
42nd European Rotorcraft Forum
Lille, France, 5–8 September, 2016

Paper 85

TOWARDS REAL TIME WAKE COMPUTATIONS USING LATTICE
BOLTZMANN METHOD FOR FLIGHT DYNAMICS SIMULATIONS

Mark A. Woodgate
Mark.Woodgate@glasgow.ac.uk

CFD Laboratory, School of Engineering
James Watt South Building

University of Glasgow, G12 8QQ, U.K.

George N. Barakos
George.Barakos@glasgow.ac.uk

CFD Laboratory, School of Engineering
James Watt South Building

University of Glasgow, G12 8QQ, U.K.

Rene Steijl
Rene.Steijl@glasgow.ac.uk

CFD Laboratory, School of Engineering
James Watt South Building

University of Glasgow, G12 8QQ, U.K.

Gavin J. Pringle
g.pringle@epcc.ed.ac.uk

EPCC, University of Edinburgh
James Clerk Maxwell Building

Edinburgh, EH9 3FD, U.K.

Abstract

1 INTRODUCTION
Computational Fluid Dynamic (CFD) methods have
become increasingly sophisticated and accurate
over the past 20 years, however they are orders
or magnitude too slow for real time flow computa-
tion and so, analytical models or simplified aerody-
namic models are still used if real time estimates
are necessary.

There are a number of methods to represent
vortical wakes in real time flight simulations. The
first is to use an analytical model or a set of veloc-
ity vectors in tabular form. A second method for real
time simulation is obtained by reducing the com-
putational cost of the calculation by using a low
fidelity free wake model such as shown by Horn
et al. [1] who performed a parametric study of the
wake parameters to achieve real time execution

with minimal differences from a spatially and tem-
porally converged response, which at the time did
not achieve real time execution. Lastly, a method
suggested by Spence et al. [2] used an implicit
large eddy simulation (ILES) to build a database
which is accessed in real time. This was achieved
through the use of a data compression schemes
via mesh simplification, and the use of kd-trees for
fast data queries.

In recent years the numbers of cores in both
Central Processing Units (CPUs) and Graphic Pro-
cessing Units (GPUs) have been increasing rapidly
and currently stand at a few thousand cores for a
high end commodity GPU. This number of cores
makes running real time simulations much more
feasible but the schemes will have to take ad-
vantage of such a large number of processors by

Copyright Statement c⃝ The authors confirm that they, and/or their company or organisation, hold copyright on all of the
original material included in this paper. The authors also confirm that they have obtained permission, from the copyright
holder of any third party material included in this paper, to publish it as part of their paper. The authors confirm that they
give permission, or have obtained permission from the copyright holder of this paper, for the publication and distribution of
this paper as part of the ERF2016 proceedings or as individual offprints from the proceedings and for inclusion in a freely
accessible web-based repository.

1



26

25

23

22 24

21

20

19

18

1715
14

12

13

11

10

16

9

8

7

6

5

4

3

2
1

000
1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 1: The common three dimensional lattices with the indexes re-order so as to minimise
the traversal of memory and hence reduce the memory bandwidth requirements of the the
LBM

carefully choosing algorithms that decompose into
a large number of semi independent operations.
Recently, lattice Boltzmann methods (LBM) have
emerged as an alternative to the more traditional
methods for simulating fluid flow. The method was
developed as an extension to lattice gas automata
[3, 4] and reviews of the developments since then
can be found in [5, 6].

Recently Khan, et al. [7] demonstrated the use
of the lattice Boltzmann method, implemented on
a graphic processor unit (GPU), running real time
simulations for indoor environments.

2 THE LATTICE BOLTZMANN
METHOD

The Lattice Boltzmann Method (LBM) solves
macroscopic fluid dynamics problems and sits at
the boundary between the molecular and contin-
uum views. The LBM uses the discrete Boltzmann
equation to simulate flow using the Bhatnagar-
Gross-Krook (BGK) collision model to calculate the
flow of the fluid across a limited number of particles
and directions. The stating point is the Boltzmann
Equation

(1)
∂f

∂t
+

p

m
· ∇f + F · ∂f

∂p
= L(f, f)

where m is the mass of the particles, F is the
force field acting on the particles and the distribu-
tion function f = f(x, p, t) is a function of position
x, momentum p, and time t. The right hand side

describes the collisions between particles and en-
capsulates the behaviour of the particles. One sim-
plification is (BGK) where

