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— INTRODUCTION

Jomposite materials consisting of high tensile resin-impre-
nated fibers are being more and more frequently used in
tructures capable of high mechanical performance. Direct
alculation of deformation of these structures using the
inite elements method raises major difficulties due mainly
o the very high number of heterogeneities in the material.
>omputation methods are, therefore, based on investigation
f equivalent homogeneous materials, i.e. effective behavior
noduli {Willis, Hashin ...}).

n this paper we use the homogenization method. This me-
‘hod applies when the material being investigated has a pe-
iodic structure. 1t can then be shown that when the dimen-
ijons of the period tend homothetically to zero the fields of
teformation and stresses tend to those corresponding to a
iomogeneous structure whose elastic properties can be
:omputed precisely when a single period of the composite
medium to be investigated is known. This boundary value
structure is the homogenized structure and its behavier
soefficients are the homogenized coefficients. This is the
macroscopic equivalent structure. Furthermore by a locali-
zation pracedure the method allows an easy computation
sf the microscopic field of stresses and, in particutar, of
stress forces at the boundaries between fibers and matrix.
These stress-forces are particularly important because they
zan initiate cracks and delaminations. The overstresses at
the microscopic level may produce fiber ruptures.

After presenting the general method of homogenization,
which leads first to an homogenized equivalent macroscopic
structure and secondly to a localization procedure for com-
puting the field of micrascopic stresses and stress forces, we
apply the method to two types of composite materials :
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i} Material reinforced by periodically arranged, parallel
fibers (Figure 1)

Fig. 1 :PARALLEL FIBERS

Material consisting of a very large number of parallel
layers of homogensous materials superposed periodi-
cally (Figure 2)
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Fig. 2 :MULTIPLE LAYERS

This is followed by the numerical results obtained by using
the MODULEF code.



2 — DESCRIPTION OF THE HOMOGENIZATION
METHOD (11 {4] [5] [10] [12]

2,1 — Formuiation of the problem

Let us consider an elastic body which occupies a region §2
related to a system of orthonormal axes(xq X5 xg. This
body is subjected to a system of voluminal forces 1§; }and
surface forces { F, } ona portion [ of boundaryd §2. The
‘other portion of the boundary is I’ oo which a zero move-
ment condition is imposed.

I

The field of stresses at equilibrium satisfies the equilibrium
equations

So;;
1) l+f=0 in Q
ox.
J
2} Uij nj = Fi on FF

Furthermore, the material is elastic with fine periodic struc-
ture, i.e. £1 is covered by a set of identical periods of rec-
tangular (Fig. 4) or hexagonal {Fig. 5) or more complicated
shape such as the examples

Fig. 4 : MATERIALS WITH FINE PERIODIC STRUCTURE

Fig. § : MATERIALS WITH FINE PERIODIC STRUCTURE
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given in Figures 8 and 7.

D D

Fig. 7 : MATERIALS WITH FINE PERIODIC STRUCTURE

All the period forms must be such that opposing faces which
correspond in a translation can be defined two by two.

in all cases we shall designate as Y a period characteristic
of the material which has been enlarged by homothetics
and fixed once and for all. € then designates the homothetic
ratio which is small and which takes us from Y to a period
in the elastic material. The elastic structure of the material
is then fully known if it is given over a single period, e.g. the
enlarged period Y related to the orthonormal axis system
Oyq vy yq- Then let Bikh {y} be the coefficients of elasticity
on Y, which generally alter very quickly with respect to v,
but satisfy in all respects the symmetry relation

3jkn (Y} = ajikn (¥) = 2y ()

and positivity relation

=T.,

7. V7 -7
e 1§

dag > Qg ) Ty T2 T

The functions y —a;:.1, {y} defined on Y are extended by
Y-periodicity to the entire space 0\/1 ¥4 ¥g assumed to be
covered by contiguous periods identical to Y.

