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Abstract

This paper deals with a computational aeroelastic tool
for the analysis of rotorcraft. It has been developed by
coupling a nonlinear beam model for blades (and wing)
structural dynamics description with a boundary inte-
gral equation solver for the prediction of aerodynamic
loads. This solver is based on three-dimensional, un-
steady, potential aerodynamic formulation. The Galerkin
method is used for the spatial integration, whereas the
periodic blade (and wing) response is determined by
a harmonic balance approach. This aeroelastic model
yields a unified approach for aeroelastic response and
blade pressure prediction that may conveniently be used
for aeroacoustic purposes and, in addition, is able to
examine configurations where blade-vortex interactions
and multiple-body aerodynamic interactions occur. Nu-
merical results show the capability of the aeroelastic tool
to evaluate blade response and vibratory hub loads for
a helicopter main rotor in level flight conditions, and
examine the efficiency and robustness of the different
computational algorithms that might be applied in the
presented aeroelastic solver. A sensitivity analysis of
the predictions on the aerodynamics model used will be
also discussed.

Introduction

The aim of this work is to present some features and
recent advances of a computational tool for the analysis
of the aeroelastic response of helicopters and tiltrotors.
Rotorcraft are affected by strong couplings between elas-
tic deformations and aerodynamic loads, which signif-
icantly contribute to the vibrations transmitted to the
fuselage, as well as, to the emitted noise. A great variety
of flight conditions may be experienced by rotary-wing
aircraft, each yielding specific aerodynamic environment
and corresponding elastic response. For instance, in the
descent flights of helicopters strong BVI (Blade-Vortex
Interaction) characterizes both vibrations and noise lev-
els, while for tiltrotors in airplane mode the impact of

proprotor wake on the wing is a major contribution to
vibrations which requires an accurate simulation for pro-
viding a reliable aeroelastic response.

The computational aeroelastic tool for rotary-wing air-
craft presented is the result of the research work done
by the authors during the last years [1]. It uses a three-
dimensional, unsteady, aerodynamic solver based on the
Boundary Element Method (BEM) for potential flows
introduced in Ref. [2] as a development of the formula-
tion presented in Ref. [3], that is able to predict strong
BVI effects, with inclusion of the wake-wing impacts
arising on tiltrotor configurations. This solver can be
applied both for direct evaluation of the aerodynamic
loads and for the calculation of the wake inflow to be
used within a section-load aerodynamic model. The
structural model for the helicopter rotor blades (and
wing-proprotor systems, as well) is based on the beam
theory developed in Ref. [4]. It consists of a nonlinear
bending-torsional model (with inclusion of the gimbal
equations, if it is present). The resulting set of integro-
differential equations is discretized spatially through the
Galerkin approach based on the natural modes of vi-
bration of a cantilever, nonrotating beam (with addi-
tional rigid-body modes, if necessary). The aerody-
namic and the structural solvers are fully coupled by
forcing the structural equations with the aerodynamic
generalized loads computed by the BEM approach and
evaluating the aerodynamic boundary conditions from
the deformations given by the structural model. Con-
sidering arbitrary steady flight conditions, the aeroelas-
tic responses given in terms of blade deflections and vi-
bratory loads (in rotating and nonrotating frames) are
obtained through a harmonic balance procedure that
iteratively updates periodic deformations and aerody-
namic loads until convergence. When the aerodynamic
solver is applied for the direct evaluation of loads (fully-
coupled mode solution), the blade pressure distribution
is among the outputs of the solution procedure which,
in turn, may be applied in aeroacoustic formulations for
the identification of the noise field emitted.



Aerodynamic and structural models, as well as the tech-
niques applied for the numerical integration of the fully
coupled aeroelastic system will be described with details
in the following. In addition, a numerical investigation
of the efficiency and robustness of different computa-
tional algorithms that might be applied in the fully-
coupled mode aeroelastic solution will be examined, along
with the sensitivity of the predictions on the aerody-
namic model used.

