
TESl' ~ Lt>.N::UI(;E FCR AVIOOC SYSrEM5

M.Mainini and G.P. Mariani
J\gusta S.p.A.

Tradate, Italy

Abstract

To--<lay, the test of complex avionic systems is a
task that requires tools with high level and a
user friendly approach to write and perform
test sequences regardless of the complexity of
the software and hardware of the system under
test. This approach allows the test engineer to
concentrate his attention verifying the system
performance against requirements instead of
losing time writing complicated low level test
sequences. 'The scope of this paper is to present
the Test ~ developed and employed ~
Agusta during the development and testing of
the ElllOl and Al29 integrated avionic systems.
'The structure, formal syntax and examples of the
language will be presented together with the
specific environment where the tool is used for
both the host computer with its facilities ·and
the hardware architecture of the rig.

'The conclusions will outline the importance and
benefits of utilizing a tool like TEI.AS in a
project of an avionic system.

Introduction

A digital avionic computer is basically
interfaced to aircraft sensors and equipment ~
means of two digital buses: MIL-SID 1553 bus or
Arinc. 429 bus.
Moreover, for the cases in which the sensors
have no bus interfaces, a sensor interface unit
provides interfacing between sensors and on
board computers.
In such a way we can surrmarize that a general
test environment provide stimulation and
rroni toring of the unit under test ~ means of

the following equipments, as shown in fig 1

- MIL-SID 1553 Bus Station
- Arinc 429 Bus Station
- Aircraft Sensor .Elnula tor

'The 1553 Bus Station may perform multiple remote
terminals, bus controller or bus monitor
function depending on the test set-up, and are
connected to the test computer directly on the
internal bus of the computer.
'The Arinc 429 Bus Station may perform the
function of equipment simulation or bus monitor
and are connected to test computer ~ means of a
dedicate line.
All the sensors of the aircraft sub-systems
(Elctrical,Hydraulic, Transmission ect.) may be
emulated ~ a set of jigs interfaced to test
computer ~ means of a line.

On this ground considerations, Agusta has
developed for its own purpouse a test language,
called TEI.AS (Test Engineering Language for
Avionic Systems), that interfaces and drives the
above mentioned equipment in an easy and
flexible way.
Telas is a tool for automatic testing oriented
to avio1ic computer validation and qualification
at system level.
The tool has been developed on V/\X Digital
computers with VMS operating system, using
Fortran language for application programs and
CCL (Digital Comrand Language) VfliJVMS for the
definition of Telas statements.
Starting direc.tiy from system requirements and
test plan it is possible to write the test
procedures ~ means of the Telas statements.
'The test procedures become Telas c<Xllll311d fi~as
that the test computer executes automatically
and produces the test results report.

I.7.2.1

TAPE PRINTER

\ I
..... ,.... TEST -=_] COMPUTER __ _j ___ "'

AR!NC 429 AIRCRAFT

SENSORS
BUS STATION

EMULATOR

~
ARINC 429l

MIL 1553 UNIT
. L ... UNDER 1-

BUS STATION

M IL·STD·1563 BUS ll

fig. 1

Telas Architecture

The Telas architecture is based on a data base
that contains all the pararrBters definitions and
their initialization values related to Mil 1553
bus station ,Arinc 429 bus station, aircraft
sensors emulators (fig. 2).
1hese parameters characterize all the
infornation that the Unit Under Test exchanges
with emulated aircraft equipnent/sensors.
The Parameters definition is performed by a test
engineer by means of an utility called TCF
(Telas Configuration File) which allows the
following:

- assign a mnemonic name to each pararrBter

- describe the meaninig of the mnemonic name

- specify the pararrBter characteristic in terms
of format,LSB value,measure unit, range etc.

- specify the 1553, Arinc 429 and sensors
emulators address o~ the parameter

TEST

11
.i.

These definitions allow the test system to be
configured and to analyze the acquired data.
The initialization of the pararrBters defined
with the TCF utility is performed by the test
engineer using an utility called TSU (Telas
Set-Up) that allows values to be assigned to
each parameter in order to create particular
test conditions.
A shared memory provides interface between Telas
conrnands and the real time emulation programs
that manage the avionic bus stations and sensors
emulators.
Morecver, real time programs allow temporization
of the emulated sensors and drives the bus
stations and the sensors emulator.

