TEST ENGINEERING LANGUAGE FOR AVIONIC SYSTEMS

M.Mainini and G.P. Mariani
Agusta S.p.A.
Tradate, Italy

Abstract

To-day, the test of complex avionic systems is a
task that requires tools with high level and a
user friendly approach to write and perform
test sequences regardless of the complexity of
the software and hardware of the system wder
test. This approach allows the test engineer to
concentrate his attention verifying the system
performance against requirements instead of
losing time writing complicated low level test
sequences. The scope of this paper is to present
the Test language developed and employed by
Agusta during the development and testing of
the EFHIOL and A129 integrated avionic systems.
The structure, formal syntax and examples of the
language will be presented together with the
specific environment where the tool is used for
both the host computer with its facilities and
the hardware architecture of the rig.

The conclusions will cutline the importance and
benefits of utilizaing a tool like TEIAS ina
project of an avionic system.

Introduction

A digital avionic computer is basicaily
interfaced to aircraft sensors and equipment by
means of two digital buses: MIL-STD 1553 bus or
Arine 429 hus.

Moreover, for the cases in which the sensors
have no bus interfaces, a sensor interface unit
provides interfacing between sensors and on
board computers,

In such a way we can sunmarize that a general
test environment provide stimdation
monitoring of the unit under test by means of

and

[
-1

2,

the following equipments, as shown in fig 1 :

- MII-~STD 1553 Bus Station
— Arinec 429 Bus Station
- Alrcraft Sensor Fmulator

The 1553 Bus Station may perform multiple remote
terminals, hus controller or bus monitor
funetion depending on the test set-up, and are
comnected to the test computer directly on the
internal bus of the computer.

The Arvinc 429 Bus Station may perform the
function of equipment similation or bug monitor
and are connected to test computer by means of a
dedicate line.

All the sensors of the alrcraft sub-systems
(Elctrical,Hydraulic, Transmission ect.) may be
emlated by a sget of jigs interfaced to test
computer by means of a line.

On this ground considerations, Agusta has
developed for its own purpouse a test language,
called TELAS (Test Engineering Language for
Aviondc Systems), that interfaces and drives the

above mentioned equipment in an easy and
flexible way.
Telas is a tool for automatic testing oriented

to avicnic computer validation and qualification
at system level,

The tool has been developed on VAX Digital
computers with VMS operating system, using
Fortran language for application programs and
DCL (Digital Command Language) VAX/WMS for the
definition of Telas statements.

Starting directly from system requirements and
test plan it is possible to write the test
procedures by means of the Telas statements.
The test procedures become Telas command fiies
that the test computer executes automatically
and produces the test results report.

1

TAPE

PRINTER

\

/

— computER | ”—‘—Y v
Vo — /
\ ARING 428 AIRCRAFT
SENSORS
BUS STATION
EMULATOR
i ARINC a29
MiL 15853 UNIT
- UNDER
BUS STATION
TEST
MIL-STO-1663 BUS | L
)
& &

fig. 1

Telas Architecture

The Telas architecture is based on a data base
that containg all the parameters definitions and
their initialization values related to Mil 1553
bus station ,Arinc 429 bus station, alrcraft
sensors emilators (fig. 2).

These parameters characterize all the
information that the Unit Under Test exchanges
with enulated aireraft equipment/sensors.

The Parameters definition 1s performed by a test
engineer by means of an utility called TCF
(Telas Configuwation File) which allows the
followving:

- agsign a mnemonic name to each parameter

~ describe the meaninig of the memonic name

~ specify the parameter characteristic in terms
of format,LSB value,measure unit,range etc.

- specify the 1553, Arine 429 and sensors
emilators address ol the parameter

These definitions allow the test system to be
configured and to analyze the acquired data.

The initialization of the parameters defined
with the TCF utility is performed by the test
engineer using an utility called TSU (Telas
Set-Up) that allows values to be assigned to
each parameter in order to create particular
test conditions.

A shared memory provides interface between Telas |
commands and the real time emulation programs -
that manage the avionic bus stations and sensors
emylators.

