
ERF91-18
A MODULE-LEVEL 1ESTING ENVIRONMENT FOR

SAFEfY-CRmCAL SOFIWARE SYS1EMS

A.Silva, LMarcocci, MDidone

Agusta S.p.A. Business Unit Systems & Space

Tradate Unit, Tradate 0/A) Italy

Abstract

Full coverage of Software Testing, from both
the Functional and Structural viewpoints, is a
key aspect in the assurance of Safety-Critical
Systems, and a major portion of the Develop­
ment effort. A strategy has been developed to
achieve most of coverage during module test­
ing in isolation. A Testing Environment allow­
ing to describe the test cases in an
understandable and formal language, and to
execute them on the Target machine has been
developed. It produces automatically a detailed
set of Test Reports, covering the Module's
functionality as well as the Module's structure
and execution threads down to the machine
elementary instructions It has been integrated ·
with SD-SCICON's Perspective Development
Environment and targeted for the Motorola
M680XO Microprocessors. The Testing Phase
of the Software Development Life Cycle has
been formalized in much the same way as the
Application Software Development, introduc­
ing a standard approach, a set of rules and
Configuration Management of the Module
Test Sets, along with a substantial advantage in
terms of efficiency and usage of human and
machine resources. The product is currently in
operation and has been extensively used on the
EH101 Autopilot Safety-Critical Software.

Background

The Unitary Testing Phase is always on the
critical path in the development of Safety-Criti­
cal Software Systems. This is due to the central
position of this phase, downstream of actual
code production and preliminary to integration
testing. The criticality of this phase is further
increased by the very stringent requirements

This Paper is being simultaneously

presented at MILCOMP Europe 91

that must be complied with in order to achieve
certification. The effort for this phase often is
so high that the phase can be considered the
only real project bottleneck, for both man­
power and computing resources.

Agusta Approach

The AGUSTA approach to Testing for Safety­
Critical Avionics has been worked out within
the EH-1 01 Anglo-Italian Helicopter
Programme, and particularly for the Automatic
Flight Control System (AFCS), developed in
cooperation with Smiths Industries PLC for
Westland Helicopters LTD. The approach has
been to follow the rules given in RTCA-D0-
178A for Level 1 criticality classification. The
requirements call for full identification and
coverage of functional capabilities at the S/W
module level, as well as structural coverage of
the produced code.

This approach is very well suited for control
systems, where the design is such that most of
the functionality is built combining a set of
basic building blocks, with function com­
plexity increasing with successive aggrega­
tions in the S/W hierarchical structure. Testing
proceeds therefore in a bottom-up fashion,
proceeding to the next higher level only when
the current level is test-cleared. It became im­
mediately clear, during the early stages of
Unitary Testing, that the workload was large,
comparable to the sum of the other develop­
ment phases, also taking into account the need
for non-regression testing following changes.
The need to reduce workload, as well as to
orderly maintain Test cases and results for
multiple simultaneous baselines forced the
decision to automate the process.

165

Automation had to satisfy two main require­
ments:

• non-intrusive checking

• integration with the EH -101 Software
Development Environment, based on the
Perspective PASCAL I Assembler
development environment (SD-SCICON),
targeted in this case forthe Motorola 68000
microprocessor. The Environment is in­
stalled on VAX/VMS Host.

The concept was to provide rules and tools to
the development team with facilities for:

• writing the Test Cases in a language easy
to understand and maintain

• automatic generation of code for giving
stimuli to the Module Under Test (MUT)
and for retrieval and check ofMUT respon­
ses

• automatic generation of command sequen­
ces for building executable Test Cases

• automatic run of a single Test Case or a full
set of Test Cases on emulators or standard
Boards and generation of Test Reports

• automatic run of a full set of Test Cases
with trace and generation of Test Coverage
Reports

• easy rebuild of a test suite for any Module
revision

Test Environment Components

The Test Environment has been developed in
three phases, clearly separating the require­
ment and strategies definition, the Functional
Test Environment implementation and the
Structural Coverage Analyzer implementation.

