the clamped-free case, and the difference gets larger as the
beam length decreases. However, they are very close to the
1-D results for the free-free beam. Unlike the 1-D results,
the first torsion frequency of the free-free beam of length L
is not same as that of the clamped-free beam of length L/2.
The mid-span of the free-free beam experiences warping of
the cross section, while it was constrained for the clamped
condition.

The non-rotating third flap frequencies are compared for
the same beam in Table 2. Again, the analytical solution
was obtained for the Euler-Bernoulli beam asωF3 =

(7.855)2
√

EI
mL4 , whereEI is flap stiffness andm is mass

per unit length, for the clamped-free boundary condition and

ωF3 = (10.996)2
√

EI
mL4 for the free-free boundary condition.

The NLB elements, which include nonlinear terms, reduce
frequencies compared to the results with the classical
Euler-Bernoulli beam theory. With the inclusion of shear
flexibility, the GCB elements further reduce frequencies for
higher frequency modes and shorter beams, and show better
agreement with the 3-D results, especially for L = 5×c case.
Again, there is better agreement for the free-free beam than
the clamped-free beam between the two analyses.

4.2. Effects of tip sweep

This section investigates the effects of tip sweep with
aluminum and composite beams and a more realistic rotor
blade. Good experimental data for fundamental validation
of swept tip blade frequencies were scarce until rotating
beam data were obtained in the University of Maryland
vacuum chamber [25]. This experiment included composite
as well as aluminum beams, and those results are used for
comparison. Figure 4 shows the geometry of the aluminum
beam, which has been tested in the University of Maryland
vacuum chamber. The length of the beam tested is L = 40-in,
which included a 2.5-in hub. The width of the cross-section
is 1.0-in and the thickness is 0.063-in.

Figure 5 shows the natural frequencies of aluminum beam
with various tip sweep angles. The calculated results are
compared with experimental data. Experimental frequency
measurements were made up to 750 RPM. However,
analytical calculations are extended to 1500 RPM. An RCAS
model of the beam was developed with 20 elements to
represent the beam section and 5 elements to represent the
tip. Without tip sweep, both 1-D and 3-D analyses show
identical results and good agreement with the experiment.

As the sweep angle increases, strong coupling between flap
and torsion occurs. The tip sweep has virtually no influence
on the first flap and first lag mode frequencies, however, the
coupling eliminates pure torsion and tends to reduce flap
(flap dominant but coupled flap-torsion mode) frequencies as
the sweep angle increases, especially at higher rotor speeds,
and increase torsion frequency. The torsion frequency is not
shown for the swept-tip cases as it is above the eighth mode
(second lag mode became the eighth mode), but later plots
on composite beams will show the trend clearly. For the 30-
deg tip sweep, the two analyses show almost identical results
up to about 1000 RPM, after that the 1-D beam analysis
results deviate from the 3-D analysis calculations for the high
frequency modes. The biggest differences between the two
analyses occur for the eighth mode at the highest rotor speed
and those are 0.11%, 1.48%, 3.29% for the 0-deg, 30-deg,
and 45-deg sweep angles, respectively.

Figure 6 shows the natural frequencies for graphite-epoxy
solid section beams with layup angle of[0◦]24. The width
of the cross-section is 1.0-in, same as the aluminum beam
tested. However, the thickness of the cross-section is 0.117-
in. The material properties [26] are: E11 = 2.059E+07 lb/in2,
E22 = E33 = 1.42E+06 lb/in2, G12 = G13 = 8.9E+05 lb/in2,
G23 = 8.0E+05 lb/in2, ν12 = ν13 = 0.42,ν23 = 0.54, andρ
= 1.44E-04 lb sec2/in4. It should be noted that these beams
are coupled only through tip sweep similar to the aluminum
beams. Both 1-D and 3-D analyses show almost identical
results and good correlation with the experiment without tip
sweep. Again, the coupling decreases flap frequencies and
increases torsion frequencies. As the sweep angle increases,
more differences are observed for the high frequency modes.
The differences between the two analyses are about 4.9% for
the first torsion and second lag modes for the 45-deg sweep
angle.