The coefficients of elasticity in the material €2 are then
3ikh € {x) defined by :

X
€

€ -
aijkh (x) = aijkh vl v=
For greater simplification in the text we shall write :
alyi= o} e ximatd-), omfo;}

and shall consider a (y) or a € (x) as known matrix 6 x 6
indexed by the symmetrical pairs (i, j).
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: law of elasticity

3) 0“ = a!jkh € (X) ekh ‘UJ

rritten
o= a{x efu),
e By, 8y
1
@) ={e i} gl = R 1

en an ambiguity is possible, either e, (u) or e {u} will
specified depending on whether the drift ocours with
ject to X or y. The boundary conditions are finalized

4) u=00nr0

r prablem posed by (1) {2) (3) (4) has a unique solution
ich depends on & and which we shall designate u € ; to
i corresponds a field of stresses o given by :

5) ofma®x) elu®

merically it is very difficult when ¢ is small to calculate

since there are a large number of heterogeneities in the
itic medium. We therefore try to obtain a limited expan-
1 of the solution u €, 0F.

— Asymptotic expansions
» solution is affected by two factors :

The first is the scale of {2 and arises from the forces
applied and the conditions at the boundaries.

The second is due to the periodic structure ; it ison
the same scale as the period and is repeated periodical-
ly.

s justifies looking for an asymptotic expansion of the
m o

-~

5 uf= uo(x,yl + €y’ {x,y) + €2 42 (X, v} +...

are the u®=(x, y) are, for each xE€Q , Y-periodic func-
1§ with respect to the variable y€Y.Theny= —;—is' ap-
d to (B). Associated with the expansion (6} is an expan-

1 of the field of deformation e (u€) ().
<1 0 o 1
7) e(ue)--e—ev(u b+ ey 0T) +ey U
1 2
+ € [ex {u )-!-ey (u }]+

| of the field of stresses ¢ €

€ _ 1
3)0..?
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oo(x.v) +o! (x, ¥} + eoztx.vl+---

with
a%0x, vt = aly) ey W%
aVix, v = aty) [e wh + e, (uol]
a2 (x,yl= aly) [e W? + ey (u‘)]
The equilibrium equations (1) applied to o€ give

) of.. + f

L~ . -0

Sx. ii i
]

or in a more condensed form

B} divo®+f=0.

Given the expansion (8) of o€ we have (*"}

10 J;; div o° +-;—(divv ol + div, o
A R _
+dwycr +d|vxa + f4+ ..=0.
xES,yEY.

The boundary conditions (2} are treated in the same way :

1 2

1ﬂloo.n+a n=-F+ecn+ .. =0
€
for xErF yEY.

Finally the conditions (4) mean that

12) |.10+.~?u1 +62U2 + ..=0

for xEFG, yEY.

By making the various powers of € zero we obtain :

divy 00: 0
13;3

UUI:I a (y) e, (uo}

1 : 0.
+d|vxo =0

div, o
14;% Y

ot= aly) [ey ! + ex(uo)]

div y B 2
15}

0?= aly) [e [u2)+e {u )]

+div, o' +f=0

The equations (11} and (12} will be used later.

(*} Note that
Loy Wxy) + S W ®ixy)
- U {xy)= 30 {x,y) e By, Y

i

* o So’.
) divyo(a):{gviiu}; div, 0(0‘)={-5-;(_—”}



2.3 -~ Resolutions

The systems (13} (14} (15} contain differential operators
in y. They therefore constitute equations with partial
derivatives on the period of base Y, the unknown factors
being the Y-periodic functions. :

System (13} : This leads immediately to :

16} 00 = 0, u0=u0(x)

System {14) : in view of {16) it is reduced to :

. 1.. 1_ 1 o
17} dwy 0'= 0,0 = aly) [ey(u b +oe, lu )J
The deformation e, (uo) is a function only of x ; itthere-
fore plays the role of a parameter with respect to the diffe-
rential system in y. Due to the linearity, &' , u! may there-

fore be written in the form

01 = skh {y) & kh {u 0)

18}
|.|1:.X'kh (v) ekh(uo)
where 0 0
ekh(uD):i((Su K o 8“ h)
2 th lek
divy gkh = 0

kh _ kh kh
19)4 s ..a{v)[a +ay(.x )]
th is Y-periodic
The tensor zkh has components given by

kh _ 1
T, =56 S + i Oy )
it can be proved that the system (18) determines the vec-
tor Xkh (v} to within an additive constant.

