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Abstract:
In this paper a methodology is presented for estimating helicopter limit margins using real-time
learning dynamic models featuring long term (concurrent) learning adaptive neural networks.
Limit margin estimations can be used in envelope protection systems of fly-by-wire helicopters.
Linear models are compensated with adaptive neural networks to construct adaptive models of
relevant aircraft dynamics. A stack of data collected during flight is used to update the network
weights. The data stack for learning is made up of instantaneous measured data and recorded
data. Rules for recording relevant data are established. It is observed that using recorded data
in a stack can cancel out modeling errors faster and result in better predictions of approaching
steady state limits compared to using instantaneous measured data only.
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1. INTRODUCTION

Envelope protection is an area of research where the focus
is to cue the pilot such that known envelope limits are
not violated during flight. These systems can be used
for fly-by-wire fixed and rotary wing aircraft in order to
improve handling qualities and safety. Another objective
of an Envelope Protection System (EPS) is to allow the
aircraft to use its full flight envelope without exceeding its
flight envelope limits. In literature, these type of cueing
systems are also known as carefree maneuvering systems
and exhibit limit prediction and limit avoidance. In limit
prediction, possible violations of limits are detected with
an effective lead time before the actual violation occurs.
The difference between the current value of the limit
variable and the actual limit is known as the limit margin,
whereas the allowable control travel to reach that limit
is the control margin. Such information can be used
effectively in limit avoidance as a preventive action for
pilot cueing.

A methodology is presented in [1,2,3] for estimating ap-
proaching limits and allowable control travel for VTOL
aircraft. The method uses adaptive neural network based
dynamic models for online estimation. Dynamic nonlin-
ear models are build during flight to approximate the
corresponding helicopter dynamics. The dynamic models
are made up of local linear models with adaptive neural
networks to compensate for the difference between the real
dynamics and the approximate dynamics posed by the lin-
ear models. This information is then used to either cue the
pilot or to adjust controller commands automatically. The
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method is applicable to limits that reach their maximum
values at their steady state.

While the method is presented with promising results,
in practice the adaptation capability is limited by the
network structure, available training data and update
laws. In particular, establishing network memory is not
always straightforward -even for repeated maneuvers. A
common observation is that there exists a re-learning
process of the neural network. In other words, the online
models are locally accurate and in practice do not exhibit
much memory.

In this paper, we adopt the neural network update law
presented in [4,5] for long term (concurrent) learning to the
methods of [1,2,3] for limit detection. Here, the neural net-
work update law is arranged such that both instantaneous
sensor data and recorded data is used simultaneously in
the update. This update law alleviates the rank-1 limita-
tion in the update, a well known restriction in the update
law using instantaneous sensor data only. The criteria to
record adaptation data is modified to make use of data
relevant for limit and control margin estimations.

The paper introduces the methodology and the modified
neural network update laws for long term learning. Later
a non-linear helicopter model is obtained using the He-
lidyn+ software program for a generic utility helicopter
simulation. The code is embedded into Matlab/Simulink
for batch simulations. Simulation results indicate a far
better adaptation and more accurate estimation especially
to repetitive maneuvers, when long term learning is used.

2. THEORETICAL DEVELOPMENT

The equations of motion of an aircraft are represented with
the following nonlinear state equations:
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ẋ = f(x, u); x(t0) = x0, x ∈ <n, u ∈ <p, (1)

where x is the state vector with known initial conditions,
x0, and u is a known control vector.

Similarly, the dynamics of a limit state of relative degree
one can be represented as

ẏp = f(yp, x, u); yp(t0) = yp0 (2)

where yp is a variable representing the limit state. The
limit state considered here is assumed to reach its maxi-
mum value asymptotically at its steady state, and is gen-
erally fast enough to be relevant for an EPS application.

The following approximate dynamics for the limit state
dynamics is used:

˙̂yp = f̂(yp, xr) + ∆(yp, x, u) +K(yp − ŷp), (3)

A ’hat’ denotes an estimation of a variable, and K is
called the observer gain matrix [1]. xr are selected states
depending on the chosen linear approximation.

