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ABSTRACT 
 
Helicopter performance flight-testing is an expensive activity that requires efficient testing techniques and 
appropriate data analysis for good performance prediction.  Regarding the flight testing techniques used to 
evaluate the available power of a Turboshaft engine, current methodologies involve a simplistic single-
variable polynomials analysis of the flight test data. This simplistic approach often results in unrealistic 
predictions. This paper proposes a novel method for analyzing flight-test data of a helicopter gas turbine 
engine. The so-called ‘Multivariable Polynomial Optimization under Constraints’ (MPOC) method is proven 
capable of providing an improved estimation of the engine maximum available power. The MPOC method 
relies on maximization of a multivariable polynomial subjected to both equalities and inequalities constraints. 
The Karush-Khun-Tucker (KKT) optimization technique is used with the engine operating limitations serving 
as inequalities constraints.  The proposed MPOC method is implemented to a set of flight-test data of a Rolls 
Royce/Allison MTU250-C20 gas turbine, installed on a MBB BO-105M helicopter. It is shown that the MPOC 
method can realistically predict the engine output power under a wider range of atmospheric conditions and 
that the standard deviation of the output power estimation error is reduced from 13hp in the single-variable 
method to only 4.3hp using the MPOC method (over 300% improvement).  
 
 
SYMBOLS AND ABBREVIATIONS 

A = matrix containing numerical regressors 

ai, bi, ci = single variable polynomial coefficients 
i

j  = generic multivariable polynomial coefficient 

b  = vector to represent experimental CSHP 

SHP = engine output power  

CSHP SHP     = corrected SHP (non-dimensional) 

Ng = engine compressor speed. 

CNg Ng   = corrected Ng (non-dimensional) 

TGT = turbine gas temperature (engine temperature) 

CTGT TGT    = corrected TGT (non-dimensional) 

Wf = engine fuel flow 

f f
CW W    = corrected Wf (non-dimensional) 

rE  = engine output power estimation error vector 

,x y
r  = linear correlation between variables x,y 

 
1

2

, ,1


x y x yVIF r  = variance inflation factor between x,y 

  = relative static ambient pressure 

  = relative static ambient temperature 

f  = generic multivariable function in
i

x   

j
g  = inequalities constraints imposed on f   

k
h  = equalities constraints imposed on f   

j
  = Lagrange multipliers, inequalities constraints 

k
  = Lagrange multipliers, equalities constraints 

 
 

1. INTRODUCTION 

Flight test engineering is an interdisciplinary 
science with the objective of testing an aircraft or a 
system in its operational flight environment. For 
this, relying flight test data need to be gathered and 
reliable methods for data analysis need to be 
developed. There are many types of flight tests that 
can be performed, ex. performance assessment, 
structural integrity testing, handling qualities, flight 
envelope testing. This paper relates to 
performance flight testing, namely to the helicopter 
gas-turbine engine power testing methodology. 
Current methodology involves a simplistic single-
variable polynomial analysis of the flight test data. 
This often results in unreliable estimation of the 
engine output power under a wider range of 
atmospheric conditions than those prevailed during 
the actual test (interpolation and extrapolation). A 
novel method is therefore proposed in the current 
paper involving a multivariable polynomial defined 
for the engine non dimensional parameters, i.e. 
Shaft Output Power, Compressor speed, 
Temperature and Fuel-Flow. The paper is 
structured as follows: after a short introduction, 
section II presents the current methodology for 
flight-test data analysis with respect to maximum 
available engine power. The current methodology 
is exemplified using flight test data of a BO-105M 
gas-turbine engine.  In section III a novel 
methodology (referred to as the ‘MPOC’ method) is 
defined and demonstrated using the same flight 
test data of the BO-105M gas-turbine engine. Final 
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conclusions and recommendations complete the 
paper.  