For any function &= ¢ (x, v}, we define

;
P>y fYcP {x,y) dy

The solution o | of (14} is given by,
20) o {x,y) = aly} [akh‘— ey (th):l € kh {u 0),
and taking the mean value, we obtain,

i_ . kb 0
21} <°ij>‘ q i €p U7
where

kh
{y) € g (X5 yi>

kh
22} qij =<a iikh y)> -<a iing

System (15) : It suffices to take the mean on Y in the

the first equation to obtain
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23) div, <o'> +f=0 inQ

if we introduce X = <o ,> ,we have
div 2 +fz0 in &
__kh
ij = 9
Using equation (12} and taking the mean on Y in (11}, we
obtain

24)
€ kh {u D)

0.
u =40 on Iy .
25)

Zanc=F oen I, E e

The system (24} with boundary conditions {25) is a well
posed elasticity problem ; the equilibrium equations are
unchanged, as wel! as the boundary conditions. The elastic
constitutive refation is

kh
Zij =q..

i [ ] e kh (U D)

It is homogeneous since the coefficients g :j given by
{22) are independent of x &2 . These coefficients define
the equivalent homogeneous material. They are called homo-
genized coefficients. The stress field £ = (X jj} is called the
macroscopic stress field and is defined by

T-<ol>

The strain field E = €y {u G) is called the macroscopic
strain field and satisfies

E= <ex(u0}‘+ ev(u1)>

kh

It can be proved that the homogenized coefficients g ij

satisfy
kb _ ii _
kh
3oy >0, Ui i SkhZFp Sy Sje V=8
. kh . .
This shows that (g i ) are reasonable elastic coefficients
and that the macroscopic scale problem (24) (25) has a
unique solution.

2.3 — Microscopic fields. Localization

The stress field o | (x, ¥} is the first term of the asymptotic
expansion {8} of the stress field o € {x) solution of the ini-
tial exact problem. The fieid ¢ ’ (x, y) is called the micros-
copic stress field. if we imagine that at each point x&€ %,
there is a small . € Y period with its composite structure, then
a! (%, v} gives, for x kept fixed in £}, a stress field in this
period.



% } tends to zero

the L 1 (Q) norm when ¢ tends to zero. This proves
ato ' {x, % }isagood approximation of 0 € {x) whene
small. The microscopic stress field o ' {(x,y) ,y = -%_‘-can

+ calculated as follows -

¢an be shown that ¢ ®{x) — @ 1 {x,

First we obtain the six Xkh {y} vector fields on Y,
each one been associated with tensor &5 = MK These
six vector-fields are solution of problem (19}, which is
an elastic type problemon the inhomogeneous peried
Y.

) From the vector fields X kh {y) we get the homogeni-
zed coefficients g :‘]h by formula (22).

i) We solve the macroscopic scale, hemogenized elastic
problem (24) (25) on £ . It gives the macroscopic
stress field X (x) and the macroscepic strain field
ex{uG] = Ef{x), for x€8.

'} Localization procedure using formula (20) we can
caiculate o ' {x, y). For x fixed in £ , this stress
field on Y shows how the macroscopic stress
Tixiz <ol (x,yI> islocalized inan €Y period at
xef)

: can be proved that when € tends to zero, the stress field

€ (x) tends to X {x} in the weak L2 (o topology. Never-
seless ¢ | {x,-%) isabetter approximation of ¢ € (x) than

Zix) : the norm Lt (€2} convergence implies that

6€{x)—g' x.Z
ands to zero for almost every pointin $2, while the weak
2 (§2) convergence does not. The macroscopic stress field

¥ (x) is just a mean value while o ' {x,2) takes into ac-
ount the fine periodic structure of the composite material.