Following [2] the error dynamics becomes

ė = −Ke+ ξ −∆. (4)

where e = yp − ŷp and ξ is the true modeling error. Thus,
when the modeling error, ξ, can be cancelled through ∆,
with a positive definite matrix K, the modeling error will
decay asymptotically to zero.

Since the maximum value of the limit variable is assumed
to be its steady state value, for a given control input the
maximum value of the limit vector is estimated when

˙̂yp = 0 (5)

Using the relationship in eqn.(3) an estimate of the steady
state condition, ŷpss , can be found, which is in this case
the maximum value to be reached for a given control input
and flight condition:

f̂1(ŷpss , xr, u) + ∆(ŷpss , x, u) +Ke = 0. (6)

Therefore, for a known value of the flight envelope limit,
yplim

, an estimate of the limit margin becomes:

ŷmarg = yplim
− ŷpss (7)

2.1 Single Hidden Layer Neural Network Augmentation

Single hidden layer neural networks (SHLNN) are used to
approximate the function ∆ mentioned above. SHLNNs
are known to be universal approximators and consist of
an input layer, a hidden layer and an output layer. The
estimator dynamics can be written following [6]:

˙̂yp = A[ŷp xr]T +B1u+WTβ(V T x̄) +K(yp − ŷp) (8)

Here β is the activation function vector of the neural
network and x̄ is the neural network input vector which is
defined as x̄ = [1 yp x u].

The classic update law for ultimately bounded error and
weight signals is [1]:

˙̂
W = −(β − β

′
V̂ T x̄)(eTP )LRW

(9)

˙̂
V = −LRV

x̄(eTP )ŴTβ
′
(V T x̄) (10)

where, LRV
and LRW

are the corresponding learning rates.
Assume that P is the solution of the following Lyapunov
equation:

(−K)TP + P (−K) = −Q (11)

where Q > 0.

Long Term Learning Through Recorded Data

Rewrite the model tracking error dynamics as:

ė = −Ke+ ξ −WTβ(V T x̄) (12)

r = ξ −WTβ(V T x̄) (13)

In eqn.(12), the difference between the current model-
ing error (ξ) and the adaptive neural network output
WTβ(V T x̄) is called the residual signal r and is used for
online learning. The residual signal in the form of eqn.(13)
doesn’t contain any past information. The residual signal
can be written in a more general form [4,5]:

rci = ξi −WTβ(V T x̄i) (14)

Variables with subscript ’i’ refer to the information of the
ith stored data point of the history stack. The long term
learning law makes use of the residuals of a past time
history. Using the residual signal of eqn.(14), the long term
learning law attempts to reduce the difference between the
stored estimate of the modeling error (ξi) and the neural
network output WTβ(V T x̄i) which is also based on stored
state information. As a result, recorded data is used in
the training of the networks in addition to instantaneous
sensor data. In literature, the use of time history data in
the network weight update law is referred to as long term,
concurrent learning or background learning [4,5].

Selection of Data Points for Long Term Learning

A key part in the design is to select the relevant past data
to be used in long term learning. A common criteria used
is to simply record data that are sufficiently different from
each other [4,5,7]:

(x̄− x̄p)T (x̄− x̄p)

x̄T x̄
> εx̄ (15)

where p denotes the last point stored in the history stack.
The data selection criteria given in eqn.(15) indicates
recording data that is ’sufficiently different’ from each
other. Since most of it happens in the transient response,
we call data recorded using eqn.(15) as the transient data
stack.

In addition to the transient data stack criteria we impose
the following criteria:

εy1
< ([xl(k)− xl(k − 1)]2 + [xl(k)− xl(k − 2)]2 +

...+ [xl(k)− xL(k −N)]2)1/2 < εy2
(16)

and

εz1 < ([δl(k)− δl(k − 1)]2 + [δl(k)− δl(k − 2)]2 +

...+ [δl(k)− δl(k −N)]2)1/2 < εz2 (17)

Here xl is the one dimensional limiting state in consid-
eration, xl(k) is the kth and current state, consequently



xl(k−N) represents the state information of N time steps
before the current state. δ’s are the corresponding controls.
Here, the algorithm checks for a steady state condition for
the limiting state and controls, and when the criteria is
met data is added into the recorded stack to be used in
long term learning. We call the data recorded using eqns.
(16),(17) as the steady state data stack.