Moreover, real time programs allow temporization
of the emldated sensors and drives the bus
stations and the sensors emiator.

User Interface

In order to allow the test engineer to interact
with TEIAS a user friendly interface based on
video menu driven forms with on line help
facility has been developed.

The operator interface allows the test engineer
to:

16562

8US STATION
S

TELAS

COMMANDS

SHARED
MEMORY

R,

EMULATION ARING 429

BUS STATION

PROGRAMS

1

UsSER

INTERFACE

SENSOAS

EMULATOR

fig, 2

Configure the
utility

test system by means of TCF

H

Initialize parameters by means of TSU utility

Write tesi sequences

R the automatic test and contrel the
execution on the display.
The operator can see on the display the Telas
statement that the system is executing, the
result of the test case

-~ Execute test in
debug phase.
The operator digits Telas statement and
control test result on the display

interactive mode during the

- Print test results

- Manage data files

For each facility described above error control
and diagnostic messages are provided.

I.7.2.3

Test development cycle

The test development cycle begins from the
analysis of system requirements and test plan
document (fig. 3).

The documents mentioned above constitute the
starting point to write test procedures.

Test procedures verify a growp of system
requirements items related to sub-systems or
homogeneous parts of sub-systems as specified by
the test plan document.

Moreover, a test procedure is split into a
certain mmber of test sequences.

First of all, the test engineer has to configure
and initialize Telas environment by means of TCF
and TSU utilities.

At this point each test sequence is written in
Telas language by means of a text editor,
folloving the system requirements step by step.

The result of this process is the production of
the test instructions that Telas will execute
automatically and, at the same time, the
production of Automatic Test Procedure document.
The output of the Telas processing is the test
result reports which can qualify the system or
starts corrective action process in case of
non-cenpliance with the system requirements.

SYSTEM RECRIREMENTS
[

TESY PLAK

TELAS CONFIGURATION

TEST PROCEQUAES

TELAS SET-uP

URIT
TEST
UNDER YEST

TEST RESULTS
L]

REPOAT

YES ®O
SYSTEM COARECTIVE
| e
QUALIFCATION ACTIONS

fig. 3

Telas program structure

A TELAS program structure provides control of
the overall test execution sequence,

Execution of a complete test program proceeds
sequentially by statement order except where
modified by control statements.

A Telas program structure consists of three
distinct parts:

- preamble statements
- main procedural statements

— terminate statements

Preamble statements - The preamble statements
precede the procedural statements. Preamble
statements do not cause any tests to be
executed,but include configuration and set-up
information that are referenced din the
procedural section.

There may be only one program preamble structure
within an entire program structure.

The preamble statements are:

INCLIXE < configuration file >
INCLIDE < setup file >

These statements include the configuration and
set-up files prepared during the "configuration
mll.

The following structure of statements can be
considered part of the preamble and allows the
test sequence to be identified or to introduce
general comments.

c
! 5 lines reserved for
test case title or comments

R]

C&

The £ive test lines will be printed in the test
results document.

These statements will also cause the printing of
the header file immediately before the C
Statement,

Main procedural statements — The main procedural
statements are a series of statements, each of
which desecribes a portion of the required test
vhich must be completed prior to the next
statement,

Each statement implies an instruction to proceed
to the following statement after completion of
the present one unless directed otherwise in a .,
branching statement. :
The procedural statements are listed below:

FILL
START EMUL
SIOP EMUL
START ACQ
MONTTOR

COMPARE

G0 TO

I.7.2.4

FOI Statement - The FILL statement set a
specified parameter to a value specified in the
statement.

The parameters are related to bus stations(i553
and Arine 429) and sensors emulator.

The syntax of the statement is the following:

FILL <moemonic> <formatr <value> <valuel>
where:

<mnemonic>: parameter name to be set

<format>: parameter data format
(real,integer,logical,hex,octal,
character)

value> @ data value

START EMIL statement -~ The statement schedules
the emulation tasks related to 1553 remote
terminals,bus controller, Arinc equipment or
sensors emilators.

The syntax of the statement is:

<optionl> <option?>

name of remote terminal, bus
controller,Arine equipment or
gensor {0 be emilated; up to
eight selections may be
specified.