Figure 7 shows the natural frequencies for graphite-epoxy
solid section beams with layup angle of[15◦]24. the width
of the cross-section is 1.0-in, same as the aluminum beam
tested. However, the thickness of the cross-section is 0.127-
in. It should be noted that there is flap-torsion coupling
due to angle-ply lay-up for the[15◦]24 case even without tip
sweep. Unlike the previous two cases, a small difference
was observed for the fifth flap mode even without tip sweep.
The difference for the eighth mode frequency becomes larger
as the sweep angle increases and RPM increases. It is
interesting to note that the large difference in the second lag
mode observed for the layup angle of[0◦]24 with the 45-deg
sweep angle did not occur for this case.

Natural frequencies are calculated for a realistic rotor blade
with composite construction. The blade examined is a Mach-
scaled hingeless rotor with straight and swept-tip blades
tested in the U.S. Army Aeroflightdynamics Directorate
(AFDD) 7- by 10-Foot Wind Tunnel in order to study
aeroelastic phenomena [27]. These rotors are also referred
as Advanced Dynamics Model (ADM). The objective of



this investigation is to compare the 1-D and 3-D approaches
for the cross-section of a realistic composite blade, thus
rotor blade flexure region was modeled rigid to simplify the
analysis and some of the unknown material properties were
assumed.

The planform used for the current analysis is shown in
Fig. 8 and the cross-section is shown in Fig. 8(c). The
width of the cross-section is 3.4-in. The materials and
geometric information used for the individual components of
the blade are in Ref. 13 and detailed cross-sectional material
properties are listed in Table 3. Figure 9 compares natural
frequencies calculated for the straight and 28-deg swept-
tip ADM blades. Considering the complex geometry and
materials and relatively short length, the results show very
good agreement without tip sweep. For the 28-deg tip sweep,
the two analyses show good agreement up to the sixth mode.
However, there is a significant difference in the seventh and
eighth modes. While the frequency of the seventh mode
identified by 3-D analysis as flap-dominant mode increases
as rotor speed increases, the 1-D results are insensitive tothe
rotor speed and it is identified as pure torsion mode by the
1-D analysis. Further investigation is needed to identify the
source of the differences.

4.3. Effects of tip taper

This section investigates the effects of tip taper with an
aluminum beam. Figure 10 shows the geometry of the beam.
The baseline (without taper) geometry is same as the one in
Fig. 1 and taper starts at 75% of the span and chord is reduced
by 20% at the tip. Figure 11 shows the natural frequencies
calculated from both RCAS and MSC/Marc for two different
lengths. As there is no test data available on a beam with tip
taper, only analysis results are compared. Flap frequencies
did not change much from the baseline (without tip taper)
results shown in Fig. 3. For the L = 20×c case, the first
and second lag frequencies increased by 4.18% and 2.23%,
respectively, compare to those of the straight (no taper) beam.
And the first torsion frequencies increased by 6.60%. There
is good agreement between the two analyses for the L =
20×c case, but the difference increases for the shorter L
= 10×c case, especially for the high frequency modes. In
general, moderate taper has a small influence on the natural
frequencies for the geometry examined. Detailed modeling
of more general tapered beam can be found in Ref. 28.
Although the effects of tip taper on natural frequencies are
small, cross-section variations near the blade root might play
an important role. Thus, the chord variation near the blade
root is examined in the next section.