— APPLICATION TO AN ELASTIC MATERIAL REIN-
FORCED BY FIBERS RUNNING IN THE SAME
DIRECTION [1] (7]

.1 — Principle

he computations of the previous paragraph are applied to
1 elastic material formed from a muititude of resin-impre-
1ated unidirectional fibers whose geometric distribution is
eriodic in a plane perpendicular to their direction X3

{a}

¥1
¥3

ig. 8 :a) STRUCTURATION OF FIBERS
b} BASE PERIOD

Calculation of the homogenized coefficients Qjjkh calls for
the resolution of (19). In the present case the coefficients
&jjkh {y} are independent of yg i the result isthat the fields
)g‘” {y) are also independent of y5 ; in (19) the varjpus
indices give a zero contribution when they refer to §
making computation of X {v) a bidimensional problem.

3.2 — Numerical rasults
In all the cases studied, the homogenized material is ortho-

tropic, in other words the law of behavior has numerous
zero elements as shown in the table below :

911 1119 99122 9133 0 0 O 11
Y22 92222 92233 0 0 0 €39
asrd B = 93333 O 0 0 | /e33
923 SYM- 2ag33 0 O €23
%13 2a13:13 0 f13
%2 L 2a1219  \f12

where {a i } and {e ii} are stress and strain tensors.

The law (26} is inverted conventionally to be written [6] :

L 2 Y3 o o o oy
1 B E] T
1 p. 1] \] 0 a
522 _EE __%32_ 22
0 0 o o
€33l = 33
27) = 3
1
523 -SYM- ¥ G23 1] 0 023
€13 2 é13 0 %3
€12 i T(}_ 12 912

bringing out the following :

The Young's moduli E1, Ez, ES in the directions of ortho-
tropy

The Poisson’s coefficient Ug3, U1 V12

The shear moduli 923, G‘!S' 612

The numerical results which follow have been obtained by
using the MODULEF code [2] . They have been produced
for numercus values of the ratio of impregnation and various
forms of the cross section of the fibers.

We give here a part of the results obtained for various forms
of fiber, and also the curves showing the change in these
coefficients with respect to the ratio of resin impregnation
for fibers of circular section (Fig. 9 - 10 - 11).
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ALIGNED CIRCULAR FIBER | E2=E3 (MPA) |

14500
FIBER
13050 |
E1=3810°MPa . Gp3=210°MPa
E2=E3=.14510° G;,=G,5=3.810% MPa 11600 |
U12:D13:.22 U23:.25
10150 |
RESIN 8700 |
E = 3520 MPa v=.38
7250
5800
V3 4350 |
2900 |
‘14? 1450
gﬁ
y2 0 B o RS I e e 1
Y1 0. 0.20 040 060 080  1.00
[ RESIN'SRATIO |
Fig. 10 : VARIATION OF TRANSVERSE YOUNG's
MopuL!
038606 L E1(MPA} | gooo  |__SHEARMODULUS (MPA) |
0.34E06 | 5400 |
0.30E06 | 4800
0.27E06 | 4200 |
0.23E06 3600 |
0.19E06 3000 |
0.15E06 | 2400 |
0.11E06 _ 1800 |
0.76E05 | 1200
—_— G23
,3BE05 600 |
0.38E05 e G122 G13
0. 020 040 060 080  1.00 0. 020 040 060 080  1.00
' [ _RESINSRATIO | [ TRESINS RATIO |
Fig. 8 : VARIATION OF LONGITUDINAL YOUNG's Fig. 11 : VARIATION OF SHEAR MODULI
MODULI

82-6



i — Anisotropy curves {Fig. 11)

s important to note that the homogenized media obtained
generally not transversally isotropic. This comment is
arly demonstrated if the Young's moduius is calculated in a
nsverse direction with polar angle 8. By applying the
wung’s modulus on vector radius we obtain the curves
en in Figure 12. For the material to be transversally
tropic, the curves plotted should be arcs of a circle cen-

ed at the origin.