2. SINGLE VARIABLE ANALYSIS METHOD 

2.1. Background 

The useful performance of any helicopter depends 
on the amount by which the power available 
exceeds the power required [1]. The current 
method widely used for determining the maximum 
output power of an installed gas-turbine engine on 
a helicopter is based on recording stabilized 
engine(s) parameters (such as temperature, 
compressor speed, fuel-flow and shaft output 
power) accompanied by the  atmospheric 
conditions prevailed during the test [2]. These 
flight-test data are gathered while flying the 
helicopter throughout its certified envelope and 
collecting engine parameters to their approved 
operating limitations. Once a substantial data base 
is gathered it can be analysed with the goal of 
deriving the maximum shaft output power the 
engine can deliver under various combinations of 
atmospheric conditions. One should keep in mind 
that the limiting factor for the maximum output 
power can change under different atmospheric 
conditions. For example, under hot day conditions 
the engine maximum output power could be limited 
by the engine temperature while under relatively 
cold day conditions the maximum engine 
compressor speed could limit the maximum power 
the engine can deliver. The data analysis 
methodology must provide both the maximum 
power and the associated limiting factor. Engine 
limiting factor can be either one of the following 
parameters: engine temperature, engine 
compressor speed, engine fuel-flow or the 
transmission torque. Dimensional analysis 
concepts are intensively used in performance 
flight-testing. Applying non-dimensional analysis 
tools reduces the number of dimensional 
parameters involved in the physical problem, and 
hence reduces substantially the number of flight-
test sorties required, saving time and resources [3]. 
The first step in analyzing the engine data is related 
to correcting or non-dimensionalizing the raw flight-
test data. There are mainly four engine parameters, 
i.e. shaft output power, compressor speed, 
temperature and fuel-flow which are corrected 
using the corresponding atmospheric conditions 
and are converted into CSHP, CNg, CTGT and 
CWf respectively. The mathematical procedure of 
non-dimensionalizing the gas turbine engine 
parameters is based on the Buckingham PI 
Theorem [4]. 

2.2. Single Variable Regression 

Next phase is to apply common methods of linear 
regression in order to best fit three separate single-

variable polynomials as given by Eq. 1 to 3. These 
polynomials give the mathematical relation 
between the corrected engine power and each of 
the other corrected engine parameters. Common 
practice calls for these polynomials to be from the 
3rd order so they can capture an inflection point 
representing an important physical characteristic of 
the engine. Each single-variable polynomial can be 
regarded as a ‘finger-print’ of the installed engine 
in the particular helicopter type and represents the 
dependency between the corrected output power 
and the single corrected engine parameter. As 
example throughout this paper consider the flight-
test data gathered for a Rolls Royce/Allison 
MTU250-C20 gas turbine engine installed as the 
left engine on a MBB BO-105M helicopter. 
Applying Eq. 1 to 3 to this set of flight-test data and 
using least-squares technique results in Eq. 4 to 6. 
Figure 1 presents the three non-dimensional 
engine parameters plots for the example flight-test 
data. 
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2.3. The maximum available power 

The final phase in this analysis is to evaluate the 
maximum available output power the engine is 
capable of delivering under a wide range of 
atmospheric conditions. For an atmospheric 
condition of choice, the engine output power is 
calculated separately in each path; the path of 
compressor speed limited engine by substituting 
the engine compressor speed limitation in Eq. 1, 
the path of temperature limited engine by 
substituting the engine maximum allowable 
temperature limitation in Eq. 2 and the path of fuel 
flow limited engine by substituting the engine fuel 
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flow limitation in Eq. 3. The three calculated values 
for the engine output power are then compared, 
first amongst themselves and then against the 
maximum transmission torque (transmission 
limitation). The maximum available power of the 
engine is assessed as the minimum out of all 4 
paths described above [5].  

The data presented in Fig. 2 were derived by 
following the described procedure with the example 
polynomials (Eq. 4, 5, 6). Figure 2 shows the 
analyzed data for up to 12,000 ft. of pressure-
altitude and for five distinct day conditions; a 
standard day (ISA), 10°C and 20°C hotter than 
standard, 5°C and 10°C colder than standard day 
conditions. Figure 2 presents the estimated 
maximum continuous output power of the engine 
based on this set of flight test data. The continuous 
power rating of this type of engine was set at 
temperature of 738°C and compressor speed of 
105%. For the fuel-flow a fictitious limitation (@ 450 
pounds per hour) was used (since, for this specific 
engine and under atmospheric conditions used, 
this parameter of the engine is never a limiting 
factor). Another limitation mentioned above is the 
transmission limitation. This was at 344 hp for the 
continuous rating. It can be easily seen from Fig. 2 
that for ISA, ISA-5 and ISA-10 day conditions the 
helicopter maximum power is transmission limited 
from sea level up to 790 ft., 2800 ft. and 3800 ft. of 
pressure altitude correspondingly. For higher 
pressure-altitudes the engine becomes 
temperature limited. As for a 10°C and 20°C hotter 
than standard day, analysis suggests the engine 
output power is temperature limited from sea level 
and above.  