(2) L(f, f) = τ(f0 − f).

where f0 is the local equilibrium value of the par-
ticles and τ is a relaxation time related to the vis-
cosity of the fluid. The finite discrete velocity model
of the Boltzmann equation is where the evolution of
the fluid particles is confined to a discrete set of Q
velocities E = e0, e1, ..., eQ, such that the conser-
vation of equation 1 is given by

(3) ∂tfi(x, p, t) + ei · ∇fi(x, p, t) = Li(f, f)

where the discrete one-particle probability distri-
bution function fi(x, p, t) is the probability that a
fluid particle has velocity ei, at time t, at position
x. The transport of particles is then balanced by
the interactions represented by the collision opera-
tor Li(f, f).

In the lattice Boltzmann method the space is
discretised into a regular Cartesian lattice where
each node represents a small portion of the fluid.
The lattices are commonly labelled DdQq, where
d is the spatial dimension and q are the number
of microscopic velocities. Some common three di-
mensional lattice constructions for fluid flows are
D3Q15, D3Q19 and D3Q27 as shown in figure
1. The D3Q19 model has been chosen to keep
the computational cost low while maintaining an
isotropic lattice.

2



The equations are solved numerically by a two
step process. First, there is a collision step where;

f t
i (x, t+ δt) = fi(x, t) +

1

τf
[f eq

i (ρ, u)− fi(x, t)]

= (1− 1

τf
)fi(x, t) +

1

τf
f eq
i (ρ, u),

(4)

with fi representing the particle distribution func-
tion which is the fraction of particles located at posi-
tion x, at time t, moving with the microscopic veloc-
ity ei, and i are the discrete directions of momen-
tum which are the q chosen collocation points of
the velocity-discrete Boltzmann equation and de-
termine the basic structure of the numerical grid.

This is followed by a streaming step where the
value of f t

i (x, t + δt) is shifted in space along the
lattice velocity ei

(5) fi(x+ ceiδt, t+ δt) = f t
i (x, t+ δt).

where c is the lattice speed. The relaxation time τ
determines how fast the equilibrium position is ap-
proached and is also related to the kinematic vis-
cosity of the fluid. The equilibrium state f eq

i (ρ, u)
itself is a low Mach number approximation of the
Maxwell-Boltzmann equilibrium distribution func-
tion where ρ is the the macroscopic value of the
density and u is the value of the velocity.

The density ρ and the velocity u are obtained
from the zero and first moments of the distribution
functions

(6) ρ =

18∑
i=0

fi, ρu =

18∑
i=0

ceifi

and the discrete velocity set ei is defined as follows

(7) ei =



(0, 0, 0) i = 0 wi = 1/3
(±1, 0, 0) i = 1− 2 wi = 1/18
(0,±1, 0) i = 3− 4 wi = 1/18
(0, 0,±1) i = 5− 6 wi = 1/18
(±1,±1, 0) i = 7− 10 wi = 1/36
(±1, 0,±1) i = 11− 14 wi = 1/36
(0,±1,±1) i = 15− 18 wi = 1/36

The equilibrium state is calculated by
(8)

feq
i (ρ, u) = ρwi

(
1 +

3ei · u
c

+
9(ei · u)2

2c2
− 3u2

2c2

)
where the wi are the weight co-efficients defined in
equation 7.

It can be shown through a Chapman-Enskog
expansion [8, 9] that the Navier-Stokes equations
can be obtained from the lattice BGK model.

It should be noted that equation 4 is local in the
sense that only information at point x is needed to
calculate the system state. The streaming process
is limited to the nearest neighbours and requires
no computation. This makes the Lattice Boltzmann
method ideal for running on many cores simulta-
tiously.

Although the lattice Boltzmann method is ex-
pressed as a decomposition into two steps this is
a suboptimal in terms of software implementation.
More optimised implementations can be found for
both CPUs [10, 11] and graphics processing units
(GPUs) [12]. The disadvantages of the LBM is that
it is limited to low Mach numbers with non-trivial
implementations of the boundary conditions. How-
ever both these drawbacks are not an issue when
just considering wake calculations.