Test Stratejiy and Lan!iUa!ie Definition

A Test Strategy has been defined, dictating the
requirements for the Test Environment. The
Strategy has been oriented purely to Unitary
Testing of Modules, based on the following
definitions and considerations:

• a basic Module needs only external data

• a compound Module needs both external
data and external services

• external services are provided by either
basic or compound Modules

• a capability is defined as an observable
functional topic, i.e., a suitably small
software computation that processes ob­
servable (and in most cases alterable) in­
puts to yield observable outputs

• basic Module procedures are fully tested
across their set of capabilities, including
accuracy and precision performances

• compound Modules are tested covering the
capabilities they perform internally, i.e.,
intermediate computations and calls to ex··
ternal services

• external services called are substituted by
instantiations of a Generalized Stub
Module, that implements a linear input-to­
output transfer or constant (presettable)
output. The Stub enables recording of call
sequences and invocation parameters for
their retrieval and check

This strategy allows to focus the attention on
software-only issues, decoupled from system­
level functionality, limiting the use of simula­
tion data to the bare minimum. The check of
system-level functional performances is
deferred to higher levels of Integration and
System Test.

A Test Language has been defined, that allows
writing of a Test Case typically reflecting the
test cycle: stimulus data preset, invocation of
the Module Under Test, check of outputs
against expected values. Each Test Case can
contain several test cycles for the MUT.

A Test Case is structured in a standard fashion,
dictated by the Language syntax and depend­
encies; a typical Test Case skeleton, omitting
the details of the language syntax, is described
in the following:

Test Specification Section: This section
declares the Test Spec and the MUT charac­
teristics within the Software Factory.

Header Section: Textual description of the
Test Case. For Critical Software, it contains
administrative data, like author, revision, date
and revision history.

Declaration Section:

166

• Mode Specification, declaring Language
or initialization mode

• Procedure (Function) Name Specification,
identifying the entry to be tested and its
parameters

For M68000 assembly modules, where
parameters are passed in registers, the
parameter list reflects registers identifiers.

• Module and Interface Specification, iden­
tifying the MUT interface characteristics

• External Modules and Interfaces
Specification, identifying external services
and data areas

• Data Type Definition Specification (used
when the MUT requires complex struc­
tured data defined externally).

• Variable Data Access, declaring access
mode for all set and check points

Input Section

• Input Constant Specification (integer, Hex
or Scaled decimal), loading setpoints with
data

• Input Sequence Specification for repeated
setpoint loads and invocations (LOOP)

Inyoke Section: Invoke the MUT proce­
dure/function a specified number of times
(default: once)

Oumut Section

• Single Output Specification to read a
checkpoint, defining expected value/range

• Output Sequence Specification with ex­
pected check value/range sequence (to be
used in conjunction with Input Sequence
specifications and LOOP structures)

End Section: This section instructs the Com­
piler to stop parsing of the Test Specification
Source.

The Language has been designed to run tests
non-intrusively, and therefore no keywords are
provided to instrument the code. This is essen­
tial to ensure that the tested Modules are the
actual code that will be incorporated in the
embedded application.

Compiler Development

A Compiler has been developed for the Test
Language. It produces Perspective Pascal
code, including a Pascal process providing
stimuli to the MUT, collecting output values,
checking them against expected output and
producing a report file on the Host.

The Compiler provides also source code for the
assembly language interface routines neces­
sary for register setup and checking, as well as
command streams for the complete build of the
Test Case Executable image within the PSP
Software Factory. Different variants of build
are generated for Emulation and Host-Target
run using standard Boards

The output file concatenates all necessary
items, separated by appropriate tags for auto­
matic separation and run. The Compiler is
lodged under Configuration Control and
stamps the output file with its revision.

Functional Test Flow Diawam

Figure 1 shows the structure of the Functional
Test toolset and its interaction with the PSP
Software Factory.

Functional Test Cases and Reports

Figures 2 and 3 show respectively a sample of
a Test Case and the corresponding Test Report.

167

INPUTC SY'!l ISt..LEt 9LLRR4 :20 W 9-M 7 ;• 50.:
[SLL. ICC2-RHRS1-R011-<"ate-EuJ.er_Lta)
lNPUIC SY'S lSLLE£ SLLRR6 24 W SM 7 :• 60.;

LOOP 2
INPUT PI'IS tNSE~T :• 1.1: ! lnoorLpointcr l
INPUT 02 : • 2.2: (al!ll!t()~ RolJ.)
INPUT fNV SVLRR4 ll :• 1.0: {5YL.ICC1-A11RSLRo1Lret"-~el.idit\IT

IHUOilE
OUTPUT PAS OUJ-PS(2].0_R(2j SM 7 CHECK SQ. ,60.; (AHRS_t....,)

ENDLOOP

I Fig.2 Sample of Test Case I

IHRAIION ' ---
INSERT
SVLRR4

"' -- IMUIIIK(O -- COR

VARIA6lf. NAMf C014'UTfO VALUE RESULT EXPECTED VALUf
OU14'9(2 l . Q_R (2 l 12800 PASS EO 12800

ITERATION ' ~~ ..
INSERT ' SVLRR4 '
"' ' -- IIWDklO -- COR

VAIHflBLE NAtol! COI'f'UT~O VALUE RI!SUL T !XJII!CTEO WILUI!
OU!of>S(2} ,Q_R{2} t53t50 PASSED 16360

[Fig.3 Same Section of Report

Structural Coverage Toolset Development

The Structural Coverage Toolset has been
developed combining the RTCA-D0-178A re­
quirements and the concept of assessing the
coverage of the actual code instead of an inter­
pretation of the design.