User In ter:face

In order to allow the test engineer to interact
with TElAS a user friendly interface based on
vi dec menu driven fonns with on line help
facility has been developed.
The operator interface allows the test engineer
to:

1.7.2.2

1553

BUS STATION

SHARED

MEMORY

EMULATION

PAOORAMS

AA!NC 429

BUS STATION

SENSORS

EMULATOR INTERFACE
~--------------------------------~ '-----____)

fig. 2

- Configure the test system by ID2ai1S of TCF
utility

- Initialize parameters by ID2ai1S of TSU utility

- Write test sequences

Run the autOOB.tic test and control the
execution on the display.
The operator can see on the display the Telas
statement that the system is executing, the
result of the test case

- Execute test in interactive rrode during the
debug phase.
The operator digits Telas statement and
control test result on the display

- Print test results

- Manage data files

For each facility described above error control
and diagnostic rressages are provided.

1.7.2.3

Test devel.opialt cycle

The test developll2llt cycle begins from the
analysis of system requirements and test plan
document (fig. 3).
The docUID2l1ts <I>2!1tioned above constitute the
starting point to write test procedures.
Test procedures verify a group of system
requirements i terns related to sub-systems or
haoogeneous parts of sub-systems as specified by
the test plan document.
Moreover, a test procedure is split into a
certain number of test sequences.
First of all, the test engineer has to configure
and initialize Telas environment by ID2ai1S of TCF
and TSU utilities.
At this point each test sequence is written in
Telas language by ID2ai1S of a text editor,
following the system requirements step by step.
The result of this process is the production of
the test instructions that Telas will execute
autOOB.tically and, at the same tirre, the
production of AutOOB.tic Test Procedure document.
The output of the Telas processing is the test
result reports which can qualify the system or
starts corrective action process in case of
non-compliance with the system requirements.

C"IT

UNO!R TEST

fig. 3

TEST PlAN

TEST RESl!US

REPORT

Telas program structure

A TELAS program structure provides control of
the overall test execution sequence.
Execution of a complete test program proceeds
sequentially by statement order except where
modified by control statements.
A Telas program structure consists of three
distinct parts:

- preamble statements

- main procedural statements

- terminate statements

Preamble statemznts - The preamble statements
precede the procedural s ta temen ts. Preamble
statements do not cause any tests to be
executed, but incltJ<;Ie configuration and set-up
information that are referenced in the
procedural section.

There rray be only one program preamble structure
within an entire program structure.

The preamble statements are:

:rn::;un;; < coof:iguratioo file >
:rn::;un;; < setup file >

These statements include the configuration and
set-up files prepared during the "coof:iguratioo
J;hase".
The following structure of statements can be
considered part of the preamble and allows the
test sequence to be identified or to introduce
general c0!1lli2ll ts.

C'"
5 lines reserved for
test case title or OOllllE!lts

C&

The five test lines •111 be printed in the test
results document .
These statements will also cause the printing of
the header file immediately before the C'"
statement.

Main procedural statemznts - The main procedural
statements are a series of statements, each of
which describes a portion of the required test
which must be completed prior to the next
statement.
Each statement implies an instruction to proceed
to the following statement after completion of
the present one unless directed other>1se in a
branching statement.
The procedural statements are listed below:

F'IlL
START OOL
Sl'OP OOL
START AC!:!
MCNITOR
READ
OJMPARE
FTND
IF
GOTO

1.7.2.4

FilL Statanent - The FILL staterrent set a
specified parameter to a value specified in the
staterrent.
The parameters are related to bus stations(1553
and Arinc 429) and sensors emulator.
The syntax of the staterrent is the following:

Fill, <:nneoccic> <fonmt> <value> <valueD

where:

<mn€l00nic>: parameter name to be set

<fonrat>: parameter data fonrat
(real, integer, logical, hex, octal,
character)

<value> : data value

srAR1' J'loiUL statanent - The staterrent schedules
the emulation tasks related to 1553 r€l00te
terminals,bus controller, Arinc equipm2Ilt or
sensors emulators.
The syntax of the staterrent is:

srAR1' J'loiUL <optiool> <option2>
" •• ::-...... <optioo8>

<optionN=l ,8> : name of ren>Jte terminal, bus
controller ,Arinc equipm2Ilt; . or
sensor to be emulated; up to
eight selections may be
specified.