2.1 High Reynolds Number Flows

The relaxation time τ is related to the viscosity of
the fluid by

(9) τ = 0.5 + 3νlb = 0.5 + ulb(N − 1)/Re

where νlb and ulb are the viscosity and speed in
lattice units with Reynolds number Re. However
as τ approaches 1/2 the scheme becomes unsta-
ble as the lattice viscosity is too low to dissipate
the shortest wavelengths. The Reynolds number
can be increased by several orders of magnitude
by use of the Entropic Lattice Boltzmann method
[13, 14] which allows the Lattice Boltzmann mod-
els to support a discrete H-theorem through the
use of a modified equilibrium distribution function
(10)

f eq
i = ρwi

3∑
α=1

(
2−

√
1 + u2α

)(2uα +
√

1 + 3 + u2α
1− uα

)eiα

The relaxation process is also modified with an ad-
justable parameter β at every simulation step by
means of the solution of the h-function monotonic-
ity constraint

(11) H(f) = H(f − β(f − f eq))

which produces an unconditional stable numerical
scheme.

3



2.2 Turbulence Model

For turbulent calculations a Smagorinsky sub-grid
scale model [15] is used locally to modify the fluid
viscosity by adding a term νt which is dependent
on the magnitude of the strain rate tensor S.

(12) ν = ν0 + νt

In the smagorinsky model, the relaxation time τt is
calculated using the momentum flux tensor:

(13) Qαβ =
∑
i

eiαeiβ(fi − feq
i ),

and

(14) τt =
1

2

(√
τ20 + 4c−4

s C2
S(QαβQαβ)1/2 − τ0

)
where CS is the smagorinsky constant. This in-
creases the computational of the scheme, as well
as removing the single relaxation time, since it is
now both spatially and temporally varying depen-
dent on the gradients of the velocity, but it is still
local to the node.

More recently Malaspinas [16] introduced two
new methods, the consistent strain model and the
consistent smagorinsky model. Although the sec-
ond method gave superior results it is not as com-
putationally efficient as the first since it involves
both second order Hermite polynomial as well as
the strain rate is calculated with finite differences.

3 FINITE VOLUME METHOD LBM
COUPLING

Coupling between a Navier-Stokes solver and a
Lattice Boltzmann method were considered in [17].
The connection between the lattice Boltzmann vari-
ables and the finite volume method was achieved
through a first order expansion of the lattice Boltz-
mann variables around the local equilibrium term.
The LBM is a molecular level method and so con-
tains more information then the FVM macroscopic
variables. The zeroth order terms relate to the the
macroscopic quantities (FVM variables) while the
first order terms are related to the gradients. Since
in this case the FVM was an incompressible solver
the pressure field of the FVM was related to the
density field of the LBM with the constant calcu-
lated assuming the density average on the inter-
face was constant. Recently Tong and He [18] pro-
posed a framework to unify the different coupling
schemes.

3.1 Parallel implementation

Implementing the interface between FVM and LBM
solvers not only requires that the variables are
transformed from macroscopic to molecular and
back again but the communication does not have to
be two way. In general the two unsteady schemes
will not be progressing at the same real time step
and real require different numbers of iterations per
synchronisation. If this number is fixed then it still
possible to use a two way communication, how-
ever to increase the flexibility between the coupling
methods a one sided communication using remote
memory access (RMA) model has been used in
this case.

MPI [19] has two memory models for RMA, as
shown in figure 2, unified where the public and
private windows are identical and separate where
they are different. In the unified model the whole of
the solution vector would need to be in a window
instead of just the interface values.

Store Load

Process

GetPut

Store Load

DataWindow

Synchronisation

Window
Process

Put Get

Figure 2: The two memory models for
RMA, unified on the left and separate
on the right.

This model was chosen for its flexibility since
there is both a conversion between the molecular
variables and the macroscopic variables, and an in-
terpolation required before the data is in the correct
format for the other code. Both of these steps can
be done within the synchronisation process hence
allowing either the molecular or macroscopic vari-
ables to be put or get depending which has the
smaller message size.

To fully exploit this, the windows are set up as
shown in figure 3. In this configuration, multiple
windows are contained within a single processor
and each window will have its own synchronisation
process so it’s quite possible that not all windows
on the same process have the variables stored in
the same format. Another advantage of laying out
the windows in this way, is that at no time do multi-
ple processes try and access them same region of

4



the window and this mean that the windows do not
have to be locked.

