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- INTRODUCTION i) Material reinforced by periodically arranged, parallel 
fibers (Figure 1) 

;omposite materials consisting of high tensile resin-impre­
nated fibers are being more and more frequently used in 
tructures capable of high mechanical performance. Direct 
3lculation of deformation of these structures using the 
inite elements method raises major difficulties due mainly 
o the very high number of heterogeneities in the material. 
:amputation methods are, therefore, based on investigation 
1f equivalent homogeneous materials, i.e. effective behavior 
noduli (Willis, Hashin ... ). 

n this paper we use the homogenization method. This me­
:hod applies when the material being investigated has ape­
·iodic structure. It can then be shown that when the dimen­
•ions of the period tend homothetically to zero the fields of 
feformation and stresses tend to those corresponding to a 
1omogeneous structure whose elastic properties can be 
:omputed precisely when a single period of the composite 

medium to be in\'estigated is known. This boundary value 
;tructure is the homogenized structure and its behavior 
::oefficients are the homogenized coefficients. This is the 
macroscopic equivalent structure. Furthermore by a locali­
~ation procedure the method allows an easy computation 
Jf the microscopic field of stresses and, in particular, of 
rttress forces at the boundaries between fibers and matrix. 
These stress-forces are particularly important because they 
:;an initiate cracks and delaminations. The overstresses at 
the microscopic level may produce fiber ruptures. 

After presenting the general method of homogenization, 
which leads first to an homogenized equivalent macroscopic 
structure and secondly to a localization procedure for com­
puting the field of microscopic stresses and stress forces, we 
apply the method to two types of composite materials : 

Fig. 1 :PARALLEL FIBERS 

ii) Material consisting of a very large number of parallel 
layers of homogeneous materials superposed periodi­
cally (Figure 2) 

x, 

Fig. 2 :MULTIPLE LAYERS 

This is followed by the numerical results obtained by using 
the MODULEF code. 
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2- DESCRIPTION OF THE HOMOGENIZATION 
METHOD [1] [4] [5] [10] [12] 

2.1 - Formulation of the problem 

given in Figures 6 and 7. 

Let us consider an elastic body which occupies a region n 
related to a system of orthonormal axes Ox1 x2 x3. This 
body is subjected to a system of voluminal forces hi} and 
surface forces { Fi} on a portion fF of boundary$ n. The 
other portion of the boundary is f0, to which a zero move- Fig. 6: MATERIALS WITH FINE PERIODIC STRUCTURE 
ment condition is imposed. 

01)-----1-

., 

The field of stresses at equilibrium satisfies the equilibrium 
equations 

11 
8aij _ 
-- + fi- 0 
8xj 

2) = 

inn 

Furthermore, the material is elastic with fine periodic struc· 

Fig. 7: MATERIALS WITH FINE PERIODIC STRUCTURE 

All the period forms must be such that opposing faces which 
correspond in a translation can be defined two by two. 

In all cases we shall designate as Y a period characteristic 
of the material which has been enlarged by homothetics 
and fixed once and for all. e then designates the homothetic 
ratio which is small and which takes us from Y to a period 
in the elastic material. The elastic structure of the material 
is then fully known if it is given over a single period, e.g. the 
enlarged period Y related to the orthonormal axis system 
Oy1 y2 y3. Then let aijkh (y) be the coefficients of elasticity 
on Y, which generally alter very quickly with respect toy, 
but satisfy in all respects the symmetry relation 

aijkh (y) = ajikh (y) = akhij (y) 

ture, i.e. n is covered by a set of identical periods of rec· and positivity relation 
tangular (Fig. 4) or hexagonal (Fig. 5) or more complicated V 
shape such as the examples 3 ao > 0, aijkh (y) Tij Tkh,aO Tij Tij , Tij = Tji 

The functions y -aijkh (y) defined on Yare extended by 
Y·periodicity to the entire space Oy1 y2 y3 assumed to be 
covered by Contiguous periods identical to Y. 