SIOP J'loiUL statE!Ialt - The staterrent permits to
deactivate the emulation of the 1553 units
activated with the STARr EMUL staterrent
The syntax of the statement is :

bus ooni tor.
'!he syntax is:

STARr Ar:JJ MBT <buffer> < Major frame number>
<sync--option>

<buffer> : name of the data buffer in which the
acquired data are stored

<Major frame number> : number of 1553 major
frames to be acquired

<sync option>: data acquisition is synchronized
with the step by step behavior of
bus controller of the unit under
test

srART NXJ ARJN:: statE!Ialt - The staterrent allows
Arinc 429 data to be acquired on the bus by
means of the Arinc bus station operating as bus
ooni tor.
The syntax is:

srAR1' _ NXJ_ ARJN:: <buffer> <sync option>

<buffer> : name of the data buffer in which
the acquire data are stored

<sync option>: data acquisition is synchronized
with the step by step behavior of
the 1.mi t under test

11:NITtR statE!Ialt - The staterrent allows to
display/print the value of the parameters from
the acquired buffer with the STARr AC/J
staterrents.

The syntax is:

11:NITtR <buffer> <:nneoccicl> ...•••. <:nneoccic7>

<buffer> : name of data buffer where the
SIOP_J'lo!UL <optiool> <option2> <optioo8> parameters value are stored

<optionN=l,B> : name of emulator to be stopped.

srART NXJ MBT stat~.t - The staterrent allows
1553 data to be acquired on the military bus by
means of the bus 1553 bus station operating as

<mn€l00nicl, 7) : parameter name; maximum of seven
parameters are allowed.

READ rnTA statE!Ialt - The staterrent reads the
value of the acquired parameters stored in the

1.7.2.5

data buffer and performs comparison with the
expected values.
The syntax is:

REtlD DATA <OO:ffer> <nnaronic> <format> <value>
<optiro> <optionl>

<buffer> : data buffer

<rrmemonic>: parameter name

<format> parameter data format

<value> expected value

<option> specifies the kind of algorithm
(average,in-limits,out of
-limits) to be performed on the
acquired parameter values

<optionl> specifies the kind of the
comparison limits according to
algorithm type

CUIPARE statE!IE!let - The statement performs
comparison between two acquired data buffers.

CUIPARE <OO:fferl> <hlffer2> <optiro>

<bufferl, 2> : acquired data buffers to be
compared

<option> : specifies if the average is to be
performed on the acquired values

FIID statement The statement nakes a
comparison of all the values related to a
specified parameter contained in the acquired
buffer with a reference value.
If the condition is satisfactory the value · and
its buffer position are printed.
Morecver, a Boolean variable is created
(1RUE, FALSE) and it can be used in the IF
statement.

FJN) <OO:ffer> <nnaronic> <log.op> <format>

<rrmemonic>: parametr name

<log.op.> logical operator (EX).NE.GE)

<format> parameter data format

<value> reference value

PAUSE statement - The statement suspends the
test execution and asks the operator if the test
has to continue or not.
It can be used in each point of the test.
the sintax is

PAUSE

IF stataraJ.t - The statement tests the value of
an expre..<sion containing the variable created by
the FIND statement and depending on the syntax
specified, executes TELAS statements:

IF expressioo
TilEN [TELAS statement]
TELAS statena1t

[ELSE] [TELAS statena1t]
TELAS statanen t

GO 'ro statE!IEI1t - The statement transfers
control to a label in a Telas program.

GO 'ro label

Terminate stat€!1Hlt - The terminate statememt
completes the test program and must be the last
statement of the entire test.

<value> ENJ

<buffer> : buffer name

I.7.2.6

1 ----------------------- ----------------
AGUSTA S.p.A.