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

Proc 6
Proc 7

Proc 8Fi
ni

te
 V

ol
um

e 
M

et
ho

d

L
attice B

oltzm
ann M

ethod
Figure 3: The layout of the windows
on the interface between the HMB and
LBM.

4 REAL TIME COMPUTATION

A simulation is at least real time, if the physical
time between two simulation steps is no less than
the time taken to compute them. For this to occur,
means there is a balance between the size of the
lattice which effects both the size of the domain as
well as the accuracy of the results, and the com-
putational cost of updating each lattice point. Con-
sider the following idealised wake problem. Assum-
ing a computational domain of 20m × 20m × 20m
with a flow of 10m/s the Reynolds number would
be around half a million. Assuming a 20cm res-
olution within the computational domain, implies
there are 1 Millions points in the lattice. Taking a
lattice speed of 0.05, 1000 lattice time steps are
required for each real second of time. Hence a
LBM needs to be able to update 1 Billion lattice
points per second to obtain a real time computa-
tion. Currently state of the art solvers, Palabos [20]
can reach about 120 Million update per second on
an ARCHER [21], the UK national supercomput-
ing service, node, two 2.7GHz 12-core E5-2697
v2 processors, while current GPU performance is
around 900 Million update per second [7] meaning
that a rate of 1 Billion is within reach. However this
should be noted that this is for the most basic of
lattice Boltzmann methods and the addition of both

the turbulence model and the entropic lattice Boltz-
mann method will add to the cost of the algorithm
and hence reduce the number of lattice updates
per second.

Secondly, a dynamical load balancing is used to
maintain balance between the FVM and the LBM
and run them at maximum efficiently on a given
number of processors. The load balance can be
seen in figure 4. With N processes, these are split
into 3 groups. The first is a single process which
is the controller. The second is the group of pro-
cesses associated with the FVM code and the third
is the group of processes associated with the LBM
code. Within the last two groups statistics are keep
on how close to real time the computation is. These
are fed back to the controller via a single proces-
sor to decides if a re-balancing is needed. Both the
FVM and the LBM have been modified to run as
subroutines, avoiding the need to use MPI spawn-
ing. The main changes required were to rename
MPI_COMM_WORLD in both codes and clear up all
the memory leaks. To maintain a single code base,
a compiler directive is used in the top level function
to distinguish if the code base will be used alone or
within with controller framework.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

Controller

HMB LBM

Figure 4: The different processor types
in the real time simulation.

The main task of the controller is to compute
the new interface groups and interpolation fac-
tors needed in the synchronisation process. This
is done while the fluid computation continues so as
to reduce the downtime during the restart. At this
point the controller tells process zero of the FVM
and LBM groups that a restart is required. The so-
lution data is then either dumped to disk in a pro-
cessor independent format or send directly to the
controller to avoid the I/O.

5



Function Percentage run time
Collide 32%

Halo exchange plus boundary conditions 21%
Calculating continuum velocities 12%

Calculating equilibrium distribution 8%
Steaming 8%

Updating the continuum conditions 7%
Calculating residual norm 4%

Table 1: The top 7 most computational expense functions in LBM code accounting for over
90% of the runtime of the code.

5 PERFORMANCE

A key aspect of obtaining real time computations
is optimising both the serial and parallel perfor-
mances of the algorithm.

Table 1 shows the time spent in LBM code for a
test case of a lattice of size 11× 101× 101 split into
16 blocks with periodic boundary conditions on all
sides. The streaming and the collision parts of the
algorithm currently take up some 40% of the run-
time of the code. The one part of the code which
needs more optimisation is the exchange of data
between the blocks, this requires no computation
an only works on the 6 block faces, 12 block edges
and 8 block corners. The remained are the cost in
calculating the continuum variables from equation
6 and the equilibrium distribution from equation 8

No. of Procs Time Efficiency
1 2.850s 100.0%
2 1.540s 92.5%
4 0.921s 77.4%
8 0.601s 59.2%
12 0.607s 39.1%

Table 2: Wall time and efficiency of
LBM on a 2.7 GHz, 12-core E5-2697
v2 Archer CPU

As can be seen from table 2 the LBM has a very
different parallel scaling compared to a FVM which
would still be around 75% all 12 cores of a E5-
2697 CPU. The main difference between the codes
is the computational cost per lattice point is much
lower than in an approximate Riemann of the FVM.
Due to this low amount of work per load/store the
memory bandwidth within the processor becomes
a critical bottleneck in the performance when run-
ning on all the cores. In fact the increase in perfor-
mance between 8 and 12 cores is minimal. In fact

the streaming part of the algorithm does no floating
point operations and is just loads and stores.