 

 

2.4. Current method deficiency 

The major flaw of this analysis method lies in the 
assumption of independency between the rules of 
operation in all three engine limiting factors. This 
drawback manifest itself by the unrealistic behavior 
of the three lines of ISA, ISA-5°C and ISA-10°C 
crossing each other above pressure-altitude of 
8000 ft as seen in Fig. 2. It is physically impossible 
for a temperature limited engine to deliver more 
power whilst the ambient temperature is higher. 
The absolute errors between actual measured 
engine output power and the corresponding 
predicted values using the reduced polynomials 
(Eq. 4, 5, 6) are calculated using Eq. 7, 8 & 9 and 
presented in Fig. 3.  

These errors were found to be normally distributed 
about a practically zero mean. Figure 4 shows the 
errors standard deviation for each prediction path 
plotted against its relevant errors mean. This figure 
also includes a horizontal bar to represent the 95% 
confidence level interval range for the mean of the 
errors. One should realize that this bar shows 
where the mean of the prediction errors can be for 
a 95% confidence level. Looking at Fig. 4 one can 
see that the output power  based on engine 

 

Figure 1. Non-Dimensional single-variable engine 
performance. Data represents 34 stabilized engine 
operation points during flight at various conditions. 
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Figure 2. Estimated maximum continuous power of the 
example engine. Note the engine as installed in the 
helicopter is transmission limited for ISA, ISA-5 and 
ISA-10 conditions. 

 

Figure 3. Engine output power estimation errors using 
single variable models. Note the relative large estimation 
errors of up to 30hp using the engine temperature variable. 
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temperature (Eq. 4) yielded the worst performance; 
the relevant standard deviation of this error is 13hp 
and under 95% confidence level the mean of the 
estimation could be found anywhere along a range 
of ±4.6hp. A standard deviation of 13hp is 
considered a substantial error value for power 
predictions. Concluding, the current method used 
for determining the maximum output power of the 
helicopter gas-turbine engine can result in large 
errors and unrealistic predictions. Next section of 
the paper proposes a new method to improve gas-
turbine flight-test data analysis. 

(7)   1 1, 34r i i
CNg

E CSHP f CNg i      

(8)   2 1, 34r i i
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E CSHP f CTGT i      

(9)   3 1, 34
f

r i f i
W

E CSHP f W i      

3. PROPOSED MULTIVARIABLE ANALYSIS 
METHOD 

This section presents a novel analysis method 
referred to as ‘Multivariable Polynomial 
Optimization under Constraints’ (MPOC). This 
method requires no modification to the way engine 
performance flight-test sorties are carried out. First, 
a multivariable polynomial model to describe the 
engine output power is defined and evaluated for 
minimal multicollinearity. Once acquired a 
multivariable model to describe the engine output 
power based on the engine independent variables, 
the elegant method of projection onto subspaces is 
used to fit the model with experimental flight test 
data and to solve for the particular coefficients of 
the model. The maximum engine output power will 
be assessed as an optimization problem 
(maximization) under constraints. Since the case in 
hand has both equalities and inequalities 
constraints, the Karush-Khun-Tucker (KKT) 

method which deals with both type of constraints 
will be implemented. The MPOC method presented 
in this chapter will be exemplified with the same 
flight-test data of the BO-105M left gas-turbine 
engine. 