Structural dynamics modelling

Beam-like models are applied to describe the structural
dynamics of helicopter rotor blades, as well as that of
wing and proprotor blades of tiltrotors. These are based
on the nonlinear bending-torsion formulation presented
in Ref. [4], that is valid for straight, slender, homoge-
neous, isotropic, nonuniform, twisted blades, undergo-
ing moderate displacements.

For rotor blade analysis, second order terms are re-
tained in the equations after application of an order-
ing scheme dropping third-order terms (with respect to
bending slope) not contributing to damping. The radial
displacement is eliminated from the set of equations by
solving it in terms of local tension, and thus the resulting
structural operator consists of a set of coupled nonlinear
differential equations governing the bending of the elas-
tic axis and the blade torsion [5]. If present, the effects
of blade precone angle, hinge offset, torque offset and
mass offset are included in the model.

For tiltrotor analysis, the interactions between wing and
propellers are such that the wing deformation affects
proprotor blades kinetics and, in turn, proprotor hub
loads force wing dynamics [6].

Aerodynamics modelling

The aerodynamics of helicopters is significantly affected
by the interactions among main rotor, fuselage and tail
rotor, as well as the aerodynamics of tiltrotors is sig-
nificantly affected by the interactions between propro-
tors and wing. In particular, a crucial role is played
by the interactions between bodies and wakes (body-
wake interactions, BVI). These include blade-wake and
wing-wake impacts that produce impulsive pressures on
the body surfaces, and then strongly contribute to the
vibratory loads transmitted to the airframe and gener-
ate extremely annoying acoustic effects. Therefore, a
simulation tool applied for the optimal design of new
generation helicopters and tiltrotors has to be able to
predict BVI occurrence and corresponding aeroelastic
and aeroacoustic effects. In view of this, a boundary
integral formulation for potential flows suited for the
prediction of strong aerodynamic interaction effects has
been presented in Ref. [2]. It is a development of the
formulation introduced in Ref. [3] and further extended
to rotors in forward flight in Ref. [7]. A brief outline of
the potential-flow formulation suited for BVI analysis is
given in the following.

It introduces the decomposition of the potential field
into an incident field, ϕ

I
, and a scattered field, ϕ

S
. The

scattered potential is generated by sources and doublets
over the body surfaces, S

B
, and by doublets over the

wake portion that is very close to the trailing edge from

which emanated (near wake, S
N

W
). The incident poten-

tial is generated by the doublets over the complemen-

tary wake region that compose the far wake, S
F

W
.This is

the wake portion that may come in contact with other
blades. The scattered potential is discontinuous across

S
N

W
, whereas the incident potential is discontinuous across

S
F

W
. Hence, as demonstrated in Ref. [2], for ϕ = ϕ

I
+ϕ

S

the scattered potential is obtained by

ϕ
S
(x, t) =

∫
S
B

[
G (χ− χ

I
)− ϕ

S

∂G

∂n

]
dS(y)

−
∫
SN

W

∆ϕ
S

∂G

∂n
dS(y) (1)

where G = −1/4π r is the unit-source solution of the 3D
Laplace equation, with r = ‖y − x‖, while ∆ϕ

S
is the

potential jump across the wake surface, that is known
from the past history of the potential discontinuity at
the trailing edge of the corresponding body through the
Kutta-Joukowski condition [2]. In addition, χ = v · n,
with v representing the body velocity and n its outward
unit normal, whereas χ

I
= u

I
· n, with the velocity

induced by the far wake, u
I
, given by

u
I
(x, t) = ∇ϕ

I
(x, t)

= −∇
∫
SF

W

∆ϕ
S
(y

TE

W
, t− ϑ)

∂G

∂n
dS(y) (2)

The incident potential affects the scattered potential
through the induced-velocity term, χ

I
, and, in turn, the

scattered potential affects the incident potential by its
trailing-edge discontinuity that is convected along the
wake and yields the intensity of the doublet distribution
over the far wake.