<optionll,8>

STOP FPMIL statement - The statement permits fo
deactivate the emulation of the 1553 wmits
activated with the START EMUL statement

The syntax of the statement is :

STOP EMUL <optionl> <optica>.....<option8>

<optionN=1,8> : name of emuilator to be stopped.

START ACQ MBT stateme.t — The statement allows
1553 data to be acquired on the military bus by
means of the bus 1553 bus station operating as

bus monitor,
The syntax is:

START ACQ MBT <buffer> < Major frame number>

<sync option>

<buffer> : name of the data buffer in which the
acquired data are stored

Major frame number> : number of 1553 major

frames to be acquired

<gync option>: data acquisition ig synchronized
vith the step by step behavior of
bus controller of the unit under
test

START A) ARTNC statement - The statement allows
Arinc 429 data to be acquired on the bus by
means of the Arinc bus station cperating as bus
Mo tor,

The syntax is:

START A0Q ARING <buffer> <sync opticnd>

: name of the data buffer in which
the acquire data are stored

<puffer>

<syric option>: data acquisition is synchronized
with the step by step behavior of
the unit under test

MIITOR statement - The statement allows to
display/print the value of the parameters from

the acquired buffer with the START ACQ
statements.

The gyntax is:

MONTTOR. <buffer?> <mnemonicl>....... <memonic>
<uffer> name of data buffer where thé

parameters value are stored

<memonicl,”7) @ parameter name; maximum of seven
parameters are allowed.

READ DATA statement — ‘The statement reads the
value of the acquired parameters stored in the

I.7.2.5

data buffer and performs comparizon with the
expected values.
The syntax is:

READ DATA <buffer?> <memonic> <format>
<opticn> <optionl>

<value>

<puffer> @ data buffer

<mnemonic>: parameter name

<format> : parareter data format

<value> axpected value

<option> specifies the kind of algorithm
{average,in-limits,out - of
-limits) to be performed on the
acquired parameter values

<optionl> specifies the kind of the

comparison limits according to
algorithm type

(COMPARE statemenet - The statement performs
comparison between two acquired data buffers.

OOMPARE <bufferl> <tuffer?> <optiond>

Sufferl, 2> acquired data buffers to be
compared

<option> 1 specifies 1f the average is to be
performed on the acquired values

I statement .~ The statement makes a

comparison of all the wvalues related to a
specified parameter contained in the acquired
buffer with a reference value.

If the condition is satisfactory the value - and
its buffer position ave printed.
Moreover, a Boolean wvariable is
(TRUE,FAISEY and it can he used
statement.

created
in the IF

D <ufferd <mpemonic> {dog.opr <formats
<value>

<buffer> ¢ buffer name

dmemonicr>: paramety name

dog.op.> : logical operator (EQ.ME.GE.)

<format> : parameter data format

value> ¢ reference value

PAIRSE statement - The statament suspends the
test execution and asks the operator if the test
has to continue or not.

It can be used in each point of the test.

the sintax is :

PAISE

IF statement - The statement tests the value of
an expression containing the variable created hy
the FIND statement and depending on the syntax
specified, executes TELAS statements:

IF expression
THEN [TELAS statement]
TELAS statement

[ELSE] [TFLAS statement]
TELAS statement

G0 TO statewent - The statement transfers
control to a label in a Telas program.

GO TO label

Terminate statement - The terminate statememt
completes the test program and must be the last
statement of the entire test.

END

I.7.2.6

AGUSTA S.p.A, AMSANC -B- Doc, N, AS-AMS-X0X-XXX
DATE..... TEST ENGINEER......... PRODUCT ASSUR.
TEST CASE 1

TAIL BRIVE SHAFT TORQUE

Read (AVG)= 99.000

§
\
2
_\
4
-\ AMC2_ T_DRV_SFT_Q
6
N
7
N
10
N

Unit: Lb/Ft

fig., 4
Telas Result

As previously mentioned Telas automatically
produces test result reports.

Telas provides results with different fommat
types depending on the options specified in the
statements that foresee results printing.