3.1. Search for a multivariable polynomial to 
describe the engine power 

A convenient and accurate mathematical 
relationship needs to be found for representing the 
flight-test data. Polynomials serve a great role in 
flight-testing due to their simplicity and ease of 
manipulation. Different math model search 
algorithm are presented in the literature of specialty 
for optimizing regression models of experimental 
data obtained in aviation, see for example refs 
[6],[7],[8]. For the purpose of demonstrating the 
MPOC method, a simple 3rd order polynomial in all 
engine independent variables is suggested. The 
basic polynomial (Eq. 10) is augmented with only 
one predictor (f1, f2 or f3) which involves a cross 
product between two independent engine 
parameters (Eq. 11). Using the example engine 
flight test data, the linear correlation (r) and the 
Variance Inflation Factor (VIF) between all three 
predictors are calculated (Eq. 12). The VIF 
between f2 and f3 was found to be 251, the VIF 
between f1 and f2 was 44 and the one between f1 
and f3 was 36. For reasons of limiting the 
multicollinearity in the engine power model, f1 was 
chosen to represent the other two cross product 
regressors (f2 and f3 - see Eq. 13). 
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3.2. Fitting the candidate multivariable 
polynomial model with experimental data 

This section presents the method used to fit the 
proposed multivariable model (Eq. 13) with the 
actual experimental flight-test data. The method 

 

Figure 4. The mean and standard deviation of the single 
variable estimation errors. The engine temperature based 
estimation presented the worst performance with an error 
standard deviation of 13hp. 
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used is based on a linear Algebra concept known 
as projection onto subspaces [9]. The 34 flight-test 
data points of the exemplary gas-turbine engine 
are next substituted in Eq. 13. This produces a 
linear system of 34 equations with 11 unknowns 

(the coefficients 2

n ). This set of equations is 

compactly presented as Eq. 14. The matrix A is of 
the size of (34x11) and contains the numerical 
regressors as columns, α is a column vector (11x1) 
containing the unknown coefficients and b is a 
column vector (34x1) representing the measured 
experimental corrected output power of the engine 
(CSHP).  

(13)  
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(14)    [ ]A b   

Substituting the regressors of the proposed 
candidate model into Eq. 14 results in Eq. 15 

(15) 

2

1

2

23 2

1 1 1 1 2

33 2

2 2 1 1 2

43 2

3 3 1 1 2

5

2

6

2

7

2

83 2

33 33 1 1 2

93 2

34 34 1 1 2

10

2

0

1

1

1

1

1

CNg CNg CNg CTGT

CNg CNg CNg CTGT

CNg CNg CNg CTGT

CNg CNg CNg CTGT

CNg CNg CNg CTGT

























 
 
 
 

 
  
 
 
 
 
  

1

2

3

33

34

CSHP

CSHP

CSHP

CSHP

CSHP








 
 


 
 
 
 
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 

 

This system of equations is over-determined and 
does not have an exact solution. However, one can 
look for the ‘closest’ solution for this system, i.e. the 
‘best-fit’ solution. This best-fit solution is denoted 

as {𝛂̂}. The matrix constructed from [𝐀𝐓𝐀]−𝟏𝐀𝐓 is 
the projection matrix which when multiplied by the 
vector b yields a solution in a subspace of A (Eq. 
16). This solution serves as a best-fit or the closest 
solution one can determine. Following the above 

described procedure one can solve for the 11 
coefficients of Eq. 15 using Eq. 17. 
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For completeness of this procedure presentation, 
the particular solution obtained using all 34 test 
data points of the BO-105 example engine is given 
by Eq. 18. 
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3.3.  Statistical validity of the proposed 
candidate multivariable polynomial model 