The coefficients of elasticity in the material ·n are then 

Fig. 4: MATERIALS WITH FINE PERIODIC STRUCTURE aijkh E (x) dbfined by : 

Fig. 5: MATERIALS WITH FINE PERIODIC STRUCTURE 

aijkh E (x) = aijkh (y). Y = .2. 
E 

For greater simplification in the text we shall write : 

a (y) = j aijkh (y) I , a E (xi Cl a ( ~ I , a Clj aij f 
and shall consider a (y) or a E (x) as known matrix 6 x 6 
indexed by the symmetrical pairs (i, j). 
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~ law of elasticity 

3) aij = aijkh e (x) ekh (u) 

rritten 

a = a • (x) e (u), 

~re ~ OU· 
e (u) =jeij (u)} , eij (u) = "2 (K 

J 

en an ambiguity is possible, either ex (u) or ey (u) will 
specified depending on whether the drift occurs with 
Ject to x or y. The boundary conditions are finalized 

~~ u = 0 on f 0 

• problem posed by (1) (2) (3) (4) has a unique solution 
ich depends on e and which we shall designate u e ; to 
; corresponds a field of stresses a e given by 

5) a• Cl a € (x) e (u 'l 

merically it is very difficult when e is small to calculate 
since there are a large number of heterogeneities in the 

>tic medium. We therefore try to obtain a limited expan· 
1 of the solution u e , ae. 

- Asymptotic expansions 

! solution is affected by two factors 

The first is the scale of n and arises from the forces 
applied and the conditions at the boundaries. 

The second is due to the periodic structure ; it is on 
the same scale as the period and is repeated periodical­
ly. 

s justifies looking for an asymptotic expansion of the 
:n 

~re the ua=(x, y) are, for each xEn, Y-periodic func­
ls with respect to the variable y E Y. Then y = ; iS ap­
id to (6). Associated with the expansion (6) is an expan-
1 ofthe field of deformation e (u 'l (*). 

7) e (u 'l - .1. e (uo) + e (uo) + e (u 1) 
- € y X y 

+ e [ex (u 11 + ey (u2l] + 

I of the field of stresses a e 

3) a • = f a 0 (x, y) + a 1 (x, y) + e a 2 (x, y) + ... 

with 

a 0 (x, y) = a (y) ey (uol 

a 1 (x, y) = a (y) [ ey (u1) + ex (u0 l] 

a 2 (x, y) = a (y) [ ey (u2) + ex (u 1!] 

The equilibrium equations (1) applied to a• give 

8~. a e ij + fi = 0 
J 

or in a more condensed form 

9) div a• + f = 0 . 

Given the expansion (8) of ae we have (**) 

10) ~ div y a0 +..!.(divy a1 + div X a0 ) 
€ € 

+ div Y a2 + div x a 1 + f + ... = 0. 

xEU,yEY. 

The boundary conditions (2} are treated in the same way 

11) ...!.. a0 . n + a1 .n - F + e a 2 .n + ... = 0 
€ 

for x E f F y E Y. 

Finally the conditio"ns (4) mean that 

12) u 0 +eu1 +e2 u2 + ... :0 

forxEf0 • yEY. 

By making the various powers of e zero we obtain 

13) y ~ 
div a 0 = 0 

a 0 Cl a (y) ey (u 0) 

1 
div Y a 1 + div x a 0 = 0 

141 
a 1 = a (y) [ ey (u 1) + ex (u 0~ 

~ 
div Y a 2 + div x a 1 + f = 0 

151 
a 2 = a (y) [ ey (u 2) + ex (u 11] 

The equations (111 and (12) will be used later. 

(*) 

(**I 
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2.3 - Resolutions 

The systems (13) ( 14) (15) contain differential operators 
in y. They therefore constitute equations with partial 
derivatives on the period of base Y, the unknown factors 
being theY-periodic functions. 

System (13) : This leads immediately to 

System (14) In view of (16) it is reduced to 

17) divy a1 = 0, a1 = a(y) [ey<u 1) + ex(u 0)] 

The deformation ex (u0) is a function only of x ; it there­
fore plays the role of a parameter with resrct to the diffe­
rential system in y. Due to the linearity,a , u 1 may there­
fore be written in the form : 

l 
a 1 = skh (y) e kh (u 0) 

18) 
u 1 = X kh (y) ekh (u 0) 

where 

) 

div Y skh = 0 

19) skh = a (y) [ z::;kh 

Xkh is Y -periodic 

The tensor Zikh has components given by 

c:; ~h = ~ (bik ()jh + ()ih ()jk ) 
IJ 

It can be proved that the system ( 19) determines the vec­
tor Xkh (y) to within an additive constant. 