Obtaining the discrete form of Eq. (2) by using N pan-
els over the far wake and recalling the vortex-doublet
equivalence, the incident velocity field may be evaluated
through the following expression

u
I
(x, t)≈−

N∑
k=1

∆ϕ
S
(y

TE

Wk
, t− ϑk)

∫
Ck

∇xG× dy (3)

where y
TE

Wk
is the trailing edge position where the wake

material point currently in y
Wk

emanated at time t−ϑk,
Ck denotes the contour line of the k-th far wake panel,
and ∇x denotes gradient operator with respect to the
variable x. This equation represents the velocity field
given by the Biot-Savart law applied to the vortices
having the shape of the far wake panel contours and

intensity ∆ϕ
S
(y

TE

Wk
, t − ϑk). Equation (3) is applied to

evaluate both the term χ
I

in equation (1) and, once ex-
tended to the whole wake, the velocity field from which
the wake shape evolution is determined (free-wake anal-
ysis). Note that for an accurate prediction of BVI phe-
nomena it is usually essential the accurate evaluation of
the wake distortion in that a crucial role is played by
the relative positions between body and wake.

The final step of the formulation consists of introducing
in Eq. (3) a finite-thickness vortex model that assures



a regular distribution of the induced velocity within the
vortex core, and thus a stable and regular solution even
in body-vortex impact conditions [2].

Equation (1) is solved numerically by boundary ele-

ments, i.e., by dividing S
B

and S
N

W
into quadrilateral

panels, assuming ϕ
S
, χ, χ

I
and ∆ϕ

S
to be piecewise con-

stant (zero-th order, boundary element method - BEM),
and imposing that the equation be satisfied at the center
of each body element (collocation method) [2].

Once the potential field is known, the Bernoulli theorem
yields the pressure distribution (see Appendix A) and
hence blade loads may be evaluated through integration.

Aerodynamic loads from airfoil theories

Akin to the solution procedures applied in several aeroe-
lastic prediction tools commonly used in rotorcraft ap-
plications, in the present solver non fully-coupled solu-
tions may be obtained. These are based on the evalua-
tion of the aerodynamic forcing terms obtained as span-
wise integration of the loads given by sectional aero-
dynamics models derived from airfoil unsteady aerody-
namics theories, and corrected with wake inflow (from
the BEM solver) to take into account three-dimensional
effects due to wake vortices.

For a thin, straight airfoil moving in an incompress-
ible flow, following the Greenberg theory [8] (which is
the extension of the Theodorsen theory [9] to pulsating
airstream) it is possible to determine the aerodynamic
force acting on it by combining the non-circulatory lift,
Lnc, orthogonal to the chord with the circulatory lift,
Lc, directed along the normal to the relative wind (see,
for instance, Ref. [5]). Specifically, for ρ denoting the
air density and b denoting the airfoil semi-chord length,
the non-circulatory lift is expressed as

Lnc(t) = π ρ b2 v̇ n
1/2

(4)

where v̇ n
1/2

denotes the time derivative of the normal
component of the relative wind evaluated at the airfoil
mid point (positive upwards). The circulatory lift, that
in practical applications is the most relevant load con-
tribution, is given by the following expression

Lc(t) = 2π ρ b V F−1
[
C(k) ṽ n

3/4

]
(5)

where V denotes the relative wind velocity, F denotes
Fourier transformation and ṽ n

3/4
= F(v n

3/4
), with v n

3/4

representing the normal component of the relative wind
evaluated at the airfoil 3/4-chord point. In addition,
C(k) is the lift deficiency (complex) function defined
by Theodorsen [9] in terms of the reduced frequency,
k = ω b/V̄ , where ω is the variable in the Fourier do-
main and V̄ is the mean (or reference) value of V which
is responsible for the shed vorticity convection (see Ref.
[10] for a detailed analysis of the effects of non-uniform
convection of the shed vorticity along the wake). For a
harmonic v n

