
Computational investigation of dynamics of controlled landing 

of the helicopter equipped with skid landing gear 

Alimov S.A., Girfanov A.M., Mikhailov S.A., Nedelko D.V. 

 

At the present time the helicopter is one of the elements of transport 

infrastructure of megalopolises, business and production corporations. It is used to 

perform a variety of transport operations, such as monitoring of ecological areas 

and engineering facilities, liquidation of emergencies and providing of urgent 

medical care at a long distance. The lightweight multipurpose helicopter is the 

most suitable type of the aircrafts to solve these tasks. 

In helicopters design, the use of rigid rotors has been spread rather widely 

due to several technical advantages, including exploitation convenience and 

simplicity of such type plugs . Most often, such rotors are used in light helicopters 

construction, which are normally equipped with skid-equipped landing gear. And 

the exploitation advantages of such helicopter design require a rather detailed and 

knowledge-intensive development of the design method for devices of the 

abovestated type (pivotless plug and skid-equipped landing gear). 

Also very important in this case is the methodical development of 

exploitation safety maintenance in terms of performing safe auto-rotation landing. 

It is essential to maintain the appropriate level of safety using both the relevant 

construction solutions in the part of the chassis' energy absorbing characteristics, 

and the authoritatively reasoned auto-rotation execution method, with regard to 

constructive peculiarities of the pivotless rigid rotor. 

The helicopter's skid-equipped landing gear is usually the key component in 

investigation of different helicopter landing conditions, including during auto-

rotation of the main rotor. It is apparent that in this case only correct pilot actions 

can provide safe landing. So, the problem of modeling helicopter's guided landing 

can be topical up to this moment. 
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Helicopter movement over distances, under the effect of external inertial 

forces and torques, is traditionally introduced as progressive advance and angular 

rotation in the three-dimensional Euclidean space of the helicopter center of mass: 
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where g  is the downward acceleration; , ,xg yg zga a a  are the dynamic parameters, 

introduced in the earth referenced coordinate system; ϑ , ψ , γ  are the commonly 

known angles of tangage, fishtailing and banking respectively. The forces xP , yP  

and zP  determine the projections of outside forces vector in the system of 

coordinates connected with the helicopter's longitudinal datum line. 

Let us also introduce the torques equilibrium equation , ,x y zM M M  in 

relation to the center of mass. Let us assume that, during one rotation, the mass of 

helicopter remains constant, then we may write the equations of moments as 

follows: 
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J  is the helicopter's inertia tensor. 

The projections of the angular velocity vector of the helicopter movement on 

the fixed axis may be determined using kinematic proportions: 
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Then, if we make differentiation with the time of expression (3), we can get 

proportions for determining the amounts of local derivatives with time from 

angular speeds: 
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In this case, no such common failure occurs as divide-by-zero resulting from 

the use of classical algorithms based on the Eulerian coherent transition angles. 

Then, solving the differential equations of the helicopter center of mass movement 

dynamics is possible using any method of numerical integration. 

In this work, let us use the reverse method of numerical integration for time 

using cubic spline. We shall take the dynamic parameters as main indeterminates, 

then the other indeterminate parameters of translational and rotary motion of the 

center of mass will be built up based on the formulas, determined by the cubic 

spline. Then, at the next time step 1j +  we shall have: 
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where t∆  is the time step, , ,x g y g z gV V V  are the velocities of the center of mass 

movement within the normal earth referenced coordinate system. 

Consequently, in order to determine the flight trajectory of the helicopter, we 

should set the initial conditions (already known to us) in the beginning of the time 

period. For example, we may set as initial any habitual mode of the helicopter 

flight, and then, for determining the indeterminates at the next step, we can use the 

Newton's method for resolving the systems of algebraic equations. 

Hence only forces and torques created by the main rotor, and the reactions of 

the skid will remain indeterminate at the next step. Let us examine a little closer 

the mathematical models used for resolving the set task. 

A model of skid-equipped landing gear is actually a dimensional, statically 

indeterminate rod construction which works in the conditions of considerable (up 

to 40-50%) geometrical nonlinearity, as well as considerable physical nonlinearity 

of the springs material, which obeys the set law of plastic deformation, yet does 

not reach the level of destruction. A numerical model of skid-equipped landing 

gear allows modeling the helicopter landing with vertical and horizontal 

components of landing velocity, as well as with forces of longitudinal friction 

which emerge during landing. The geometrical nonlinearity of the chassis 

construction is based on the theory of large displacements, developed into the 



geometrical nonlinear theory of the outboard profile rods polydimensional 

deformation, adapted for the rods of tubular section. 