4.4. Effects of planform variation near blade root

This section investigates the effects of planform variation
near the blade root. Figure 12 shows the geometry of
the beam. The length of the beam is L = 20×c, which
included a 5%L hub. The width of the inboard flexure

area is 0.4-in and the width of the main blade part is 2.4-
in. There is a linear transition between the two sections
from 12%L to 22%L span. The thickness is constant (0.24-
in) from the root to tip. Detailed 3-D meshing is shown
in Fig. 13. About 17000 elements are used for modeling
the blade including about 4100 elements for the transition
zone, which means about 25% of the total elements are
devoted to the 10% of the blade length. Figure 14 shows
the natural frequencies of aluminum beam with inboard
transition zone. For the 1-D analysis, convergence study was
conduced to identify sufficient number of elements to capture
the geometric variations near the root. Figure 14(a) shows
RCAS with 12 elements; 1 element in flexure, 1 in transition
zone, and 10 in main blade. Figure 14(b) shows RCAS with
30 elements; 4 elements in flexure, 16 in transition zone, and
10 in main blade. There is a significant improvement in the 1-
D analysis results by using more elements in the flexure and
transition zone and the results from the two analyses show
very good agreement.

Figure 15 plots first torsion and second lag frequencies
calculated with RCAS with increasing number of elements
in the flexure and transition zone. The numbers above each
bar represent number of elements in the flexure and transition
zone, respectively. As the number of elements increases,
the frequencies decrease as expected. The 4 elements in the
flexure and 16 in the transition zone is regarded as converged
because using 32 elements in the transition zone changed the
frequencies only less than 0.2%. It should also be mentioned
that 8 elements in the flexure made virtually no influence.

Figure 16 shows the natural frequencies of graphite-epoxy
solid section beams with layup angle of[15◦]24. The
planform and cross-section geometry are same as the one in
Fig. 12. Again, RCAS results with both 12 elements and
30 elements are compared with the 3-D results. The two
analyses show good agreement up to the sixth mode when 30
elements are used for the 1-D analysis (the difference is about
1% for the sixth mode at 1500 RPM). Among the seventh to
ninth modes (ninth mode is not shown), the modal frequency
lines cross each other around 850 RPM and 1000 RPM and
the differences between the two analyses are larger around
those RPMs. Using 32 elements in the transition zone did
not improve the results.

5. SUMMARY AND CONCLUSIONS

Results from 1-D beam analysis using the RCAS rotorcraft
comprehensive analysis with VABS calculated 2-D sectional
properties are compared with 3-D finite element analysis
using MSC/Marc to assess the validity of 1-D beam theories
for rotor blade application. Natural frequencies are compared
for free-free beams and advanced geometry blades which
have tip sweep, tip taper, and planform variations near the
root with various materials. Comparisons between the 1-D
and 3-D analyses are made up to eight modes at various rotor
rotational speeds for various beam lengths.



From this study the following conclusions were obtained:

1. There is very good agreement between the 1-D
and 3-D analyses for free-free aluminum beams.
The differences in the first torsion and third flap
frequencies are 0.75% and 1.03%, respectively, for
a very short beam with L = 5×c, which are much
smaller than the differences for the clamped-free
beams. RCAS geometrically exact composite beam
(GCB) element includes shear flexibility, and thus
produces better results compared to the conventional
nonlinear beam (NLB) element for high frequency
bending modes.

2. The 1-D and 3-D analyses show identical results
and good agreement with the experiment for both
aluminum and composite beams when the beam is
sufficiently long and has no sweep. However, the
differences between the 1-D and 3-D analyses increase
as the tip sweep angle increases, especially for high
frequency modes.

3. There is excellent agreement for the realistic
composite blade (ADM blade) between the 1-D and
3-D approaches without tip sweep, considering very
complicated layups. However, there are significant
differences in the seventh and eighth modes for the
swept-tip case. Especially the difference in the modal
content for the seventh mode is not understood and
further investigation is needed to identify the source
of the difference.

4. In general, taper has a small influence on the natural
frequencies for the geometry examined (taper starts at
75% of the span and chord is reduced by 20% at the
tip). The differences between the two analyses did not
change much due to the tip taper.

5. The 1-D analysis accurately captures the planform
variation near the root for an aluminum beam when
sufficient number of elements is used. However, the
differences between the two analyses are larger for the
composite beam with bending-torsion coupling.