3/4
input, C(k) defines gain and phase shift

of the Lc/V harmonic response. The set of the aerody-
namic loads acting on the airfoil includes also the pitch-
ing moment about the 1/4-chord point (positive clock-
wise for the relative wind directed from left to right),

which is given by [8]

M1/4(t) = − b
2
Lnc − π ρ

b3

2

(
V ωa +

b

4
ω̇a

)
(6)

where ωa is the angular velocity of the airfoil. Once
v n

1/2
, v n

3/4
, ωa and V are expressed in terms of the blade

degrees of freedom (a major elastic contribution from
blade lag may appear also in V ), Eqs. (4), (5) and (6),
combined with a model to take into account drag effects,
may be applied to develop aeroelastic formulations for
wings and rotors.

Harmonic balance for aeroelastic
response analysis

The equations governing the blade structural dynam-
ics coupled with the unsteady aerodynamic load mod-
elling yield the aeroelastic integro-differential equations
to be integrated. Here, the space integration is per-
formed through the Galerkin approach, starting from
the description of the elastic axis deformation as a lin-
ear combination of shape functions that satisfy homo-
geneous boundary conditions. The resulting aeroelastic
system consists of a set of nonlinear ordinary differential
equations of the type

M(t) q̈ + C(t) q̇ + K(t)q = f nl
str(t,q) + faer(t,q) (7)

where q denotes the vector of the Lagrangian coordi-
nates, whereas M,C, and K are time-periodic, mass,
damping, and stiffness structural matrices representing
the linear structural terms (note that these matrices are
time-variant because of the cyclic pitch contribution).
Nonlinear structural contributions are collected in the
forcing vector f nl

str(t,q), whereas vector faer(t,q) collects
the generalized aerodynamic forces. The aerodynamic
loads may be obtained either by integration along blade
and wing surfaces of the pressure distribution given by
the BEM solver outlined above (fully-coupled solution),
or by spanwise integration of the expressions in Eqs. (4)-
(6) derived from the airfoil theory, combined with the
wake inflow predicted by the BEM solver (non fully-
coupled solution).

Since the aim is the prediction of the aeroelastic steady
periodic response during forward flight, the aeroelastic
system in Eq. 7 is solved by using the harmonic balance
approach. It is a methodology suitable for the analysis
of the asymptotic solution (as time goes to infinity) of
differential equations forced by periodic terms, as in the
present case. The harmonic balance solution consists of:
(i) express LHS and RHS of the aeroelastic system (Eq.
7) in terms of their Fourier series; (ii) equate the result-
ing coefficients; (iii) solve the corresponding algebraic
system in terms of the unknown Fourier coefficients of
the Lagrangian coordinates of the problem. Specifically,
expressing q and f = f nl

str + faer in terms of the following
Fourier series

q(t) = q0 +

N∑
n=1

[qc
n cos(Ωnt) + qs

n sin(Ωnt)]

f(t) = f0 +

N∑
n=1

[f c
n cos(Ωnt) + f s

n sin(Ωnt)]



(where qc
n,q

s
n, f

c
n and f s

n denote cosine and sine compo-
nents of the n-th harmonic of q and f , whereas Ωn = nΩ,
with Ω representing the fundamental frequency i.e., the
rotor angular velocity) and then combining with Eq. 7
yields the following representation of the aeroelastic sys-
tem harmonic components[

M̂ + Ĉ + K̂
]
q̂ = f̂ (8)

where
q̂T =

{
qT
0 qc

1
T qs

1 qc
2
T qs

2
T · · ·

}
and

f̂T =
{
fT0 f c1

T fs1
T f c2

T fs2
T · · ·

}
Matrices M̂, Ĉ and K̂ in Eq. 8 come out from Eq. 7 by
combining the harmonics of the q, q̇ and q̈ terms with
the harmonics of the matrices M,C, and K (see Ref.
[1] for details). In particular, if M,C, and K were con-
stant matrices, in Eq. 8 one would have block-diagonal
matrices and each harmonic of q would depend only
on the same harmonic of f (the q-harmonics equations
would be uncoupled). Instead, in the problem under
examination the structural matrices are periodic and
hence, once expressed in terms of the Fourier series and
combined with the harmonics of q, q̇ and q̈, they yield
fully-populated M̂, Ĉ and K̂ matrices, thus coupling the
algebraic equations for the unknown harmonics in q̂.