Consider the prediction errors of the proposed 
engine power model per an experimental data point 
as presented in Fig. 5 and calculated according to 
Eq. 19. For comparison,  Fig. 5 also includes partial 
data obtained from single variable analysis 
method. Looking at Fig. 5 one can perceive that the 
proposed model (Eq. 13, 18) performs much better 
in predicting the engine output power as compared 
to the single variable polynomial based on the 
corrected engine temperature (CTGT). Prediction 
errors of the proposed multivariable model were 
found to be approximately normally distributed 
about a practically zero mean (the precise mean 
was 3.9x10-10 hp). This normality of the prediction 
errors can be demonstrated by the roughly straight 
line of the normal Quantile-Quantile plot (Q-Q plot) 
presented as Fig. 6. 
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The P-value analysis: The concept behind the 
P-value is thoroughly discussed in literature [10]. In 
a nutshell, it is based on stating an hypothesis (the 
Null Hypothesis, H0) that is then supported or 
rejected based on statistical analysis of the 
experimental data. For the engine analysis,  H0 is 
set to claim that the proposed multivariable model 
produces an array of estimation errors with a zero 
mean. The P-value returned represents the 
smallest significant level that leads to falsely 
rejecting the Null Hypothesis while it is valid (type I 
error). This is the reason for low P-values to cast 
doubt on the validity of the null hypothesis and 
leads to the acceptance of the alternative 
hypothesis. The prediction errors of the proposed 
multivariable model presented in Fig. 5 can be 
replaced with a single value to encapsulate the 
entire performance of the model. This value is the 
test-statistic and is calculated using the mean of 
prediction errors divided by the estimated 
population standard deviation (Eq. 20).  

One should realize that low test-statistic values 
return large P-values and vice versa. The test-
statistic of the proposed model (Eq. 13,18)  was 
calculated to be an extremely low value of  
1.5x10-11 which returned a calculated P-value of 1. 
The practical conclusion of this analysis is that it 
can be stated, with a confidence level of above 
99%, that the multivariable polynomial model 
proposed (Eq. 13,18) predicts the BO-105M engine 

power with normally distributed prediction errors 
about a zero mean (the Null Hypothesis, H0). 

3.4. Estimation of the maximum output power 
using the MPOC analysis approach 

Once acquiring a multivariable polynomial to 
describe the change in corrected engine output 
power based on other engine corrected parameters 
(compressor speed, temperature and fuel-flow), 
Eq. 13, 18 for the specific flight test data presented 
in this paper, one can predict the maximum 
available output power of the engine under various 
atmospheric conditions. The engine output power 
is limited by reaching one (or more) of its 
independent parameters. Finding the maximum 
output power is equivalent with finding an 
extremum point (maximum output power) under 
constraints (the engine independent parameters: 
compressor speed, temperature or fuel-flow). 
Finding an extremum point of a multivariable 
function under constraints is of a different nature 
from the case of a single variable function. The 
most popular approach for the multivariable case is 
using Lagrange multipliers but this approach 
applies only to equalities constraints only whereas 
the problem we have in hand involves both 
equalities and inequalities constraints. One 
possible approach for optimization under both 
equalities and inequalities constraints is the KKT 
(Karush-Kuhn-Tucker) method [11]. Eq. 21 
presents the Lagrange equations required for 
satisfying extremum points of a multivariable 
function f(xi) subjected to ‘m’ number of inequalities 
constraints, g(xi) and ‘l’ number of equalities 
constraints, h(xi). μj represent the Lagrange 
multipliers associated with the inequalities 
constraints and λk represent the Lagrange 
multipliers associated with the equalities 
constraints. 

(21)   
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   

  

  

 

 

The function to be maximized is the proposed 
model (Eq. 13, 18) subjected to several constraints. 
The system of equations (Eq. 21) can be solved 
when at least two equality constraints are provided. 
Those are fulfilled with the engine internal rule of 
operation, as explained hereinafter. Applying 
similar statistical tools as described in section 3.3, 
a best fit surface is calculated constituting the 
engine multivariable internal rule of operation. This 
surface which describes the relationship of the 
corrected engine temperature with both corrected 

 

Figure 5. Estimation errors comparison between the 
proposed multivariable engine power model and the 
single variable model based on the engine temperature. 

 

Figure 6. Normal Quantile-Quantile (Q-Q) plot for the 
prediction errors of the proposed multivariable engine 
model.  
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compressor speed and corrected fuel-flow, is 
complemented by the experimental data points and 
is presented in Fig. 7. Looking at Fig. 7 one can see 
that the surface plotted covers a much larger range 
than it should (it is extrapolated) and this is done 
only for visualization. Based on the surface in Fig. 
7 two constraints are selected: 

1) The first one is denoted as h1 and is 
represented in its implicit form as Eq. 22 
relating the corrected engine temperature to 
the corrected compressor speed. 