For any function 4> = <I> (x, y), we define 

<<!>>= m~s Y JY <I> (x, y) dy 

The solution a 1 of (14) is given by, 

20) a 1 (x, y) = a (y) [ ~kh - e Y \X'h)] 

and taking the mean value, we obtain, 

21) <a~>= 

where 

kh 
q .. 

IJ 

0 e kh (u ) 

0 
e kh (u ), 

22) <h =<a ijkh (y)>-<a ijpq (y) e pq <Xkh (y)> 

System (15) It suffices to take the mean on Y in the 
the first equation to obtain 

inn 

If we introduce l: = <a 1 > , we have 

{

div x l: 

24) kh 0 
l: ij = q -- e kh (u ) 

IJ 

inn +f=O 

Using equation (12) and taking the mean on Y in (11), we 
obtain : 

{
uo = o 

25) 
l: .n = F 

The system (24) with boundary conditions (25) is a well 
posed elasticity problem ; the equilibrium equations are 
unchanged, as well as the boundary conditions. The elastic 
constitutive relation is 

kh 0 
l:--=q .• ekh(u) 

IJ ij 

kh 
11: is homogeneous since the coefficients q ij given by 
(22) are independent of xEn . These coefficients define 
the equivalent homogeneous material. They are called homo· 
genized coefficients. The stress field I= ( l: ij) is called the 
macroscopic stress field and is defined by 

The strain field E = ex (u 0 ) is called the macroscopic 
strain field and satisfies 

It can be proved that the homogenized coefficients qkh .. 
IJ 

satisfy 

( = q ijkh) 

This shows that (q ~h ) are reasonable elastic coefficients 
and that the macroscopic scale problem (24) (25) has a 
unique solution. 

2.3 - Microscopic fields. Localization 

The stress field a 1 (x, y) is the first term of the asymptotic 
expansion {8) of the stress field a E (x) solution of the ini­
tial exact problem. The field a 1 (x, y) is called the micros­
copic stress field. If we imagine that at each point xEn, 
there is a small E Y period with its composite structure, then 
0 1 (X, y) gives, for X kept fixed in il, a stress field in this 
period. 
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can be shown that a e (x) - a 1 (x , ; ) tends to zero 
the L 1 (,Q) norm when e tends to zero. This proves 

at a 1 {x, ~ ) is a good approximation of o e {x} when e 
small. The microscopic stress field a 1 (x, y) , y =~can 

f 
! calculated as follows : 

First we obtain the six X kh {y) vector fields on Y, 
each one been associated with tensor ckh: ~hk. These 
six vector·fields are solution of problem (19), which is 
an elastic type problem or1 the inhomogeneous period 
Y. 

From the vector fields X kh {yl we get the homogeni· 
zed coefficients q ~h by formula (221. 

II 

i) We solve the macroscopic scale, homogenized elastic 
problem (24) (251 on U . \t gives the macroscopic 
stress field L (x) and the macroscopic strain field 

eX {u 01 = E (xi. for X e: n. 

') Localization frocedure : using formula (20) we can 
calculate a (x, y). For X fixed in n t this stress 
field on Y shows how the macroscopic stress 
L{xl = <a 1 {x, vl> is \oca\ized in an e Y period at 
xEQ 

Calculation of the homogenized coefficients qijkh calls for 
the resolution of (19). In the present case the coefficients 
aJi~P {y} are independent of v 3 ; the result is that the fields 
.X IJ (yl are a\so independent of y3 ; in (19) the va~us 
indices give a zero contril?.ution when they refer to y 
making computation of X'J (yl a bidimensional problem. 3 

3.2 - Numerical results 

In all the cases studied, the homogenized material is o~ho· 
tropic, in other words the law of behavior has numerous 
zero elements as shown in the table below : 

a, q1111 q1122 q1133 0 0 0 ., 
a22 q2222 q2233 0 0 0 '22 
a33 q3333 0 0 0 

X '33 26) = 
a23 ·SYM· 2 q2323 0 0 '23 

a13 2q1313 0 '13 

a12 2 q1212 '12 

: can be proved that when e tends to zero, the stress field { } { } 
e (x) tends to 1: (x) in the weak L 2 (,Q) topology. Never· where a ij and e ij are stress and strain tensors. 