Because of the presence of nonlinear structural terms
and of aerodynamic contributions in f̂ , Eq. 8 has to be
solved using an iterative procedure. To this aim, the
Newton-Raphson method is applied. Specifically, the
harmonic aeroelastic solution is obtained from conver-
gence of the following iterative procedure (with n indi-
cating the iteration step number)

q̂n =
[
M̂ + Ĉ + K̂− Ĵaer

n−1

]−1

[f̂n−1 − Ĵaer
n−1 q̂n−1] (9)

where Ĵaer
n−1 is the aerodynamic Jacobian evaluated at

q̂ = q̂n−1, while f̂n−1 denotes the sum of nonlinear
structural terms and aerodynamic loads evaluated at
q̂ = q̂n−1 (i.e., through the Lagrangian coordinates
given by the previous iteration step). Under this as-
sumption, the aerodynamic portion of the forcing term
is equivalent to f̂aer0 + f̂ nl

aer, with f̂aer0 denoting the aero-
dynamic load portion that is not influenced by the struc-
tural deformation. For the sake of computational time
saving, the approximation of maintaining constant the
aerodynamic Jacobian might be applied (indeed, this
would avoid the evaluation of the inversion of the global
Jacobian matrix at each step of the iterative process).

Evaluation of aerodynamic Jacobian

The aerodynamic Jacobian is evaluated numerically. Ob-
serving that, at a given iteration step, it relates the har-
monics of each perturbation structural Lagrangian vari-
able to the harmonics of the corresponding generalized
aerodynamic forces, it is identified through a sequence of
time-marching harmonic responses of the BEM solver.
Specifically, for a given Lagrangian variable, the pertur-
bation harmonic responses to each of the 2N + 1 (small

amplitude) perturbation Fourier components considered
are evaluated. The (input and output) perturbations are
defined about the Fourier components corresponding to
the previous step solution. The Fourier components of
each (multi-harmonic) set of output perturbation forces
divided by the corresponding input perturbation yield
one column of the aerodynamic Jacobian matrix to be
used in Eq. 9, i.e.:

Ĵaer
ij =

f̂aeri (q̂j + ∆q̂j)− f̂aeri (q̂j)

∆q̂j
(10)

Numerical results

Here, some results from the aeroelastic formulation out-
lined above are presented, with the aim of assessing the
efficiency and robustness of different computational al-
gorithms that might be used in the fully-coupled aeroe-
lastic tool, along with analyzing the sensitivity of the
aeroelastic response (blade tip deflections and vibratory
hub loads) on the used aerodynamic mode.

For these analyses, the four-bladed rotor examined in
Ref. [12], at which the reader is referred to for details
about structural and inertia properties, is considered.
It has radius R = 4.93m, constant chord c = 0.395m,
NACA 0012 section profile and a linear twist angle of
−8◦. The rotor has been examined in level flight con-
ditions with rotational speed Ω = 40rad/s, at advance
ratios µ = 0.15 and µ = 0.3. For the two advance ratios
investigated, shaft angle and blade collective and cyclic
pitch control angles are those determined in Ref. [12]
with linear inflow.