2) The second is denoted as h2 and represents 
the relationship between the corrected 
compressor speed and the corrected fuel-flow 
(Eq. 23). 

Note that both  h1 and h2 constraints are projections 
of the multivariable rule of operation onto two 
planes; the CTGT-CNg plane and the CNg-CWf 
plane respectively.  

(22)      
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The inequalities constraints for the engine 

maximum output power are simply the operational 
limitations imposed on the engine. For the example 
BO-105 engine these are the continuous rating of 
the engine and are represented as Eq. 24, 25 and 
26. 

(24)   1

105
: 0g CNg


   

(25)   2

738
: 0g CTGT


   

(26)   3

450
: 0fg CW

 
   

The partial differential equations (Eq. 21) and the 
KKT conditions (Eq. 24 to 26) for a maximization 
problem result in Eq. 27, 28 and 29. 
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Equations 27, 28 and 29 can be rearranged as Eq. 
30. 

 
 
 

(30)   

 

 

The set of partial differential equations (Eq. 30) 
describe conditions for candidate engine corrected 
parameters representing maximization of the 
engine output power. This set does not have a 
unique solution but a solution with 2 degrees of 
freedom for the three different cases it represents 
(5 unknowns with only 3 equations). The first case 
(Case I) is when the compressor speed is at its 
maximum value, i.e., the engine output power is 
limited by the compressor speed. The second case 
(Case II) is when the output power is limited by the 
engine temperature and the third case (Case III) is 
a fuel-flow limited engine. Separating Eq. 30 into 
the three individual cases and applying the KKT 
conditions on the Lagrange multipliers associated 
with the inequalities constraints (μ1, μ2, μ3) 

 

Figure 7. The engine multivariable internal rule of 
operation. The relationship between the corrected 
engine temperature and the corrected values of the 
engine compressor speed and fuel flow. The circles 
presented are the experimental data points, which some 
are obscured by the best fit surface. 
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eliminates the two degrees of freedom and makes 
each one of these cases to have a unique solution. 

3.4.1. Case I – Compressor speed limited 
engine 

Applying the KKT conditions for Case I imposes the 
following conditions on the Lagrange multipliers 
associated with the inequalities constraints (Eq. 
31). 

(31)    1 2 30, 0, 0        

Combining Eq. 31 and Eq. 30 results in the system 
of equations (Eq. 32), i.e. 

 

 

 

 

 

 

(32)   

 

 

 

 

 

 

3.4.2. Case II – Temperature limited engine 

Applying the KKT conditions for Case II imposes 
the following conditions on the Lagrange multipliers 
associated with the inequalities constraints (Eq. 
33). 

(33)     1 2 30, 0, 0        

Substituting Eq. 33 into Eq. 30 results in equations 
(Eq. 34), i.e. 

 

 

 

 

 

(34)    

 

 

 

 

3.4.3. Case III – Fuel flow limited engine 

Case III is when the maximum output power of the 
engine is bounded by reaching the maximum fuel-
flow the pump is capable of delivering to the 
engine. Applying the KKT conditions for this case 
imposes the following conditions on the Lagrange 
multipliers associated with the inequalities 
constraints (Eq. 35). 

(35)    1 2 30, 0, 0        

Combining Eq. 35 with Eq. 30 results in the set of 
equations (Eq. 36), i.e. 

 

 

 

 

 

(36)   

 

 

 

 

3.4.4. Demonstration of Case II – Temperature 
limited engine 

The next section demonstrates the specifics of 
Case II using the example BO-105 flight-test data. 
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Similar methodology can be applied to find the 
maximum output power for the other two cases. 
The set of equations specified in Eq. 34 has a 
solution if and only if the rank of the system matrix 
equals the rank of the auxiliary matrix. This solution 
is also unique if both ranks equal three (i.e., the 
three Lagrange multipliers). This requirement for a 
unique solution can be stated mathematically as 
Eq. 37.  