In general all the result formats contain the
following information:

Header on each test result page

Test case title

Execution time and data

Parameter mmemonic name

Acquired samples number

Parameter description

Average of acquired parameter values

Expected parameter value

Allowed parameter deviation

10 Parameter measure unit

11 Maximum percentage of deviation allowed

12 Key word that specifies if the test is passed
or not

13 Percentage deviation

[S=Ree B NN NN 6, NS BT N S

A typical example is shown in fig. 4

1.7.2.7

’J .

Reference= {00,000

’J:

Batae; 4-NOV-g9
11:16:13

Samples: 32

——

Va: 2,5
12 13
Perc. | 2.50% IN Vs:1.0%
Test example

A simple example of a test case related to
helicopter computer qualification is
illustrated here below.

In particular,the requirement related to an
alarm menagement is verified.

The relative part of the system requirement
document is: '

{NCH s aanaged &3 above).

t# ENGI-¥G ~QR" ENCI-QIL-TERP “gR™
YAL{0. ihen adnage Lha alirw retel,

ENG1-0IL-PRESS 2 NOT

ENAZ.21.5 [}
ENGI-NG ¢ 2.5 i7or (5 3in, *AND”
ENGi-NG (= RGH “AHD®
ENGi-0IL-TENP <= 38, thani

IF ENGI-0TL-PRESS ¢ 2.447 “OR*) 4,324 BAR, Lhen agnage
Lhe EXCI~JIL-PRE5SURE CRYT 0% alarnm.
(HGH 1s aanaged a1 adoval,
{f ENGI=MG "QR" EMGI«QIL-TENP “OR* ENGI-0IL-PRESS =2 NOT
YALIO, than 2inagd Lhe dlara resal,

ENAZ.TL.T [r ENGE~HG 2w 32.4%, Lhin:
[f EHGI-GIL-TENP 3 124, Than aanag¢ Lhe ENCIi-GtL-YENP CRT
ON ztars.
(NGH i3 pamaged a3 adovae),
Lr ENGI-NG "OR* ENGI-QIL-TZnP "OR* ENGI-DIL-PRESS = nOY
YALLD. Lhea nanage Lha dlars reial,

The requirement is verified performing the test
sequence shown below:

LN

$i——e TEST PROCEQURED TPOT = TEST SEQUENGE ! TEIL —mm—memm e -—
$lme——e TR FILE NIHE ! AAC_RZ €28 _TPOT.COK —mrmr—— et
$l-=~—= T§ FILE HANE : arC_Z2_TROT_T331.00H -

icL

31l

1t In this TS tha AXC wil} aperats in Single_Fraae noda,

£

1 Scapa of thizs TS to test the Rsauiremsat ENAZ.21.6 for the
tt ERT OIL PREIS 1,243 CAT ON slarm.

5t

st

5 The T3 3L {1 stfuctUred a3 ahamn in the following tadla:
+

t

SE5IUx PAL Pal HGI=E2.4 NGL= [Hh P2 %12 £RT T<
sfitat 30 63 tordSain HEH <mid er2d.azé LE]

31

tlgaod 4 g H{62) 1 Y631y t{l-0} H i
tigeed ¢] TCabD) T TCAYY YCh.0) T 2
stgeed 0O [TCA8) T TEITY Y(8.0) 4 3
tigoed 0 & Y{46) T T{3TY HC3LS) H 4
sl9aad ¢ 0 Y(b4) H YCITY TLéL.0) N 3
tigood 4 a LT T H{I9) T{é-2) N é
ifgead 4 q Y{3F} ¥ TCITY V(. L 7
ftgoad ¢ i TL484) L Y(3FAY Y(sa.0)] 3
$fgood @ a TS84 T TCITY T(SE) 5 k]
sfigoed ¢ i T<{44) T TCITY vCh.0) T 10
flgaad | 1 T(64) ¥ T3 YC4-¢) H 11
slqe0d 1 e ' UrCss) 1 T431) TLéa0) T 12
flgoad 4@ 9 RC>Snin) ¥ T{31y T1{éa2) H 13