Advance Ratio µ = 0.30

First, a convergence analysis of the iterative aeroelastic
solution algorithm is presented in Fig.1. Specifically,

Figure 1. Effect of relaxation factor on convergence

history. µ = 0.3.

it shows the effect of the relaxation factor used in the
Newton-Raphson method in the error decay (note that
here the relaxation factor is defined as a coefficient that
multiplies the vector f̂n−1 in Eq. 9). The relative quadratic
error is evaluated in terms of the difference between the



vibratory hub loads computed at two iteration steps.
This choice is motivated by the fact that from the prac-
tical point of view the interesting outcomes of the aeroe-
lastic response analysis are vibratory hub loads and blade
deflections, and that the convergence of the former im-
plies the convergence of the latter. For computational
time saving, the aerodynamic Jacobian is kept constant
during the iterative process (thus yielding the so-called
fixed slope iteration procedure), equal to that evalu-
ated numerically about the undeformed configuration
(q = 0). The solution histories show that this approach
is effective and leads to solution convergence for any
value of the relaxation factor, although a relaxation fac-
tor close to 1 seems to increases slightly the convergence
speed.

In addition, note that a similar convergence history has
been achieved by using the constant aerodynamic Jaco-
bian evaluated about the aeroelastic solution predicted
by a simpler model based in quasi-steady aerodynamics
(this means that the aerodynamic Jacobian is not sub-
ject to significant variations in the neighborhood of the
state q = 0, and thus the most convenient procedure of
evaluating it about the undeformed configuration seems
to be appropriate).

Figure 2. Effect of aerodynamic Jacobian modelling

on convergence history. µ = 0.3.

Next, Fig. 2 shows the effect of the use of aerodynamic
Jacobian from different aerodynamic models on conver-
gence. Specifically, the results obtained by using the
Jacobian evaluated through the BEM solver are com-
pared with those obtained by using the Jacobian eval-
uated through the quasi-steady aerodynamics, as well
as with those determined from the elimination of the
aerodynamic Jacobian. As expected, no convergence
is achieved when the aerodynamic Jacobian is not in-
cluded in the solution algorithm, but it is interesting to
observe that a very similar negative result is obtained
when the Jacobian from the quasi-steady aerodynamic
model is applied. This suggests the necessity of using
the same aerodynamic solver for solution and Jacobian
evaluation.

Then, in order to examine the possibility of reducing the
computational costs, a further survey was conducted on
the impact of the BEM mesh used for the evaluation
of the Jacobian matrix on the solution convergence (in-

deed, as explained above, the numerical identification of
the aerodynamic Jacobian might require the evaluation
of a high number of aeroelastic responses, thus resulting
too computationally expensive). Three different meshes
have been considered, as given in Table 1 (note that
‘Solution’ mesh indicates the mesh applied also for the
evaluation of the aerodynamic loads forcing the aeroe-
lastic equations).

Time Calculation
NB NW NT Step [s] Time [min]

Coarse 192 720 1 0.0031 4
Finer 384 1920 2 0.0017 15
Solution 1536 8640 3 0.0011 200

Table 1. BEM mesh and solution data for Jacobian

evaluation. NB =body panels, NW =wake panels,

NT =wake turns.

The results of this analysis are depicted in Fig. 3 that
demonstrates that the application of a very high fidelity
(and computationally expensive, see Table 1) Jacobian
does not yield a convergence rate significantly faster
than those provided by the use of less accurate (and
less computationally expensive) Jacobians. Indeed, even
the solution from a coarse (and computationally cheap)
mesh for Jacobian evaluation is acceptable.

Figure 3. Effect of BEM mesh used for Jacobian

evaluation on convergence history. µ = 0.3.

Finally aeroelastic response obtained by using the pro-
posed fully-coupled aeroelastic model is compared with
that obtained through the application of a quasi-steady
aerodynamic model in the solution procedure. The re-
sults are given in terms of blade tip displacements (Fig.
4) and vibratory hub loads (Figs. 5). As flap and lag
time histories show a similar behaviour, torsion from
the BEM aerodynamic solution presents a higher har-
monic content, probably due to the more accurate eval-
uation of the wake inflow that plays a significant role
on this class of problems. Similar considerations can be
made about the evaluated 4/rev vibratory hub loads,
for which the most relevant differences between the two
aeroelastic solutions appear in the out-of-plane loads,
Fz and Mz, that are more directly related to the blade
elastic torsion deformation.