In [8,9] transient and steady state stacks are compared in
the scope of the limit detection problem. It is observed
that using steady state data on top of the transient data
increases the performance of steady state predictions over
time. In this paper we use both stacks for long term
learning algorithm. Stack size of 100 points are selected,
half of the stack is used for storing transient data and the
rest is used for steady state data.

Once a flight condition meets any of the selection criteria
all relevant information of that flight condition, such as the
state vector, control vector, modeling error, etc. is stored.
If the stack becomes large the oldest data in the history
stacks is replaced with more recent data.

Long Term Learning Weight Update Law

For the simulations presented in this paper the following
NN weight adaptation law is used [5]:

Ẇ = −(β − β
′
V T x̄)rTLRW

−Wc

p∑
i=1

(βi − β
′

iV
T x̄i)rciLRWs

(18)

V̇ = −LRV
x̄rTWTβ

′
(V T x̄)

−Vc
p∑

i=1

LRVs
x̄ir

T
ciW

Tβ
′
(V T x̄i) (19)

Here, LRVs
and LRWs

are the learning rates of the history
stack (including both transient and steady state data). Wc

and Vc are orthogonal projection operators and are defined
as:

Wc = (I − ββT

βTβ
) (20)

Vc = (I − LRW
x̄x̄TLRW

x̄TLRW
LRW

x̄
) (21)

By using orthogonal projections, it is possible to constrain
background learning to the nullspace of the online adap-
tation with instantaneous data only [5].

3. SIMULATION RESULTS

In this section, we show results by estimating limit margins
using adaptive long term learning. The goal is to estimate
the steady state value of a limit variable immediately after
the controls are applied. Note that the the limit variable
is chosen to have its maximum value at its steady state.
Moreover, we compare results with cases where classic
adaptation based on instantaneous data only is used.

Helicopter Flight Dynamics Model

A nonlinear helicopter model is build using the helicopter
flight dynamics environment called HeliDyn+ [10]. He-
liDyn+ allows the user to generate a helicopter math
model by selecting model libraries for various helicopter
components, such as models for the main rotor, inflow,
tail rotor, fuselage, landing gear etc. The tool, then allows
the user to extract a dynamic link library (.dll) that can be
integrated into a C/C++ simulation environment, Matlab
/Simulink, and FlightGear. The helicopter model used in
this work is based on the geometry of the Uh-1h utility
helicopter. The model is nonlinear, and uses a Peters-He
inflow model, second order flap dynamics, Bailey’s tail
rotor model, vertical, horizontal tail models, ground effect
models, ground reactions, etc. The model is extracted in
Helidyn+ and integrated into Matlab/Simulink for this
study.

Load Factor Steady State Estimation

For the simulations presented below the helicopter model
is exposed to longitudinal cyclic inputs starting from
a trimmed flight condition. The goal is to predict the
maximum value of a limit variable, the load factor, at the
time when the longitudinal cyclic control, δe, is applied.
A controller is designed to keep the lateral dynamics in
equilibrium.

An approximation of the load factor dynamics is repre-
sented with the following equation:

˙̂nz = [a1 a2][n̂z V ]T + [b](δe) +Ke...

...+ ∆(n̂z, δe, V, 1) (22)

Here, nz is the load factor and V represents the forward
speed. The maneuvering steady states are found using an
iterative solution for n̂zss :

0 = [a1 a2][n̂zss V ]T + [b](δe) +Ke...

...+ ∆(n̂zss , δe, V, 1) (23)

The a1, a2 and b1 constants are chosen with rather large
modeling errors (a1 = −3, a2 = 0.01, b = −1.5).

The neural network input vector is x̄ = [1 nz V δe]. Gaus-
sian and complementary Gaussian activation functions are
used in the hidden layer of the neural network.

Three sets of simulations are performed: First, instanta-
neous learning rates are chosen low and the benefit of
additional long term learning is demonstrated. Next, inten-
tionally high instantaneous learning rates are applied. A
well known fact is the chattering in the limit state estima-
tion when high learning rates are chosen. The additional
long term learning is shown to improve estimations when
high learning rates are used. As a third case moderate
instantaneous learning rates are chosen. This time, new
artificial modeling errors are introduced during the simu-
lation and prediction responses are compared. Also, for the
third case we compare the predictions of the two methods
after freezing the weights.