e

The Young's modulus in direction & is given by :
L cos46 + — sin4p
E (8} Ez E3

+ sin28 cos28 (-g—m +-—1-)
E; Gy

is relation enabled the anisotropy curves in Figure 12 to
plotted.

e material is transversally isotropic if ‘E () is not depen-
nt on 8, which is equivalent to

EZ::".. E3= 2623 1 + st)

SIN IMPREGNATION RATIO BY VOLUME 50 %
-BERS // TO X1).

ER RESIN
. 380000 MPa ; G23=20000 MPa ;}'23=.25 {E=3520 MPa
14500 MPa ; G13= 38000 MPa ;}13=.22

:E2 :G12=2G13 Y12=Y13(V=.38
E1 £2 E3 yza yiz piS GZ3 G112 G13
f 192000} 8730 | 8070 33 28 a0 2452 | 6697 | 3334
@ 191500 8290 | 8100 A 2% 30 26823 | 4315 | 3347
O 191500} 7620 7820 A4 .28 .28 27856 | 3882 3882

ORTHOTROPIC KIDNEY {a)
OATHOTROPIC KIDNEY (b}
QORTHOTROPIC CIRCLE {c)

ages |

000

7000

3000

2000

1000

T
8BGO0

o 2600 10000
Fig. 12 : TRANSVERSE ANISOTROPY FOR 3 CROSS
SECTIONS OF FIBER
3.4 — Stagger

If the fibers are staggered, i.e. if a period characterizing the
material has the form shown in Figure 13, we abtain diverse
characteristics in accordance with the relative values of the
sides of lengths of the rectanguiar cell.

If £ =1 {square cell) : the characteristics of directions
Gy2 and Dy3 are identical, and have the same Young's
modulus in particular.

il

If & = V3, i.e. if the fibers are located at the épexes of
an equilateral triangle {Fig. 13} it can be shown that
the rnaterial is transversally isotropic. This property is
true for any impregnation level of the resin. _

i)

iii} The bisecting directions 0¥, and 0 ¥4 play the same
roles irrespective of the values of X and the impregna- .
tion. In particular, the Young's moduli §1 and EZ in -
these directions are always equal.

ivl In Figure 14 are plotted the Young's and shear moduli
corresponding to the various values of JL varying from
1 to 2 and for the same resin impregnation level by
volume, For-j,=1 , the celi is square and naturally Ei=
E2 We then find E1 =E2 fonﬂ—_\fﬁ since then the fibers
are at the apexes of an equilateral triangle and the ma-
terial is then transversally isotropic, which implies
E1 _E5. In the same figure are plotted the values
E.I = E2 of the Young's modulus in the bisector direc-
tions 0 ¥, and 0“72-

For &= V3 we find a triple point since naturally the
transverse isotropy then implies

E.f: E2: E1: E2

88-7



CHARACTERISTICS Y3
FIBER : E 84000 MPA

22 Y3
RESIN : E 4000 MPA 72
.34
RESIN RATIO 36
FIBERS // Y1
REF.1:0Y7Y2Y3
REF.2:0Y1Y293 Yo
Y1
L

3.5 —~ Comparison with experiments

The development of this previsional method is zimed at ob-
taining complete sets of characteristics for three-dimensiona)
computations of composite structures through the finite
elements method.

The possibilities of experimental characterization are indeed
very reduced. Few tests are reliable, each one being specific
to a characteristic, not permitting to reach them all. The
results of measurements being very scattered in relation to
production batches, mean values have to be used.

The extreme variety of resins give a very wide range of pro-
ducts to be used in production. Each fiber-resin pair can be
associated within variable proportions. It is unthinkable to
be able to experiment all configurations.

Each material is therefore characterized in an incomplete,
dissimilar and inaccurate manner.