Figure 4. Blade tip deflections. µ = 0.3.

Figure 5. 4/rev vibratory hub loads. µ = 0.3.

Advance Ratio µ = 0.15

Next, the above analyses have been repeated for a ro-
tor flight at lower advance ratio. In this condition the
strong influence of the velocity field induced by the wake
remaining closer to the rotor disk might negatively affect
the convergence of the numerical scheme.

Figure 6. Effect of relaxation factor on convergence

history. µ = 0.15.

Akin to the investigation presented for µ = 0.3, first

results concerning the effects of the relaxation parame-
ter on the solution convergence history are presented in
Fig. 6. It shows that also in this case the error decay
is sped up when higher values of the relaxation factor
(close to 1) are used. In the overall, the convergence
error threshold tends to be reached more slowly with
respect to the case with µ = 0.3. Although not shown
here, the analysis on the effect of aerodynamic Jaco-
bian determined from different aerodynamics confirms
that solution convergence is achieved neither when no
Jacobian is included in the iterative process, nor when
a quasi-steady solver is used.

Figure 7. Effect of BEM mesh used for Jacobian

evaluation on convergence history. µ = 0.15.

Figure 7 presents the effect of the accuracy of the BEM
solver used to determine the Jacobian on the aeroe-
lastic convergence. For the present advance ratio the
faster solution is clearly obtained using the finest ‘Solu-
tion’ mesh. However, the trade-off between convergence
speed and computational costs would suggest the use of
the coarse mesh.

Figure 8. Blade tip deflections. µ = 0.15.

The aeroelastic response results, given in terms of blade-
tip deflections and vibratory hub loads, are presented in
Figs. 8 and 9. The observation of the tip deflections
reveals that, differently from what examined at µ = 0.3,
a phase shift of about 180◦ exists between the flap time
history predicted by the BEM approach and that given



Figure 9. 4/rev vibratory hub loads. µ = 0.15.

by quasi-steady aerodynamics, while two amplitudes are
in agreement. Akin to what observed at µ = 0.3, a
higher harmonic content on the torsion deformation is
present in the simulation from the BEM aerodynam-
ics. In the overall, BEM and quasi-steady aerodynamics
blade tip predictions are closer for µ = 0.15 rather than
for µ = 0.30. Concerning the 4/rev vibratory hub loads,
in this case the differences between quasi-steady and
BEM aerodynamics predictions are significantly greater
than those calculated at µ = 0.3. This result is par-
ticularly evident for the out-of-plane load components.
Note that the vibratory loads at low speed are about one
order of magnitude smaller than those at µ = 0.30, and
this fact could be one important reason for the slower
convergence rate observed.

Conclusions

A fully-coupled aeroelastic solver for the analysis of ro-
torcraft in steady flight conditions has been presented.
Structural dynamics is based upon a non-linear beam
model, while a BEM solver for potential flows is used
for the evaluation of the airloads. The numerical space
integration is performed through the Galerkin approach,
while the time solution is evaluated by harmonic-balance
technique. Performance and robustness of the proposed
numerical solution algorithm has been analysed for a
four-bladed rotor moving at two advance ratios. Par-
ticular attention has been paid on the effect of relax-
ation and Jacobian fidelity on the convergence rate of
the solution. When using Jacobian numerically evalu-
ated through the BEM solver, the convergence rate has
shown to be satisfactory, however depending on the re-
laxation factor applied and the accuracy of BEM solver
for Jacobian identification. No convergence is achieved
if the aerodynamic Jacobian is evaluated by a simpler
aerodynamic solver (a quasi-steady model has been con-
sidered in this work) or is even neglected. It has been
shown that a coarse BEM mesh yields a Jacobian that
guarantees quite fast convergence of the aeroelastic it-
eration process, at much lower computational costs.