In order to resolve the task with dimensional warping of the statically 

indeterminate skid construction, we have used the forces method, the main system 

of which was achieved by introducing required indeterminates in the form of 

concentrated forces and torques ˆ
iX , where i  is the static redundancy degree in the 

system. Generally speaking, the amended system of equations for the mathematical 

model of skid-equipped landing gear warping will be as follows: 
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where the generalized load parameter P
r

 contains the rates of reactions iR  and the 

correspondent friction forces. A more detailed scheme of resolving this task is 

given in the works [1, 2]. 

Verification of the calculated skid model was performed by means of 

comparison of the calculations results within special software performing the finite 

elements technique, and the results of natural drop work tests of the skids. 

The landing surface is set as hard warp-free analytical subspace. During the 

contact of the elastomeric skids, reactive forces emerge (Figure 1) which prevent 

the helicopter from vertical downward movement. 
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Figure 1 – The basic coordinates systems connected with the skid 

 

The model of the helicopter movement during landing allows seeing the 

initial wheels-on of the chassis on the landing site, with any part of either right or 

left skid. In order to simplify the calculation model, we shall assume that the 

reaction of the landing site is applied to the two front or two rear endpoints of 

skids. 

The current requirements of strength standards have been created based on 

many years of design experience, tests and exploitation of helicopters with a 

classical pivot rotor. The emergence of new helicopters with pivotless main rotor 

leads us to the necessity to clarify some calculation cases and helicopter load 

conditions during both flight and landing. 

In order to resolve the task of calculating loads of the helicopter's aeroelastic 

pivotless main rotor, we shall assume that at each moment of time, the elastic 

flapping movement of the blades, forces and torques of the main rotor correspond 

to their instant amounts. At this stage of research, such assumption allows us to use 

the model of aeroelastic calculation for the main rotor [3] where the blade's elastic 

characteristics modeling over distance is performed using the geometrically 

nonlinear theory of the dimensionally warped rods of the outboard profile [4]. 



Application of this theory allows us to get a system of integro-partial differential 

equations for aeroelastic overswinging of the main rotor blades. This system can't 

be resolved analytically in its initial form. So, for its contraction to the matrix 

algebraic form, we apply integrating matrixes based on the interpolation by the 

“stressed” splines. The thus received algebraic equations are solves by the 

Newton's method.  

Time integration of the motion equations of the main rotor blades is 

conducted using a technique employing Fourier series expansion of bending and 

torsional overswingings of the blade. In quasi-habitual modes, the angular 

functions ξ(r,ψ); η(r,ψ); ζ(r,ψ), which determine the position of the blade's elastic 

line, are periodical, which allows us to expand them into a Fourier in azimuth (of 

time): 
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where: , , , , , , , ,o k k o k k o k ka a b a a b a a bξ ξ ξ η η η ζ ζ ζ  are the expansion indexes; н tψ = ω⋅  is 

the azimuth of the main rotor blade; ω is the angular velocity of the rotor's rotation; 

t  is the time; k  is the expansion harmonics. 

It's obvious that, given coefficients of expansion, it's possible to calculate 

both the deflection in any point of the blade and the velocities and accelerations of 

the node points. 

The aerodynamic load at the blades is calculated based on the elemental 

impulse theory using the profile's circular polar. Inductive velocities are calculated 

using the formulas introduced in the work [5]. They are based on the results of the 

classic vortex theory of the main rotor, and allow us to consider the first harmonics 

of the velocities' field distortion. 



Joining the introduced mathematical models within the frame of one 

software complex allows efficient resolving of modeling tasks considering the 

loads created by the main rotor. Use of this software complex will enable 

elaboration of optimal guided landing technique in standard and critical conditions 

at the design stage of new helicopter and provide estimation of required energy 

absorption of the skid landing gear. 

In this work, the authors introduce the calculation research results of the two 

first landing blows of a skid-equipped helicopter to the flight landing strip, 

considering the different matches of forces and the lateral moment created by the 

pivotless main rotor. In order to simplify the research scheme, at this stage we 

assumed that in the most cases, the loads at the main rotor remain constant over the 

landing impact. 

According to FAR-29, during the landing impact the push force of the main 

rotor must be applied to the helicopter gravity center, and equals to 2/3 of the 

helicopter weight at absorption of the exploitation work (para. 29.473(а)). The 

initial load calculating case is as follows: 

-  Load case 1: Тнв = 2/3 G = 2200 daN; H = 0.3 m; Vy = 0 m/s, 

where Н is the distance between the lower surface of the skid, and the flight 

landing strip, at the initial moment of time. 