 

 

 

(37)   

 

 

 

 

 

Instead of searching for a pair of corrected 
compressor speed and corrected fuel-flow under a 
limited corrected temperature (CTGTlimit) to satisfy 
Eq. 34, one can simplify the process by using an 
engineering approach: for each and every 
combination of atmospheric conditions a pair of 
candidate corrected compressor speed and 
corrected fuel-flow are suggested via the engine 
internal rule of operation (Eq. 22 and 23). These 
candidate pairs complemented by the engine 
temperature limit will then be evaluated for 
realisation of the KKT conditions required for 
maximization of the engine output power. Since the 
equations specified in Eq. 34 have a unique 
solution, they can be rearranged as in Eq. 38. The 
three engine parameters (candidates for maximum 
output power) can be used in Eq. 38 to solve for the 
Lagrange multipliers. The three candidate 
simultaneous engine independent parameters will 
be valid for defining a maximum output power of a 
temperature limited engine if and only if the solution 
of Eq. 38 is achieved while coinciding with the KKT 
conditions required for the case. This procedure 
was carried out using the engine internal rules of 
operation (Eq. 22 and 23) for different day 
conditions (ISA, ISA+10°C, ISA+20°C, ISA-5°C & 
ISA-10°C). Figure 8 presents the maximum output 
power of the example engine along with all the KKT 
requirements as a function of pressure altitude for 
an ISA day conditions. It can be seen that all the 
KKT requirements are met. Figure 9 presents the 

maximum continuous output power of the engine 
as a function of pressure-altitude for different day 
conditions. The maximum continuous output power 
of the engine is temperature limited under all 
atmospheric conditions, see Fig. 9. Note the KKT 
requirements were omitted from Fig. 9 although 
they were all met. 

 

 

 

 

(38)    

 

 

 

 

 

4. COMPARISON OF MAXIMUM OUTPUT 
POWER FOR THE CURRENT AND THE MPOC 
METHODS 

The estimated maximum engine output power is 
compared using both the current and the proposed 
MPOC methods as seen in Fig. 10. Looking at this 
figure it follows that both methods demonstrate 
similar results for atmospheric conditions close to 
those prevailed during the actual flight-tests 
(ISA+21°C); however, while the current single-
variable method completely collapsed under ISA 
and colder day conditions, the MPOC method 
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Figure 8. A simultaneously presentation of all engine 
parameters for pressure-altitude between sea level and 
12,000 ft. under standard day conditions (ISA). The engine 
is temperature limited at 738°C. Note the fulfillment of all 
KKT conditions for output power maximization of the 
temperature-limited engine.. 
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predicted reasonable and logical estimations for 
ISA and colder day conditions. 

 

5. CONCLUSIONS 

The output power of a helicopter gas turbine engine 
is a multivariable problem that can be non-
dimensionalized. Oversimplification of the problem 
as linear combination of single-variable models 
does not provide sufficient accuracy and frequently 
provides unrealistic estimations for the maximum 
output power under atmospheric conditions 
different than those prevailed during flight testing. 
The method presented in this paper (Multivariable 
Polynomial Optimization under Constraints, 
MPOC) is based on multivariable polynomials. This 
method proves substantial better performance in 
estimating the output power of a BO105 helicopter 
used as example in this paper (over 300% of 
improvement).For MPOC method practical 
application, the paper proposes a multivariable 

polynomial of the third order. Selection of a 
particular model of this multivariable polynomial is 
based on minimization of collinearity between the 
variables and sufficient P-values returned. This 
specific model is probably not deemed as the best 
possible for the relevant task but it is a first possible 
solution. Predicting the maximum output power of 
a gas turbine engine can be regarded, 
mathematically, as an optimization problem of a 
multivariable function subjected to both equalities 
and inequalities constraints. The equalities 
constraints should be based on the flight test data 
and the inequalities are provided by the engine 
operating limitations. Although the current single-
variable method used for assessing helicopter gas-
turbine power available is simple, one should utilize 
it only as a first estimation and not as an accurate 
flight testing analysis tool in the process of 
estimating the maximum output power of a gas-
turbine engine. The approach presented in this 
paper will be expanded in the future to include flight 
test data from other types of helicopters and 
engines. Future research can also include a 
comparative analysis between a broader base of 
candidate multivariable engine models in order to 
better understand which type of regressors are a 
better choice for the task of modelling the output 
power of helicopter gas turbine engines.   
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