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Such a lead-lag damper which has elastic and damping elements in 
series connection or a landing gear chock absorber working in consecutive 
order with a pneumatic tire may be considered as an example of aperiodic link 
in a helicopter ground resonance model. The model of the rolling pneumatic 
tire should also be presented as an aperiodic link. 

In ground resonance studies such an aperiodic links are often replaced 
by equivalent models with parallel connection of elastic and damping elements 
in order to simplify the problem or to reduce a number of variables. However, 
the parameters of such a model depend on the oscillations frequency, while this 
particular frequency is to be defined from the system solution results. This 
makes a sort of uncertainty while defining the parameters mentioned. 

The proposed paper gives several helicopter ground resonance examples 
in which the aperiodic links are presented without any simplification. 

OSCILLATIONS OF THE BLADE WITH THE ELASTO-HYDRAULIC DAMPER 

The blade and damper elements equilibrium equations for in-plane 
oscillations have the following form: 

•• 2 2 K. 
~ + v0ro ~ + 7 ~0 = 0 ( 

1
) 

K~0 = C(~- ~0 ) 

where ~ - blade in-plane swing angle; 
~0 - damper angular deflection; 
K, C - damper elements damping and elastic coefficients; 
v0 - pendulum form oscillations frequency; 
ro - rotor angular velocity. 

The characteristical equation for the case described above is of the third 
order and for the standard case it has one aperiodic root. However there exists a 
possible situation when all the roots are real. 
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Fig. 1 shows the relation between the values of the characteristical 
equation roots and the rotor angular velocity for the sequence of stiffness and 
damping parameters. The example being considered is the Mi-26 helicopter 
main rotor blade. 
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Unlike the conventional comprehension of the blade oscillation 
frequency as increasing unvariedly with angular velocity rising, the case 
considered gives the evidence of a probable decreasing of the blade oscillation 
frequency with the angular velocity growth. A certain combination of C and K 
parameters results in the zero oscillation frequency. This may occur in some 

. interval of rotor r.p.m. Within this interval all three roots become real and the 
motion is aperiodic. 

The described attribute of the frequency should be accounted of while 
identifying the results of flight tests as well as analyzing the ground resonance 
safety. 

GROUND RESONANCE 

The multi-bladed rotor with cyclic symmetry is being considered. In this 
case the ground resonance equations have been derived for fixed coordinate 
system though a well-known variables substitution shown below: 

n 

11 = I l;k sin 1J1 k ; 
k=l 

n 

.; = I ~;k cos ljl k 
k=l 

Coleman introduced this substitution in his works. In Russia Gerebtsov 
and Proskurjakov applied this method. For the case being considered in the 
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paper we have introduced the following coordinates in a similar way: 

n n 

u = I ~o, sin ljl k; v = I ~o, cos ljl k 
k=l k=l 

where k - the ordinal number of the blade; 
n - the number of blades. 

The substitutions applied resulted in the opportunity 
rotor motion with the following system of equations: 

.. K ( . ) 2 ( 1 2) 2 . n S X.. O 11+- U-(J)V -(J) 11 -v0 - Ol<;--- = 
I 21 

~ + ~ ( v + rou)- ro\( 1- v~) + 2roi']-; ~ i = 0 

u- rov = C ( 11- u) 
K 

v+rou= c (<;-v) 
K 

to describe the 

These equations can be supplemented with support motion equations to 
describe the coordinates X and Z. These motion equations are possible to be 
derived for a fuselage model with one or more degrees of freedom along each of 
X or Z directions. We shall not consider the equations in details within the 
frames of the paper nevertheless we should note here that the rotor - support 
system stability investigations are supposed to be made by the conventional 
manner on the basis of characteristical polynome roots analysis. 

UNROTATlN"-

fig.3 
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The analysis results are shown on the fig. 2 - 3 for Mi-26 main rotor . 
blade parameters as it was done before. Fig.2 shows the frequencies and 
corresponding decrements of rotor self - oscillation free from the support. A13 it 
was emphasized before the frequencies are given in an unrotating coordinate 
system. The relations displayed indicate the described above root characteristics 
shown on fig.l for one individual blade. Fig.3 shows the characteristical 
polynome roots for rotor - support system with two degrees of freedom support. 
One can see the areas where the roots affect each other significantly. Here the 
impact of aperiodic motion forms on decrement values is obvious. The potential 
instability zones are sure depend upon this impact. 