Tables presented hereafter explain application of the homo-
genization theory to the two materials : glass R - Resin
Ciba 920 {36 % - Resin in volume) and carbon CTS - Resin
Ciba 920 (50 % resin in volume}. We have considered several
distributions and shapes of fiber.

Fig. 13 : EQUIDISTANT STAGGER (L =1.73) Taking these values into account, average measured values
were assigned to glass-resin composites while values obtained
o000 L SHEAR MODULUS (MPA) | 21000 L YOUNG's MODULUS (MPA) ]
—_— G523 REF. 1
.......... G13 REF. 1
8s00 |~ . G12REE. 1 20000
——— G23 REF. 2
8000 - (G12=G13 REF. 2 198000
7500 18000
7000 17000
6500 16000
6000 15000
5500 14000
5000 | e 13000 |
- —— E2=E3REF.2
4500 | 12000 woe E2 REF. 1
----- E3 REF. 1
4000 : : . , 11000 | . - — —
1.00 1.20 1.40 1.60 1.80 2.00 1.00 1.20 1.40 1.60 1.80 2.00

Fig. 14 : VARIATION OF YOUNG's AND SHEAR MODUL!

88 -
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y transposition of tests results and proportion computa-
on were assigned to carbon-resin composite. As a reminder,
haracteristics obtained with two bidimensional previsional
sethods : PUCK [11] and HALPIN-TSAI [14] were also
iven. For reasons indicated formerly, comparisons must be
autiously made. Results obtained for glass-resin composite
rith staggered fibers layout at the apexes of an equilateral
-jangle {ensuring transverse isotropy)} are nearest to measu-
id values , With those two methods, }'5q and Gyg cannot be
sbtained.

« far as carbon hased composite is concerned, it is less
iear but, in this case, the real shape of the fiber is not ob-
:rved. On the other hand, when the shape is more accurate
yKidney» shaped}, the direction of the fiber does not vary
nd is therefore as little realistic. Of course, a configuration
iking into consideration random direction will probably be
earer to the truth.

‘or the two considered materials, estimates based on the
omaogenization theory are nearer to those based on the
ridely used HALPIN-TSAI method.

‘he hemogenization theory seems efficient to compute the
wechanical characteristics of composite materials.

Validity of the results is evidently subjected to the assump-
tions made on shapes and lay-out of fibers. However, the
undeniable advantage of this method aims at supplying
complete and consistent sets of values, mutually coherent.

COMPARATIVE TABLE FOR CARBON CTS
RESIN CIBA 920 {50 % RESIN IN VOLUME} COMPQOSITE

HOMOGEN{ZATION THEGRY OTHER PREVISIONAL METHODS
REFERENCE
ALIGNED STAGGERED “KIDNEY "
VALUES CIRCULAR CIRCULAR SHAPED FIBERS PUCK | HALPIN-TSAI
FIBERS FIBERS ( MEAN VALUES }
Eq 128 000 119 208 119 293 119 290 118 260 119 260
{(MPa)
Ep 6000 6284 6 035 800D 11 620 5620
{MPa)
E3 6 00D 6284 6035 7950 k 11 620 5620
{MPa)
Y1z 0,28 0.299 0.299 0.31 0.3 S 03
Y13 0.28 0.299 0.299 0.29 0.3 03
Y23 0.20 0.435 0.457 0.27 - -
G1z2 3800 3454 3391 4 500 4250 3350
(MPa)
613 3 800 3454 33 3200 4250 3350
{MPa)
G - -
22 (wpa) 2 500 263 3266 2100