6. In summary, the differences between the 1-D and
3-D analyses occur when there is coupling, either
generated from geometry (tip sweep) or material
(composite), especially for high frequency modes.
Without coupling, the 1-D analysis appears to capture
free vibration characteristics of various advanced
geometry beams and blades reasonably well for at least
the six lowest frequency modes when the beam length
is greater than ten times chord.
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Table 1: Comparison of non-rotating first torsion frequencyof aluminum beam.

Clamped-free Free-free
L = 20×c L = 10×c L = 5×c L = 20×c L = 10×c L = 5×c

Analytical solution, Hz 201.54 403.08 806.17 403.08 806.17 1612.34
RCAS NLB, Hz 201.54 403.08 806.17 403.08 806.17 1612.34
RCAS GCB, Hz 201.54 403.08 806.17 403.08 806.17 1612.34
MSC/Marc, Hz 204.41 412.93 842.36 404.41 810.29 1624.22
Difference, % 1.42 2.44 4.49 0.33 0.51 0.74

Table 2: Comparison of non-rotating third flap frequency of aluminum beam.

Clamped-free Free-free
L = 20×c L = 10×c L = 5×c L = 20×c L = 10×c L = 5×c

Analytical solution, Hz 103.42 413.68 1654.73 202.67 810.67 3242.67
RCAS NLB, Hz 103.36 412.94 1641.87 202.42 806.75 3181.27
RCAS GCB, Hz 103.20 410.28 1603.10 202.00 800.40 3089.55
MSC/Marc, Hz 104.00 413.94 1623.61 202.33 804.37 3121.33
Difference, % 0.78 0.89 1.28 0.16 0.50 1.03

Table 3: Material properties of ADM rotor blade

Component Material Density E11 E22 G12 = G13ν12

lb sec2/in4 lb/in2 lb/in2 lb/in2

Component 1 & 4 fiberglass +45◦/-45◦ 1.5976E-04 1.6150E+06 1.6150E+06 6.6079E+05 0.46
Component 2 carbon graphite 1.3470E-04 2.0069E+07 1.2993E+06 5.0299E+05 0.30
Component 3 & 5 fiberglass 0◦/90◦ 1.5976E-04 2.2769E+06 2.2769E+06 3.9662E+05 0.18
Component 6 tantalum 1.2804E-03 2.0972E+05 2.0972E+05 7.2292E+04 0.49
Component 7 foam 1.7871E-05 1.1995E+04 1.1995E+04 4.9978E+03 0.20
Component 8 Fiberite HY-E 9048A1F 1.7094E-04 5.1860E+06 2.2375E+06 5.6594E+05 0.27
Component 9 foam 8.9343E-06 4.5034E+03 4.5034E+03 1.0000E+03 0.45
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Fig. 1: Aluminum beam geometry

Fig. 2: 3-D mesh and clamped boundary condition for aluminumbeam
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Fig. 3: Frequency comparison for aluminum beam.
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Fig. 4: Blade planform with tip sweep.
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Fig. 5: Frequency comparison for aluminum beam with tip sweep.
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Fig. 6: Frequency comparison for graphite-epoxy beam with tip sweep,[0◦]24.
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Fig. 7: Frequency comparison for graphite-epoxy beam with tip sweep,[15◦]24.
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Fig. 8: ADM rotor blade configuration.
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Fig. 9: Frequency comparison for ADM rotor blade.
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Fig. 10: Blade planform with tapered tip.
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Fig. 11: Frequency comparison for tapered aluminum beam.
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Fig. 12: Blade planform with inboard transition.

Fig. 13: 3-D modeling of beam with inboard transition.
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Fig. 14: Frequency comparison for aluminum beam with inboard transition.
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Fig. 15: Effects of number of elements on non-rotating frequencies for aluminum beam with inboard transition.
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Fig. 16: Frequency comparison for graphite-epoxy beam withinboard transition,[15◦]24.