1eless a 1 (x, ; ) is a better approximation of a e (x) than 
I (xl : the norm L 1 (n) convergence implies that The \aw (26\ is inverted conventionally to be written [ 6] : 

a< (xl -a 1 (x,f-1 

mds to zero for almost every point in n, while the weak 
2 (ill convergence does not. The macroscopic stress field 
[ (x) is just a mean value while a 1 (x,; ) takes into ac~ 
ount the fine periodic structure of the composite material. 

APPLICATION TO AN ELASTIC MATERIAL REIN­
FORCED BY FIBERS RUNNING IN THE SAME 
DIRECTION [1] [7] 

.1 - Principle 

he computations of the previous paragraph are applied to 
1 elastic material formed from a multitude of resin-impre­
lated unidirectional fibers whose geometric distribution is 
eriodic in a plane perpendicular to their direction x3 . 

,,, 

'3 

ig. 8 :a) STRUCTURA TION OF FIBERS 
b) BASE PERIOD 

1 "12 "13 0 0 0 a, ,, 
E1-EJ -.,.-

1~ 0 0 0 a22 
'22 E:! - 2 

'33 
_l_ 0 0 0 a33 

27) = E3 

'23 ·SYM- _1_ 0 0 a23 2 G23 

'13 ~ 0 a13 

'12 n!u a12 

bringing out the following : 

The Young's moduli E1, E2, E3 in the directions of ortho­
tropy 

The Poisson's coefficient u23• u13• v12 
The shear moduli G23, G13, G12 

The numerical results which follow have been obtained by 
using the MODULEF code [2] . They have been produced 
for numerous values of the ratio of impregnation and various 
forms of the cross section of the fibers. 

We give here a part of the results obtained for various forms 
of fiber, and also the curves showing the change in these 
coefficients with respect to the ratio of resin impregnation 
for fibers of circular section (Fig. 9 -10 -11\. 
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ALIGNED CIRCULAR FIBER 

FIBER 

E1 = 3.8 105 MPa 
E2= E3= .145105 

"12="13=·22 

RESIN 

E=3520 MPa 

G23 = 2.104 MPa 
G12 =G13= 3.8 104 MPa 

"23= .25 

u=.38 

0.38E06 E1 (MPA) 

0.34E06 

0.30E06 

0.27E06 

0.23E06 

0.19E06 

0.15E06 

0.11E06 

0.76E05 

0.38E05 

0 

0. 0.20 0.40 0.60 0.80 

RESIN'S RATIO 

Fig. 9: VARIATION OF LONGITUDINAL YOUNG's 

MODULI 

1.00 

I 

14500 
E2:E3 (MPA)' 

13050 

11600 

10150 

8700 

7250 

5800 

4350 

2900 

1450 

0 

0. 0.20 0.40 0.60 0.80 

RESIN'S RATIO 

Fig. 10: VARIATION OF TRANSVERSE YOUNG's 

MODULI 

6000 

5400 

4800 

4200 

3600 

3000 

2400 

1800 

1200 

600 

0 

SHEAR MODULUS (MPA) 

\ 

\ 

G23 
G12:G13 

·· ... 
··· ... 

1.00 

0. 0.20 0.40 0.60 0.80 1.00 
,.-~R~ES~I7.N~'S~R~A~T~IO~--. 

Fig. 11: VARIATION OF SHEAR MODULI 
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:- Anisotropy curves (Fig.11) 

s important to note that the homogenized media obtained 
generally not transversally isotropic. This comment is 

arly demonstrated if the Young's modulus is calculated in a 
nsverse direction with polar angle 0. By applying the 
1ung's modulus on vector radius we obtain the curves 
en in Figure 12. For the material to be transversally 
tropic, the curves plotted should be arcs of a circle cen­
ed at the origin. 

The Young's modulus in direction 0 is given by 

+ sin 2 8 cos 2 8 (- 2 Y23 + - 1-) 
E2 G23 

is relation enabled the anisotropy curves in Figure 12 to 
plotted. 

e material is transversally isotropic if·E (8) is not depen­
nt on(}, which is equivalent to 

SIN IMPREGNATION RATIO BY VOLUME 50% 
BERS //TO X1). 