Finally, the aeroelastic responses (in terms of blade tip
displacements and vibratory hub loads) obtained by the
proposed fully coupled aeroelastic solver have been com-

pared with those from quasi-steady aerodynamics. Ma-
jor differences have been observed on the prediction of
torsion deflection and out-of-plane vibratory loads.
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Appendix A

From the decomposition of the potential field into a scat-
tered component, ϕ

S
, and an incident component, ϕ

I

(see section ‘Aerodynamic modelling’), in a body-fixed
frame of reference the Bernoulli theorem reads

ϕ̇
S

+ ϕ̇
I
− v

B
· (∇ϕ

S
+ u

I
)

+
‖∇ϕ

S
+ u

I
‖2

2
+
p

ρ
=
p0
ρ

(11)

where p0 is the pressure of the undisturbed medium. In
order to evaluate the pressure distribution, the expres-
sion above requires the determination of ϕ̇

I
, which is the

only term not directly available from the aerodynamic
formulation presented in the section ‘Aerodynamic mod-
elling’. The incident potential (and the corresponding
time derivative) could be obtained from the doublet dis-

tribution over the far wake, S
F

W
, using the following in-

tegral expression (see also Eq. (2))

ϕ
I
(x, t) = −

∫
SF

W

∆ϕ
S
(y

TE

W
, t− ϑ)

∂G

∂n
dS(y) (12)

that, dividing the wake into panels, S
F

Wk
, is approxi-

mated as

ϕ
I
(x, t)≈−

N∑
k=1

−∆ϕ
S
(y

TE

Wk
, t− ϑk)

∫
SF

Wk

∂G

∂n
dS(y) (13)

However, as already mentioned in section ‘Aerodynamic
modelling’, the above expression cannot be applied to
those wake panels coming in contact with the body or
passing very close to it (BVI occurrence), in that they
become numerically unstable and yield unrealistic po-
tential distributions.

In order to avoid this problem, for the far wake pan-
els that might experience BVI, the contribution to ϕ̇

I

is obtained in the following robust and accurate way.
Consider the closed vortex at the contour of the k-th
panel of the far wake that might risk to come in con-

tact with the body, Ck = ∂S
F

Wk
, and introduce a frame

of reference rigidly connected with it such that, under
the assumption of undeformed wake panel, the incident
potential induced by the vortex is constant in time on
each point of it. Next consider a body surface point
and a vortex frame point that at a given time coincide.
Observing that for a generic function, f = f(x, t),

∂f

∂t

∣∣∣∣
V

=
∂f

∂t

∣∣∣∣
B

+ v
B−V
· ∇f

where ∂f/∂t|
V

and ∂f/∂t|
B

denote time derivative ob-
served, respectively, in the vortex frame and in the body
frame, while v

B−V
= v

V
−v

B
is the relative velocity be-

tween the two frames at the considered point, for f = ϕk
I

(with ϕk
I

denoting the incident potential due to the k-th
far wake vortex) and reminding that ϕ̇k

I
= 0 in the vor-

tex frame, it is possible to obtain for the time derivative
of the incident potential in the body frame

∂ϕk
I

∂t

∣∣∣∣∣
B

= −v
B−V
· uk

I
(14)

with uk
I

known from the (regularized) k-th contribution
in Eq. (3).

If the evaluation of the pressure is carried out within
a free-wake solution, each far wake vortex is subject
to deformation. In this case, the related (doublet) po-
tential induced in the corresponding vortex frame is no
longer stationary, although the intensity of the doublet
is time independent (indeed, it is given by the potential
jump across the wake that is constant following a mate-
rial point [3, 7]). Nevertheless, this contribution is not
taken into account for the vortices that are close to the
evaluation point, in that negligible with respect to the
contribution from the term in Eq. (14), due to the very
high induced velocity arising.

A procedure similar to that described above for the eval-
uation of the ϕ̇k

I
from a wake vortex has been applied

in Ref. [11] for the evaluation of the pressure on a body
induced by vortex filaments.