A new improved memory layout, shown in ta-
ble 3, allocates a single block of memory, then
aliases the lattice points instead of allocating each
lattice point separately. This increases the single
node performance at the expense of some paral-
lel efficiency however the over runtime of the code
has been reduced even at the maximum number of
cores.

No. of Procs Time Efficiency
1 2.200s 100.0%
2 1.180s 93.2%
4 0.714s 77.0%
8 0.489s 56.2%

Table 3: Wall time and efficiency on a
2.7 GHz, 12-core E5-2697 v2 Archer
CPU using improved memory layout

Figure 5 shows the parallel performance of the cur-
rent LBM compared to that of Palabos [20]. A state
of the art LBM code which has been developed
since 2009 when it branched from the OpenLB
[22]. The LBM of Glasgow is not as efficient on
single node performance as Palabos, for example
Palabos uses only q variables per node instead of
2q, as well as, combining both the collision and
streaming into one process which means the mem-
ory just has to be stepped through once instead
of twice. These performance enhancements will be
introduced at a latter stage when the couple frame-
works have been shown to be robust. However the
speedup curves between both codes show a very
similar drop of in performance at the higher num-
ber of nodes after the memory bandwidth of the
processor has been saturated.

6



Number of Cores

S
p

ee
d

u
p

4 8 12 16 20 24

4

8

12

16

20

24

Ideal
Speedup LBM
Speedup Palabos

Figure 5: The speedup curve for run-
ning up to 24 cores within an ARCHER
compute node for the LBM of Glasgow
compared to that of Palabos [20] - (Two
2.7GHz 12-core E5-2697 v2 Proces-
sors).

6 RESULTS

The following results example how well the LBM
can be used to resolve and maintain vortical struc-
tures at the resolutions required for for real time
computations

6.1 Two counter-rotating vortices

For a counter-rotating vortex pair in a viscous fluid
their mutual induced velocity causes them to re-
main a fixed distance apart, and to move together
in a fixed direction. Figure 6 shows the initial so-
lution on the baseline 101 × 201 lattice and the
fine 201 × 401 lattice. Due to the maximum vortic-
ity begin at a lattice node in both lattices the peak
magnitude of vorticity is the same while the be-
haviour near the peak is less well represented in
the the baseline lattice. Figure 7 shows the com-
parison between the vorticity on the baseline and
fine lattice computations after cycling through the
domain 4 times. The solutions are very similar with
the baseline lattice is only slightly lagging behind
the finer grid solution with also a slightly reduced
peak vorticity. This means that the resolution of
101× 201 baseline lattice is a lattice converged so-
lution. Figures 8 and 9 shown the time history of
the counter-rotating vortex pair for the baseline and
fine lattice respectively. They clearly show that the

behaviour of the system is similar on both lattice
sizes and so the baseline lattice is fine enough for
a lattice converged result. The figures also clearly
show the vortex pair to diffuse over time due to the
low Reynolds number used in the calculation. This
diffusion also causes the vortex pair to slow down
over time.

6.2 Two co-rotating vortices

This test case consists of a pair of co-rotating equal
vortices. Before merging, the vortex pair can be de-
scribed as follows. Firstly, the two vortices rotate
around the centroid of the total vortex. Next the vor-
ticity contours are deformed elliptically by the local
strain induced by each vortex on the other. Thirdly,
vorticity waves propagate from each vortex rear-
ranging the field and lastly the core of each vortex
increases due to viscous effects. The viscosity re-
duces the ratio between vortex radius and vortex
separation until a critical value is reached and the
vortices merge. Figure 10 clearly shows the correct
merging behaviour of a co-rotating vortex pair on a
401× 401 lattice.