ER RESIN 

. 380000 MPa; G23:20000 MPa Y23: .25 E:3520 MPa 
14500 MPa; G13: 38000 MPa ;Y13: .22 

:E2 ;G12:G13 ;Y12:Y13 Y:.38 

E1 E2 I E3 '" '" '" "" G\2 G13 

? 192000 9730 0070 .33 .28 ·"' "" "" 3334 

C? 191500 ~ .. I 8100 .. 
I 

.29 ·"' 2823 Q .. I ~7 

0 191500 7620 7620 ... .29 .29 I "" ''" ''" 

10000 E3 IMPAJ 

9000 

8000 

------------
7000 ---
6000 

5000 

4000 

3000 

2000 

1000 

0 

0 2000 4000 

ORTHOTROPJC KIDNEY {a) 

ORTHOTROPIC KIDNEY (b) 
ORTHOTROPIC CIRCLE {c) 

·, 
';· .. 
\"·· 

< 
< 
< 
\ 
< 

' < 
< 
< 

' < 

6000 8000 10000 

I E2(MPAJ I 

Fig. 12 : TRANSVERSE ANISOTROPY FOR 3 CROSS 

SECTIONS OF FIBER 

3.4- Stagger 

If the fibers are staggered, i.e. if a period characterizing the 
material has the form shown in Figure 13, we obtain diverse 
characteristics in accordance with the relative values of the 
sides of lengths of the rectangular cell. 

i) If j = 1 (square cell) : the characteristics of directions 
Oy2 and Oy3 are identical, and have the same Young's 
modulus in particular. 

ii) If 1 = 1/3, i.e. if the fibers are located at the apexes of 
an equilateral triangle (Fig. 13) it can be shown that 
the material is transversally isotropic. This property is 
true for any impregnation level of the resin ... 

iii) The bisecting directions 0 v2 and 0 y-3 play the same 
roles irrespective of the values of land the impregna-. 
tion. In particular, the Young's moduli E1 and E2 in· 
these directions are always equal. 

iv) In Figure 14 are plotted the Young's and shear moduli 
corresponding to the various values of J. varying from 
1 to 2 and for the same resin impregnation level by 
volume. Fod,::1, the cell is square and naturally E1:: 
Ez We then find E1 =E2 foJ~II3sincethenthefibers 
are at the apexes of an equilateral triangle and the rna· 
terial is then transversally isotropic, which implies 
§1 = _ E2. In the same figure are plotted the values 
E1 = E2 of the Young's modulus in the bisector direc· 
tions 0 v1 and Q·y2. 

For J. = V3 we find a triple point since naturally the 
transverse isotropy then implies 
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CHARACTERISTICS 

FIBER: E 84000 MPA 

.22 

RESIN : E 4000 MPA 

.34 

RESIN RATIO 36 

FIBERS// Y1 

REF.1 :OY1 Y2Y3 

REF.2:0Y1Y2Y3 

10.4\1\J'- '\, 

'5k :\ f/\}' 1<... 
~~I /' N" 

. NJL /\~' 
'\/ 1)[. >! b 

'"" 1\}'\,7\ 1\ 

./';,':!,.;{ / v /').t\,{ 
\ 1'\ :j( f5k? V\7\ ~ k"' ~\, "\,"'\ / 

N'>~ ''£_,; 
4:\"J .£ vvvv 1/ !I 

J~v~~ 
l/'1' ~~ 7\. -*' 
~' I\, \_,/'"~ v "" ·~ ~ k' I 

Vi7\/ V V \i\ "-L 
1'\c~/\ 1\ IV I 

1 

~l' '\ 
f-- ~ ,T~ ~ 
r-,'~ I' 
CV'c ~'- ~ 
L 

Fig. 13 :EQUIDISTANT STAGGER (L :1.73) 

9000 

8500 

8000 

7500 

7000 

6500 

6000 

5500 

5000 

4500 

4000 

SHEAR MODULUS (MPA) 

... · ........ 
................... 

........ ...... 
......... 

', 

----·-·-·--- ...... 

1.00 1.20 

-·-

G23 REF. 1 
G13 REF. 1 
G12 REF. 1 
G23 REF. 2 
G12:G13 REF. 2 

··· .. ·- .. ··· .. 
-·-·-·-· 

···· .... 