~ ·······························
AMS-AMC -8- Doc. N. AS-AMS-XXX-XX:X

--------- ---------------- ---
--~~~-E~~·~·-----·-········- TEST ENGINEER........ PRODUCT ASSUR.

--"------
2 ----------------------- ------------------"- ---------------------------- -------------------------------

~ TaiiDriveTQ=100Lb/Ft
TEST CASE 1

-------------------- -----------------------
5

4

AMC2_T_DRV_SFT_Q

6

TAIL DRIVE SHAFT TORQUE 8
7

Read (AVG)= 99.000
10 11

Max Dev lation = 2. 5 %

-------------------- -----------------------------------"----
3

Samples: 32

Reference= 1 00.000

12

Date: 4-NOV-89
11:16:13

9

Vs: 2.5

Unit: Lb/Ft
~ ~

Perc. : 2.50% IN Vs: 1.0%

fig. 4

Telas Result

As previously mentioned Telas automatically
produces test result reports.
Telas provides results with different format
types depending on the options specified in the
statements that foresee results printing.
In general all the result formats contain the
following information:

1 Header on each test result page
2 Test case title
3 Execution time and data
4 Parameter nmerronic naiD2

5 Acquired samples number
6 Parameter description
7 Average of acquired parameter values
8 Expected parameter value
9 Allowed parameter deviation
10 Parameter measure unit
11 Maximum percentage of deviation allowed
12 Key word that specifies if the test is passed

or not
13 Percentage deviation

A typical example is shown in fig. 4

I.7.2.7

Test el<all£le

A simple example of a
helicopter computer

test case related to
qualification is

illustrated here below.
In particular, the requirement
alarm rranagement is verified.

related to an

'The relative part of the system requirement
document is:

!f ENGI-IIG 'OR' £NCI·Oil·T£11P 'OR' ~NGI•OIL•Pil;ESS • IIOT
IJAI..(O. ~l>~n a~n•'J~ ll>>! .j(>r• re<ol,

•. ~A1.2L.b [rt

(NCI-SC)~ b2.b !or (~ "1~, 'ANO'
ENCI-NC <• IICH 'ANO'
E.~CI-Oil.·TENP (• J$, u,.,,

If ~NCI·Oll.·i'RESS (2.H2 'OR') L324 SMl:o ~h•n ~~nos~
L~• (HGI•OIL·~R~SSIJRE CRT ON ~(u.,,

INCH I< "•n•<J~d •< •oo~~~.

If EHCh~C 'OR' ENC\•OIL·T£11? 'OR' OIC\•OIL•PRES$ • NOT
\IALIO, U1~n ~•n•'>~ Lh• •lor~ reHL,

[; EIICI•Oil·TEMP > \:10, lhtn Hn•H Ll\• ENCI•O!L•TE11P CRT
ON >~•r•·
(,~CH ; ' ~.,,~gtd •< ,~.,v~l,

If ENCI•HC 'OR' ENCi•Oll·TEMP 'OR' ENC\•Oll-?RESS • I<OT
VAL(O, LIHn "•"•s• Ll\• •l•r• roHL,

The requirerrent i.s verified performing the test
sequence shown below:

" 11--- T~ST P~Oc.£0UH: HOT • HH HQOOICE : TSJl ---------··-
11--- TP FllE HOllE A~C_U_!~!_TPOT.CCH --------------.
11--- TS fllE IIAXE U<C_U_TP07_T$ll.CO>l ---·-----------

"' " " " " " "
S<::~P• ol t~i. TS to t••t t"• ~oQuir-•unt fii~~.H.6 l<>r th•
Ell~ On ?HSS l,Z,J CH OK •l•r~.