GROUND RESONANCE IN THE LANDING RUN 

When a helicopter oscillates during ground run, the additional degree of 
freedom appears and it should be taken into account when considering the 
elastic properties of an undercarriage. A13 a deformed tyre rolls, the center of 
tire-to-ground contact area travels along some curvilinear trajectory. So a lateral 
displacement of this center depending on the wheel properties and the rolling 
speed occures. Wheel lateral response will depend not only on the displacement 
of its center, but also on the additional displacement of contact area, so-called 
"drift". Besides it also follows from this that the wheel dynamic response will 
have a phase shift relative to the given travel of wheel center in contrast to the 
case of non-rolling wheel oscillations (in the last case the displacement and the 
response both occur in the same phase if a rubber material hysteresis is not 
taken into account). This very peculiarity is at the bottom of aperiodic features 
of this link. 

We can use for the analysis of this case the simplified mathematical 
model derived through the use . of drift hypothesis from more complicated 
Keldysh model of rolling. Drift hypothesis assumes that there is a linear relation 
between angular and linear deformations of the tire in the following form: 

A.=r·<p 

where A. - coordinate of the area of contact with supporting surface; 
<p - angular deformation; 
r - radius of non-deformed tire. 

The lateral displacement zk of wheel diametral plane is defined by the 
following equation: 

. v . ( ) zk =-A.+"' 3 
r 

where V - helicopter rolling speed. 

68-04 



.3 

z 

1 - WHEEL CENTER 
TRANSITION 

2 - LINE OF ROLLIN~ 
3 - CONTACT ZONE 
4 - TYRE LATERAL 

DEFORMATION 

fig.4 

EQUIVALENT 
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P 1 +(V/rp) 

As a result the lateral displacement Zk of wheel diametral plane is 
defined by the following equation: 

J?. = Cz/.. (4) 
where Cz - lateral stiffness coefficient of the tire. 

Sometimes when considering the ground resonance problem the model 
similar to the one described is used. Such a model involves a spring and a 
damper connected in parallel. It's easy to define lateral stiffness coefficients 
values from equations (4) and (3) for a certain frequency p: 

v 
1 

Ce=Cz 2 ; 

1+(~) r· p 

IG C r·p 
e = ; . -1 +-(':-..LV----:-;;-)2 

r· P 

(5) 

Here a definite correspondence between the rolling speed and the 
oscillation frequency can be found in the only case when the model of the base 
has one degree of freedom. When the base has several degrees of freedom, 
some uncertainty in the model equivalent parameters selection appears and the 
ground resonance problem should be considered using the additional equations 
(4) and (3) as presented in the reference [3]. 

Fig.5 shows the results of ground resonance calculations for the ground 
run of the Mi-28 helicopter taken as an example. Helicopter fuselage has two 
degrees of freedom which are lateral displacement Z and roll angle. In addition 
to that the coordinates of contact area lateral displacement are taken into 
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account. Alterations of oscillation frequencies and decrements with the running 
speed increase from zero at rest up to the maximum operational speed are 
shown. 

p 1 • 
rpm 

250 

200 

150 

100 

50 

0 40 60 

fig.5 

80 

Y11 • 
1/$ 

1 2. 5 

1 0. 0 

7.5 

5.0 

2.5 

100 

U.KM/H 

The lower oscillation frequency p 1 corresponding mainly to the lateral 
displacement turns into zero quite· soon and the motion becomes aperiodic. For 
the upper frequency p2 corresponding mostly to the helicopter roll gradual 
frequency decrease appears as the running speed grows. This frequency 
decrease is limited by a certain value inherent to roll angular oscillations with 
the zero lateral stiffness of the tires. Damping of this oscillation form gradually 
increase up to the extreme value at the operational range of ground r'un speed. 
Such damping caused only by response phase shift during deformed tire rolling 
is called sometimes the kinematic damping. The affect of such a damping on 
general stability and ground resonance safety is quite significant, especially 
when the self oscillation second tone frequency becomes lower than rotor 
angular velocity at a certain helicopter running speed. 

For the purpose of comparison results of calculations obtained for Mi-4 
helicopter through the use of stiffness and damping equivalent values (as in 
formula (5)) are also presented. Comparison shows that for the range of medium 
helicopter running speed it is possible to obtain considerable accuracy 
improvements for the frequency and dumping values and for instability 
boundaries position. 
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