1.40 1.60 1.80 

L 

2.00 

3.5 - Comparison with experiments 

The development of this previsional method is aimed at ob· 
taining complete sets of characteristics for three.-dimensional 
computations of composite structures through the finite 
elements method. 

The possibilities of experimental characterization are indeed 
very reduced. Few tests are reliable, each one being specific 
to a characteristic, not permitting to reach them all. The 
results of measurements being very scattered in relation to 
production batches, mean values have to be used. 

The extreme variety of resins give a very wide range of pro­
ducts to be used in production. Each fiber-resin pair can be 
associated within variable proportions. It is unthinkable to 
be able to experiment all configurations . 

Each material is therefore characterized in an incomplete, 
dissimilar and inaccurate manner. 

Tables presented hereafter explain application of the homo­
genization theory to the two materials : glass R - Resin 
Ciba 920 (36 % • Resin in volume) and carbon CTS • Resin 
Ciba 920 (50 % resin in volume). We have considered several 
distributions and shapes of fiber. 

Taking these values into account, average measured values 
were assigned to glass-resin composites while values obtained 

21000 

20000 

19000 

18000 

17000 

16000 

15000 

14000 

13000 

12000 

11000 

YOUNG's MODULUS (MPAI 

' 
-' ' 

· .... 

1.00 

------- --
---

..... ······ 
... . ......... · 

1.20 1.40 

.. ... 
, .. -.. -- .... 

. .. 

E2:E3 REF. 2 
E2 REF. 1 
E3 REF. 1 

1.60 1.80 2.00 

L 

Fig. 14 :VARIATION OF YOUNG's AND SHEAR MODULI 
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y transposition of tests results and proportion computa· 
on were assigned to carbon-resin composite. As a reminder, 
haracteristics obtained with two bidimensional previsional 
1ethods : PUCK [11] and HALPIN-TSAI [14] were also 
iven. For reasons indicated formerly, comparisons must be 
autiously made. Results obtained for glass-resin composite 
lith staggered fibers layout at the apexes of an equilateral 
·iangle (ensuring transverse isotropy) are nearest to measu­
•d values. With those two methods, Y 23 and G23 cannot be 
1btained. 

Validity of the results is evidently subjected to the assump· 
tions made on shapes and lay-out of fibers. However, the 
undeniable advantage of this method aims at supplying 
complete and consistent sets of values, mutually coherent. 

~s far as carbon based composite is concerned, it is less 
lear but, in this case, the real shape of the fiber is not ob· 
~rved. On the other hand, when the shape is more accurate 
~Kidney» shaped), the direction of the fiber does not vary 
nd is therefore as little realistic. Of course, a configuration 
;~king into consideration random direction will probably be 
earer to the truth. 

or the two considered materials, estimates based on the 
omogenization theory are nearer to those based on the 
lidely used HALPIN-TSAI method. 

'he homogenization theory seems efficient to compute the 
1echanical characteristics of composite materials. 

COMPARATIVE TABLE FOR CARBON CTS 
RESIN CIBA 920 (50% RESIN IN VOLUME} COMPOSITE 

HOMOGENIZATION THEORY OTHER PREVISIONAL METHODS 

REFERENCE 
ALIGNED STAGGERED "KIDNEY" 

VALUES CIRCULAR CIRCULAR SHAPED FIBERS PUCK HALPIN-TSAI 

FIBERS FIBERS (MEAN VALUES} 

E1 120 000 119 299 119 293 119 290 119260 119 260 
( MP a} 

E2 6 000 6 2B4 6 035 BODO 11 620 5 620 
( MPa} 

E3 6 000 6 2B4 6 035 7 950 11 620 5 620 
( MPa} 

Y12 0,2B 0.299 0.299 0.31 0.3 0.3 

y13 0.28 0.299 0.299 0.29 0.3 0.3 

Y23 0.20 0.435 0.457 0.27 - -

G12 3 BOO 3454 3 391 4 500 4 250 3 350 
( MPa} 

G13 
I MPa} 

3 BOO 3454 3 391 3 200 4 250 3 350 

G23 (MPa} 2 500 2 631 3 266 2100 - -
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COMPARATIVE TABLE FOR GLASS R-RESIN 
CIBA 920 (36% RESIN IN VOLUME) COMPOSITE 