" I(Tho TS Jl 1• >Vucturod •llo•'> in tho follo .. inll U!:>l•:

" , _____________________________ _
!l Sl:UJ PAl P•L 11,) 1~2.6 .~C(• 01 0P(2,412 CRT TC
IIStat SO Gt lor<5,.1n ~Gil (•)t or-H.!H O>t 11----------------------------
1\qood 0 K(61J TOll Hl-0) II 1
Jlqood 1(66) 107) 10.0)
IIQO<O.! T(&6) 107) Y(6.Q)
Hqood HHJ 1(37) K(l.Sl
IIQood T(6~) 1()1) 1{6,0}
Jlqood Q r(66} KCJ9) T{6.Q)
ltQood 0 Y($~) T()7) 1(6.0)

119o"d 0 T(66J H1-"'l TC6,0J
sr~ood T<HJ ron HSI'J
1\Q<><>d T(66) 1(37) TCLO) IQ
l(qoo.! T{66) T(J7} T(6.QJ 11
llqood •. '1'(66) 1(31) T(6.Q) 1Z
ll9ood 0 HC>'•in) T(Jl) T(6.Q) l) ,:.__ ___ _
" 11- S"\ SLUl TIT l,l,l ~ t•O >t\<1· Sl:IJl ~G 1,~,3 4.0
ll -C;o:ocu"to l'C 1~

11----------------- -------
IIS1U~ PH. PAl ~1;.)~62.6 ~G(• Of 0P(2.Hl C~T lC
IIS\>t Sa Gt lor<5•1n .~,~ <•3! or)~.~l4 ON "----------------------------
ll<;ood o o H(4.Ql r ron T(l.ol l~ ,,
" II- Ro~toro S!l/1 TIT 1 11,) • 700 •nd SlUt N' 1,2,3 • 66.0
11 -C•ocYto TC 1~

" IISIU~ 1Al PH IIG>•64.6 ~G<" or· OPO.HZ CH TC
HSIH SO ... for<S•in 111;~ (•38 <>rH.H~ Oil ., ___________________________ _
II la~l 0 T()1) TO.Q)

For semplici ty we consider the test case number
1.
We can see the part of the
related to the test case in

test statements
which the Fill..

statements set the test case condition and the
READ statements read and compare the parameters
values with the expected ones:

" 11----- TPOT- lS3l --

" ll----- TEST STEP 1 ------------------------------------

" '" "

" w

"

filL s1ul_ng_1 R 62.0
FILL Slvl_oil_tup_l R 37.0
FILL sivl_oil_pruo_l A 1.0
START_AIIC 1~0

START_ACG_ARIIIC
ST ~RT_AIIC
IIEAO_OATA
REAO_OAT A
REAO_OATA

8 STIIC
bv1for_a4l9 og,_J_onQ_o_pr_1 I 0 TYP
buff•r-11429 SQK_s_crton_•no X 00 TTP
buffH_a4l9 ~gx_s_crton_h_9 X 0000 TTP

t 1------ TPQT - TS31 --

") 1------- TEST STEP Z --

" '" " FILL ~lvl_nq_l R 66.0
START_AIIC 150
START_ACQ_ARIIIC bufhr_a~Z9 SYHC
START_AJ1C STIIC

In conclusion, we can see the test case results
according to the format

TP07 - TSJl --------------------------------

lEST Sl~P 1 -----------------------

Oato; 16-,I.PR-'.10
lO:H!17

nz AIIC £HG!HE O!SCRETf 1 - EltG OtL PHSS 1

Xlnt : ooao.o SOI :

11 •••••.••••••••••• l'l
R"'"d OYP): ooooooooooooooooooo Sit_po~. : 11

llnt : ooao.o

~ud (TYP):
R•lor•n<:• :

sor :

11· •••••••••••••••• l'l
000000
000000

Covntor

''"

2Tl PRESS A/10 HIIP OF HYOR A/10 GE~R60X CH_OH

Unt : 0080.0 SOI :

6it_st~rt : 11

11 ••••••••••••••••• 29
RU<I (TYP)! 000000000000000 ''" R•loronc• : 000000000000000

Conclusion

""

Telas, even though it may not be a very
sophisticated test language like the famous
ATLAS, it has proved to be a very useful and
efficient tool for the integration and
qualification phase.
It has been developed with the rrain aim to
obtain a product oriented to avionic computer
integration and qualification test at box level.
These aspects are important to be able to
llllderstand mre about the specific environment
where the tool is utilized and the type of Telas
statements in comparison with other cornnercial
test languages.
As a consequence of these considerations we can
=ize the advantages of using Telas:

user friendly approach
flexibility in system configuration
reduction of uman errors
test reproducibility
automatic test results documentation

1.7.2.8