3t

ER]
S Sey SLUL TIT 1,2,1 = |40 and. STUI NG 1,1,3 = 4.9
31 rixecute IC 1%

1 ———

FISIUS PAL PAL MEI=H2.5 NGLw k3 ELFIES ¥ Cav k14
t13tat 3o 6t for{5uln H&H =38 ord4.324 0K

11

tlgood 8 [] HEAL0) T TC37) Yé1.0) H 14

sl -

133

31- Raztare SCLUL TIT L,2,2 = 700 and
3

STUL HE 1,:2,3 = £4.0

] “Execute TG 1

il =
TI5TUs 2AL PAL KGImE2.4 NGLm ar- QPCi vl (434 Tc
Slitat 30 G1 fari{jain KHEH C¥38 ar2d. 124 aK

51

Flfail @ e TChd 0} T TC3Tr 1dk.0) L 15

For semplicity we consider the test case number
1.

We can see the part of the test statements
related to the test case in which the FIIL
statements set the test case condition and the

READ statements read and compare the parameters
values with the expected ones:

183

Shwmummme TPET = T531 —mmee -
Eas

Blammmmae FEST STEP | et e i e st o oo = = et St e
$1

$CL

sl

1 FILL siul_np_% R &2.0

$ FILL slul_oll_tomp i R 3T.0

3 FILL stul_oil_presa_l A 1.0

% STAAT_AHC 150

) START _ACGQ ARINC buffer_a&Z9- SYNC

H START_AMC 8 SYKC .

s REAG_DATA bulfer_as29 sgx_s_wng_o_pr.1 L 0 TYP

] AEAG_DATA buffer_a429 sgx_3_crtan_eng X 00 TYP

' REAGLOATA bufter at29 sgu_s_¢rton_h_ g % 0000 TYP

%1

s

%1

$lem—-—n TPOT « TYS$34 - - -—- e
$1

$l-=----— TEST STEP 2 -—---- - m———————
¥ :

L

L1

] FILL siul_ng_1 R $5.0

] START_ANMC 156

$ START_ACQ_ARIHC buffsr_at2d STHC

3 STARY_AHC B SYHC

Tn conclugion, we can see the test case results
according to the format

oo TPQT = 1831 ———m

oo TEST BTEP] o rm e o coam st e e o i ok 68 i o e e
Qate: L6-APR-90

10247217

SGX_S_ENG_O0_PR_1 Read ; F Ratarsncas & F ..Sauolus H 2

272 AMC EMGINE OLSCRETE 1 ~ EHG Q[L PRESS 2

XInd @ 0084.0 501 ¢ 9 554 ¢ Q

................. 19
Razd (TYP): 0d04g00009000000000 Bit_pos. ¢ k1l £QU

SGX_S, CRTOM_ENG Sanples © 2 Counter 3 2
272 PRESS AMD TEMP OF ENGIMES CRT_OX
1int 3 0020.0 501 @ 0 55H = 0

Ait_start @ 11 Bit_ond I 314

Ileaaavssaanasannnns 29
Read {TYPI: 300000 EQU
Refarance 0dag0n

SGX_$_GRTON_H_G Sauplas 2 2 Counter ! H

271 PRESS AKD TENP OF HYDR AMD GEARBOX CRT_OK
AInt t 0089.0 s0T ¢ 0 TR

Bit_start : 11 #it_end § 25
L1lusanansennsnannnal®

$00000000020000 EQU
000000000000000

Reas (TYP}:
kafocance

Conclusion

Telas, even though it may not be a very
sophisticated test language like the famous
ATIAS, it has proved to be a very useful and
efficient tool for the integration amd
qualification phase.

It has been developed with the main aim to
obtain a product oriented to avionic computer
integraticon and qualification test at box level.
These aspects are important to be able to
understand more about the specific environment
vhere the tool is utilized and the type of Telas
statements in comparison with other commercial
test languages.

As a consequence of these considerations we can
sumarize the advantages of using Telas:

uger friendly approach

flexdbility in system configuration
reduction of uman errors

test reproducibility

automatic test results documentation

1

I.7.2.8