6.3 Vortex shedding behind a cylinder

The final test case is a real time calculation of flow
based a cylinder. The lattice size was 601× 101× 3
with a Reynolds number of 1000, lattice velocity of
0.1. Hence the lattice spacing is 0.01 and time step
of 0.001 equates to 1000 iteration per real second.
The I/O was excluded from the calculation as it rep-
resented a substantial, 35%, total run time. Figure
11 shows the behaviour of the wake throguh a sin-
gle shedding cycle.

7 CONCLUSIONS

This paper presented initial results of implement-
ing a three dimensional LBM within the University
of Glasgow solver suite. It has shown good promise
at being able to maintain flow features on a mesh
resolution which could be run in real time without a
massively parallel computing. Both HMB and LBM
has been modified to allow to be used under a con-
troller with dynamic load balancing.

Currently the best method to couple the in-
terface variables between the is under investiga-
tion between the molecular level lattice Boltzmann
method and the FVM macroscopic variables for a

7



compressible solver. The high Reynolds number
Entropic Lattice Boltzmann method is being de-
veloped to investigate its possible to maintain real
time flow calculation for more realistic Reynolds
numbers.

8 ACKNOWLEDGMENTS
This work is funded under the Engineering and
Physical Sciences Research Council Embedded
CSE (EPSRC/eCSE) support grant eCSE05-04
which provides funding to develop software to run
on ARCHER. The use of the UK National Su-
percomputing Service ARCHER, and the West of
Scotland Computing service ARCHIE-WeSt are all
gratefully acknowledged.

9 REFERENCES
[1] Horn, J. F., Bridges, D. O., Wachspress, D. A.,

and Rani, S. L., “Implementation of a free-
vortex wake model in real-time simulation
of rotorcraft,” Journal of Aerospace Comput-
ing, Information, and Communication, Vol. 3,
No. 3, 2006, pp. 93–107.

[2] Spence, G. T., Moigne, A. L., Allerton, D. J.,
and Qin, N., “Wake vortex model for real-time
flight simulation based on Large Eddy Simula-
tion,” Journal of aircraft , Vol. 44, No. 2, 2007,
pp. 467–475.

[3] Frisch, U., Hasslacher, B., and Pomeau, Y.,
“Lattice-Gas Automata for the Navier-Stokes
Equation,” Phys. Rev. Lett., Vol. 56, Apr 1986,
pp. 1505–1508.

[4] McNamara, G. R. and Zanetti, G., “Use of
the Boltzmann Equation to Simulate Lattice-
Gas Automata,” Phys. Rev. Lett., Vol. 61, Nov
1988, pp. 2332–2335.

[5] Chen, S. and Doolen, G. D., “Lattice Boltz-
mann method for fluid flows,” Annual review of
fluid mechanics, Vol. 30, No. 1, 1998, pp. 329–
364.

[6] Aidun, C. K. and Clausen, J. R., “Lattice-
Boltzmann method for complex flows,” An-
nual review of fluid mechanics, Vol. 42, 2010,
pp. 439–472.

[7] Khan, M. A. I., Delbosc, N., Noakes, C. J., and
Summers, J., “Real-time flow simulation of
indoor environments using lattice Boltzmann

method,” Building Simulation, Vol. 8, No. 4,
2015, pp. 405–414.

[8] Chapman, S. and Cowling, T. G., The math-
ematical theory of non-uniform gases: An ac-
count of the kinetic theory of viscosity, ther-
mal conduction, and diffusion in gases, Cam-
bridge University Press, 1991.

[9] He, X. and Luo, L.-S., “Lattice Boltzmann
model for the incompressible Navier–Stokes
equation,” Journal of statistical Physics,
Vol. 88, No. 3-4, 1997, pp. 927–944.

[10] Wellein, G., Zeiser, T., Hager, G., and Donath,
S., “On the single processor performance of
simple lattice Boltzmann kernels,” Computers
& Fluids, Vol. 35, No. 89, 2006, pp. 910 – 919.

[11] Mattila, K., Hyvluoma, J., Timonen, J., and
Rossi, T., “Comparison of implementations of
the lattice-Boltzmann method,” Computers &
Mathematics with Applications, Vol. 55, No. 7,
2008, pp. 1514 – 1524.

[12] Obrecht, C., Kuznik, F., Tourancheau, B., and
Roux, J.-J., “The TheLMA project: A thermal
lattice Boltzmann solver for the GPU,” Com-
puters & Fluids, Vol. 54, 2012, pp. 118 – 126.