Learning rates and observer gains of the three scenarios
are presented in Tables 1,2 and 3.



Table 1. Design Parameters of Scenario-1

K = 30 LRW
= 10 LRV

= 10

LRWs
= 1 LRVs

= 1

Table 2. Design Parameters of Scenario-2

K = 30 LRW
= 5000 LRV

= 5000

LRWs
= 1 LRVs

= 1

Table 3. Design Parameters of Scenario-3

K = 30 LRW
= 1000 LRV

= 1000

LRWs
= 1 LRVs

= 1
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Fig. 1. Comparison of Steady State Est. (Scenario-1)
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Fig. 2. Comparison of Weight Updates (Scenario-1)

In Fig.1 the load factor response for the first scenario
is plotted along with dynamic trim predictions using
long term learning and instantaneous learning. In this
scenario, learning rates LRW

and LRV
are chosen low. As

a result, using only instantaneous adaptation the steady
state estimates are erroneous. It is observed that using
data from a history stack improves the estimations over
time. The network weight history of these simulations can
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Fig. 4. Comparison of Weight Updates (Scenario-2)

be seen in Fig.2. Using long term learning, neural network
weights converge to steady states much faster, whereas
weights of the instantaneous learning network seems to
re-learn the maneuver. The data storing activity of long
term learning is shown in Fig.1.

Note that the steady state estimates are available at
the time when the control is applied, while the actual
state is still in its transient phase. Here, an artificial
load factor upper limit is set to 1.5g (dotted line in
Fig.1). The difference between this limit and the steady
state prediction is an estimate of the limit margin This
information becomes valuable when it is desired to timely
cue to pilot on an approaching limit, as it will be available
at the time the pilot introduces the input.

In the second scenario, adaptations are made faster choos-
ing higher learning rates. Neural network adaptations are
sensitive to learning gains. In this case the high network
gains resulted in jittery steady state predictions. In Fig.3
steady state predictions using long term learning and in-
stantaneous learning are compared. The jittery behavior of
the estimations are compensated using long term learning
and the estimations become more accurate. Weight up-
dates of this simulation are presented in Fig.4. Long term
learning neural network weights converge to their steady
states, whereas the ones obtained using instantaneous
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learning do not. The re-learning process of instantaneous
learning is observed in Fig.4.

As a third scenario, learning rates of the network using
instantaneous data are chosen to be moderate compared
to the other scenarios. This time we try to compare
prediction performance of the two methods to newly
introduced modeling errors. In Fig.5 a new modeling
error is introduced at about 50s into the simulation by
changing the sign and the magnitude of the constant b
of the approximate linear model. Figure 5 shows that
using long term learning, the new modeling error is much
faster compensated as maneuvers are repeated, hence,
more accurate predictions of the steady state values are
obtained. On the other hand, instantaneous learning only
results in inaccurate predictions.

In order to demonstrate the fact that the weights actually
converge to their true values when long term learning is
used all network weights are frozen at about 100 seconds.
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Figure 6 presents simulation results after freezing the
network weights. Here, results using long term learning
are still accurate predictions. Weight updates of the third
scenario is presented in Fig.7.

4. CONCLUSION

In this paper, simulation results are presented to estimate
the future response of the load factor with acceptable lead
time of a generic utility helicopter model. The steady state
value of the load factor is estimated at the time the con-
trols are applied. We compare results using a neural net-
work with traditional update law using instantaneous data
only and with the case where recorded data is also used
for adaptation. It is observed that the network compen-
sates some of the short comings of the traditional update
using instantaneous data only. In particular, the weight
convergence is much faster and more probable as the rank-
1 limitation is lifted. Simulation results almost always
have demonstrated a significant improvement when history
data stacks are used in adaptation. While the benefit of
using history data stacks is apparent, establishing the right
data stack is crucial in accurate predictions. Updating
the prediction law to include steady state conditions as
well provided better results. The results in this paper are
demonstrated for a particular maneuver in the longitudinal
channel. Future research could focus on maneuvers where
multiple controls and multiple limits are considered.
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