HOMOGENIZATION THEORY OTHER PREVISIONAL METHODS 
MEASURED 

VALUES ALIGNED STAGGERED 
CIRCULAR FIBERS CIRCULAR FIBERS 

Et 
(MPa) I 55 000 55 226 I 55 215 

20 275 E2 
(MPa) 17 000 

((f2:13 496) 
16 016 

E3 20 275 
(MPa) 17 000 

(Ea:13496) 

F12 I 0.26 I 0.253 

l'13 I 0.26 I 0.253 I 
0.229 

1'23 - -(1'23 = 0.487) 

G12 I 
(MPa) 

5 600 6 383 I 
G13 

(MPa) 5600 6 383 I 
G23 4 539 

(MPa) - (G23=B 250) 

3.6 - Microscopic stress field 

Given a structure consisting of a unidirectional material and 
subjected to a simple shearing overall stress field within the 
plane (1.2) normal to the direction of fibers, the biaxial 
stress tensor at macroscopic level is 

[: : : l 

16 016 

0.256 

0.256 

0.357 

5 887 

5887 

5 882 

PUCK 

I 54450 

18 BOO 

18 BOO 

I 0.264 

0.264 

-
I 6 990 

I 6 990 

-

The localization method allows calculation of both the stress 
field at microscopic level which, ih any point of the material 
period, is : Fig. 15 :STRESS FORCES 

and the stress forces at fibre I matrix interface as represented 
in Figure 15. 
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18 570 
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-



APPLICATION TO A PERIODIC STACK OF 
HOMOGENEOUS LAYERS [4) [7) 

- Principle 

shall consider a periodic stack of a multitude of homo­
lzed layers. Each layer is characterized by a direction of 
fibers. In the stack these directions vary periodically 

1st remaining orthogonal to axis Ox3. 

~rface: 

,, 

INTERFACE 
.YER 

'"' 

16: MULTIPLE LAYERS. EACH LAYER POSSESSES 
A PLANE OF ELASTIC SYMMETRY NORMAL 
TO THE x3 AXIS (MONOCLINIC SYMMETRY) 

this situation the homogenization formulae are conside­
ly simplified since the problem (19) is then reduced to a 
tern of differential equations which may be solved ex­
:itly. For the details, refer to D. Begis, G. Duvaut, A. 
;sim [ 1] and to the references in this publication. 

- Numerical application 

an illustration we consider two cases 

a laminate consisting of 3 identical layers disposed pe­
riodically. The layers have equal thickness and their 
fibers orientations are respectively - 60°, 0°, and 60° 
with respect to the x1 ·axis. The homogenized material 
then presents a transverse isotropy which complies 
with the general results on isotropy, cf. [81, . 

a laminate consisting of 18 layers identical to the above 
and laid up at successive angles of 10° to each other. It 
is to be checked that the same result is obtained as in 
the previous case. 

give in the table presented hereafter the moduli of each 
er and the moduli of the composite which are identical 
the two cases {3/ayers and 18/ayers). 

HOMOGENIZED MODULI HOMOGENIZED MODULI 
OF EACH LAYER OF COMPOSITE 

E1 120000 MPa 45128 MPa 

E2 6 000 MPa I 45128 MPa 

E3 6 000 MPa 6198 MPa 

p23 0.20 I 0.188 

Y13 0.28 0.188 

p12 0,28 0.30 

G23 2500MPa 3 015MPa 

G13 3 800 MP, 3 015 MPa 

G12 3800 MPa 17 290 MPa 

Conclusion 

We have presented several applications of the homogeniza~ 
tion techniques for computing the coefficients of elasticity 
of composite materials. Other applications using the locali· 
zation procedure are contemplated as regards fine analysis 
of the field of stresses using asymptotic expansions, the 
effect of detects in the composites [9} and more generally, 
damage to the materials of composite structure containing 
inclusions or precipitates. 

Strictly speaking, these techniques apply only to absolutely 
periodic structures, but with the backing of statistical ana~ 
lyses it is possible to identify the fluctuations likely to be 
produced by periodic defects. It is noted generally that 
strict periodicity reinforces the anisotropy of the computed 
homogenized material with respect to the industrial model. 
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