[13] Chikatamarla, S., Ansumali, S., and Karlin, I.,
“Entropic lattice Boltzmann models for hydro-
dynamics in three dimensions,” Physical re-
view letters, Vol. 97, No. 1, 2006, pp. 010201.

[14] Karlin, I. V., Ferrante, A., and Öttinger, H. C.,
“Perfect entropy functions of the Lattice Boltz-
mann method,” Europhys. Lett., Vol. 47, 1999,
pp. 182–188.

[15] Yu, H., Girimaji, S. S., and Luo, L.-S., “{DNS}
and {LES} of decaying isotropic turbulence
with and without frame rotation using lattice
Boltzmann method,” Journal of Computational
Physics, Vol. 209, No. 2, 2005, pp. 599 – 616.

[16] Malaspinas, O. and Sagaut, P., “Consis-
tent subgrid scale modelling for lattice Boltz-
mann methods,” Journal of Fluid Mechanics,
Vol. 700, 2012, pp. 514–542.

[17] Latt, J., Chopard, B., and Albuquerque, P.,
“Spatial coupling of a lattice Boltzmann fluid
model with a finite difference Navier-Stokes
solver,” arXiv preprint physics/0511243, 2005.

8



[18] Tong, Z.-X. and He, Y.-L., “A unified coupling
scheme between lattice Boltzmann method
and finite volume method for unsteady fluid
flow and heat transfer,” International Journal
of Heat and Mass Transfer , Vol. 80, 2015,
pp. 812 – 824.

[19] “Message Passing Interface Forum,” http:
//www.mpi-forum.org/, Accessed: 01-
07-2016.

[20] Latt, J., “Palabos an open-source CFD

solver based on the lattice Boltzmann
method,” http://www.palabos.org/, Ac-
cessed: 01-07-2016.

[21] “UK National Supercomputing Service
ARCHER,” http://www.archer.ac.uk/,
Accessed: 01-07-2016.

[22] Krause, M. J., “OpenLB Open source lattice
Boltzmann code,” http://www.optilb.
org/openlb, Accessed: 01-07-2016.

Baseline Lattice Fine Lattice

Figure 6: The initial solution on the baseline and fine meshes for the Counter-rotating Vortex
Pair

Figure 7: A comparison between the vorticity of the baseline, black contours, and fine lattice,
purple contours, for the Counter-rotating Vortex Pair after four loops

9



X Vorticity

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09
-0.10

X Vorticity

0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

-0.005
-0.010
-0.015
-0.020
-0.025
-0.030
-0.035
-0.040
-0.045
-0.050

X Vorticity

0.035
0.032
0.028
0.025
0.021
0.018
0.014
0.011
0.007
0.004
0.000

-0.003
-0.007
-0.010
-0.014
-0.018
-0.021
-0.025
-0.028
-0.032
-0.035

X Vorticity

0.025
0.022
0.020
0.018
0.015
0.012
0.010
0.007
0.005
0.002
0.000

-0.003
-0.005
-0.007
-0.010
-0.013
-0.015
-0.018
-0.020
-0.023
-0.025

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

Figure 8: The vorticity of the baseline lattice for the Counter-rotating Vortex Pair

X Vorticity

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

-0.00
-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09
-0.10

X Vorticity

0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

-0.005
-0.010
-0.015
-0.020
-0.025
-0.030
-0.035
-0.040
-0.045
-0.050

X Vorticity

0.035
0.032
0.028
0.025
0.021
0.018
0.014
0.011
0.007
0.004
0.000

-0.003
-0.007
-0.010
-0.014
-0.018
-0.021
-0.025
-0.028
-0.032
-0.035

X Vorticity

0.025
0.022
0.020
0.018
0.015
0.012
0.010
0.007
0.005
0.002
0.000

-0.003
-0.005
-0.007
-0.010
-0.013
-0.015
-0.018
-0.020
-0.023
-0.025

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

X Vorticity

0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014
-0.016
-0.018
-0.020

Figure 9: The vorticity of the fine lattice for the Counter-rotating Vortex Pair

10



Figure 10: The merging of a Co-rotating Vortex Pair

11



T = 10.0s

T = 10.2s

T = 10.4s

T = 10.6s

T = 10.8s

T = 11.0s

T = 11.2s

Figure 11: Flow past a cylinder Re=1000.0

12