Considering that the helicopter's main rotor has not only the push force Тнв, 

but also the controlling torque (Mz) in relation to the lateral axis, there can also be 

the following cases of load: 

- Load case 2: Тнв = 2200 daN; Mz = 248.7 daN m; H = 0.3 m; Vy = 0 m/s; 

- Load case 3: Тнв = 2200 daN; Mz = -248.7 daN m; H = 0.3 m; Vy = 0 m/s. 

During landing, a situation may occur when the pilot, right before touching 

the landing strip, pulls the main rotor body backward in order to reduce the 

longitudinal velocity and thus creates a backward main rotor push force. Let us 

assume that the angle of pulling the main rotor is equal to 5 degrees, then the initial 

data for calculation will be as follows: 



- Load case 4: Тнв = 2191.6 daN; Н = -191.7 daN; Mz = 503 daN m; H = 0.3 

m; Vy = 0 m/s. 

We also additionally examine the case when the pilot gradually reduces the 

main rotor's push force Тнв: 

- Load case 5: Тнв lowers from 2200 daN to 1100 daN during 1 second, 

further on Тнв = const = 1100 daN; H = 0.3 m; Vy = 0 m/s. 

For the created calculation cases, there can be the following variants of 

landing a helicopter with pivotless main rotor: 

- Load case 1 is correspondent to requirements of para. 29.473(а) of the 

Aviation rules (Part 29); 

- Load case 2 is correspondent to a situation when the pilot, right before 

touching the landing strip, pulls the main rotor's body backward in order to reduce 

longitudinal speed, and thus creates a backward main rotor push force; 

- Load case 3 is correspondent to vertical landing with the controlling torque 

in relation to the helicopter's lateral axis; 

- Load case 4 is correspondent to a situation when the pilot gradually 

reduces the main rotor's push force twice. 

The calculation results are shown in Figures 2 – 11 as time dependences of 

the helicopter movement parameters and skid load parameters. 

The examined parameters of the helicopter movement are: 

- Yc.m., m – movement of the helicopter center of mass along the Y axis; 

- ay, m/s2 – acceleration in the helicopter center of mass along the Y axes; 

- ϑ , degrees – the helicopter pitch attitude. 

The examined parameters of the helicopter's skid load are: 

- R1, daN is the reaction on the right console of the skid's rear spring; 

- R2, daN is the reaction on the right console of the skid's front spring. 

As it has been already told before, the calculation results are introduced for 

two landing blows during the helicopter's landing. For convenience of the analysis, 

the results are divided into two groups, for each of which there is a calculation for 

the Load Case 1, according to the requirements of FAR-29. 
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Figure 2 – Moving of the helicopter center of mass during landing 

($ - load case 1; + - load case 2; ) - load case 3) 
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Figure 3 – Acceleration factor in the helicopter center of mass during landing 

($ - load case 1; + - load case 2; ) - load case 3) 
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Figure 4 – The helicopter pitch attitude during landing 

($ - load case 1; + - load case 2; ) - load case 3) 
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Figure 5 – Reaction on the rear spring during landing 

($ - load case 1; + - load case 2; ) - load case 3) 
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Figure 6 – Reaction on the front spring during landing 

($ - load case 1; + - load case 2; ) - load case 3) 
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Figure 7 – Moving of the helicopter center of mass during landing  

($ - load case 1; + - load case 4; ) - load case 5) 
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Figure 8 – Acceleration factor in the helicopter center of mass during landing 

($ - load case 1; + - load case 4; ) - load case 5) 
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Figure 9 – The helicopter pitch attitude during landing 

($ - load case 1; + - load case 4; ) - load case 5) 
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Figure 10 – Reaction on the rear spring during landing 

($ - load case 1; + - load case 4; ) - load case 5) 
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Figure 11 – Reaction on the front spring during landing 

($ - load case 1; + - load case 4; ) - load case 5) 
 

The aboveshown comparative charts demonstrate that the amounts of load 

on the main rotor exercise a significant influence on the helicopter landing process 

and the loading conditions of the skid-equipped landing gear. In most simulation 

cases, there is a significant difference in the helicopter behavior during landing 

compared to the conditions required by the FAR-29 norms. The analysis of the 



helicopter movements' character during different complexes of loads made by the 

main rotor, shows the possibility of helicopter nosing in some certain unfavorable 

landing conditions, such as axial velocity of movement or considerable forces of 

friction of the skids at the flight landing strip.  

The abovelisted circumstances show practicability of considering all forces 

and torques created by the helicopter's pivotless main rotor during the auto-rotation 

landing. And the method invented by the authors allows to consider them very 

thoroughly, as well as to consider the influence of stick forces not only at general 

pitch, but also at cyclic pitch, which is set by the pilot through the helicopter's 

actuating levers. 
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