B8-9



COMPARATIVE TABLE FOR GLASS R-RESIN
CIBA 920 (36 % RESIN IN VOLUME) COMPOSITE

HOMOGENIZATION THEORY OTHER PREVISIONAL METHODS
MEASURED
VALUES ALIGNED STAGGERED
CIRCULAR FIBERS | CIRCULAR FIBERS PUCK HALPIN-TSAI
E1 vpa | 55000 55 226 55 215 54 450 54 450
E2 170 20275 16 016 18 800 18 570
(MPa) oo (E5 =13 496)
E3 20 275
Mpa) | 17 000 N 16 016 18 800 18 570
{MPa) (E3=13 496)
¥12 0.26 0.253 0.256 0.264 0.264
¥13 0.26 0.253 0.256 0.264 0.264
' 0.229 0.357 -
Y23 (P23=0.487) '
G12
(pay| 5600 6 383 5 887 6 990 5 560
G1a
(vpa)| 5600 6 383 5 887 6 990 5 560
G23 - 4 539 5 882
{MPa) (G33=8 250)

3.6 — Microscopic stress field

Given a structure consisting of a unidirectional material and
subjected to a simple shearing overall stress field within the
plane {1.2} normal to the direction of fibers, the biaxial
stress tensor at macroscopic level is -

0 c 0
3 0 0
0 0 0

The localization method allows calcutation of both the stress

field at microscopic level which, in any point of the material

petiod, is : Fig. 15 : STRESS FORCES
g9 G2 O
012 92 0
0 0 0'33

and the stress forces at fibre / matrix interface as represented
in Figure 15.

8g-10



APPLICATION TO A PERIODIC STACK OF
HOMOGENEOUS LAYERS [4] [7]

— Principle

shall consider a periodic stack of a muititude of homo-
ized layers. Each layer is characterized by a direction of
fibers. In the stack these directions vary periodically
Ist remaining orthogonal to axis 0x3.

rface:

P
h (x3} / layer {(p)=C ijkh {constant)

*3

\
>
L]

x

[i}] INTERFACE
YER 12 i

{n}
(1} P
7] i Cijkh (X3].r LAYER {p) =€ jjkh {CONSTANT)

.16 MULTIPLE LAYERS. EACH LAYER POSSESSES
A PLANE OF ELASTIC SYMMETRY NORMAL
TO THE x5 AXIS (MONOCLINIC SYMMETRY)

|

this situation the homogenization formuiae are conside-
ly simplified since the problem {18} is then reduced to a
tem of differential equations which may be solved ex-
vitly. For the details, refer to D. Begis, G. Duvaut, A.
isim [1] and to the references in this publication.

— Numerical application

an illustration we consider two cases |

a laminate consisting of 3 identical layers disposed pe-
riodically. The layers have equal thickness and their
fibers orientations are respectively — 60°, 0%, and 60°
with respect to the Xq- axis. The homogenized material
then presents a transverse isotropy which complies
with the general results on isotropy, cf. [8] .

a laminate consisting of 18 layers identical to the above
and laid up at successive angles of 10° to each other. It
is to be checked that the same result is obtained as in
the previous case.

give in the table presented hereafter the moduli of each
er and the moduli of the composite which are identical
the two cases (3 layers and 18 layers}).

HOGMOGENIZED MODULE| HOMDGENIZED MODULI
OF EACH LAYER OF COMPOSITE
E1 120 000 MPa 45 128 MPe
E2 8 000 MPa 45 128 MPa
E3 6 000 MPa € 198 MP2
y23 0.20 0.188
P13 0.28 0.188
yIz 0.28 0.30
G23 2 500 MPy 3015 MPa
G13 3800 MP, 2015 MPa
G112 3800 MPs 17 290 MP2
Conclusion

We have presented several applications of the homogeniza-
tion techniques for computing the coefficients of elasticity
of composite materials. Other applications using the iocali-
zation procedure are contemplated as regards fine analysis
of the field of stresses using asymptotic expansions, the
effect of defects in the composites [9] and moare generally,
damage to the materials of composite structure containing
inclusions or precipitatas.

Strictly speaking, these technigues apply only to absolutely
periodic structures, but with the backing of statistical ana-
lyses it is possible to identify the fluctuations likely to be
produced by periodic defects. It is noted generally that
strict periodicity reinforces the anisotropy of the computed
homogenized material with respect to the industrial model.
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