Since full functional coverage is mandatory for
critical applications, the Structural Coverage
has been designed from the start with the aim
of maximum reuse of functional Test Cases.
This approach is particularly promising when
most of the application software is written in
assembly language for performance reasons,
and does not include unusual code constructs
generated by a High-Level Language com­
piler.

The Structural Coverage requirements have
thus been interpreted as follows:

• the structure of the actual MUT machine
code must be precisely identified, i.e., all
conditional branch points, flow junctions
and the sequential code segments between
them must be recognized and listed.

• the MUT must be exercised with a number
of runs and stimuli conditions sufficient to
execute all code instructions, giving
evidence that no code section has been
neglected. Hardware or Software con­
straints preventing complete coverage
must be clearly identified and justified.

• all conditional paths based on machine­
level. (binary) decisions must give
evidence of the decision effects in both
cases. Structures implying no black-box
difference in the executed statements in the
two cases (e.g.,REPEAT..UNTIL loops)
must be identified and covered at the func­
tional level.

The check for complete coverage, according
with the criteria stated above, can also be con­
sidered a way of highlighting deficiencies in
the functional tests, although not implying
complete functional test when successfuL

The development has been split in two major
areas: a Code Analyzer and a Coverage Check­
er.

The Code Analyzer

The Code Analyzer processes directly the as­
sembly source code, parses the code, identify­
ing branch points, junction points and
loopback branches, as well as the sequential
code fragments between them.

The outputs of the Code Analyzer are:

• a marked listing, where special mark labels
are added to the source code, highlighting
branch points, junctions and loopback
branches.

• a list of sequential code fragments, each
identified by the pair of mark labels it
interconnects. This list will be used by the
Coverage Checker as a column of labels in
Route Table matrices (for single Test
Cases or for the whole Test Set [Global
Route Table]), where other columns (one
for each MUT invocation) will show a
mark in each row corresponding to an ex­
ecuted fragment.

The advantages of this approach are:

168

• no interpretation mistakes may occur

• the process is automated and repeatable

• evidence of the structure is computer­
based, mapped onto the actual source code
and bound by naming conventions to the
MUT's controlled revisions.

• the process' outputs can be used by sub­
sequent automated procedures.

The tool relieves the two major drawbacks of
techniques of the past, when paper-and-pencil
techniques have been used, involving structure
diagrams and decision tables to show the shape
of the Module or Procedure:

• drawing diagrams takes time, since
diagrams must be based on the source
code, rather than a higher-level description
(e.g.,PDL), and the diagrams must be
revised whenever the source code changes.

• drawing diagrams and filling decision
tables is a process prone to human error,
and extensive verification effon is re­
quired. Decision tables turn out to be trivial
for assembly code, where all decisions are
binary, but their size easily grows to im­
practical magnitudes.

The Covera~ Checker

Given a set of Test Cases, their executable
image is run on In-Circuit-emulators, activat­
ing a trace window over the MUT's program
segment.

The execution output is a Trace File for each
Test Case, each of which may contain multiple
invocations of the MUT. Each Trace File is
used for three purposes:

• as it is, to map the Test Case coverage onto
the marked listing

• merged with Trace Files from other Test
Cases to produce a map of the whole Test
Cases set onto the marked listing

• split by individual MUT invocations, for
three purposes:

fill the single Test Case Route Table with
a column for each invocation run

• fill the Global Route Table, invocation
by invocation, for the part pertaining to
the Test Case

• map the single invocation run onto the
marked listing

Mapping is shown on the marked listing by
strings highlighting the executed path, making
verification against the Test Specification easy.
The different types of coverage listings allow
immediate detection of neglected segments
and give a clear picture of the executed path for
each invocation.

After building a Global Route Table, it is
checked with the following criteria:

• all identified paths should have been ex­
ecuted at least once

• all conditional paths, with the exception of
paths starring at a loopback branch point,
should result skipped at least once

• all conditional branch points, with the
same exception, should be reached at least
twice, with execution continuing once on
the left and once on the right following
fragment

The outputs of the Coverage Checker are:

By default:

• Coverage Listings (for each Test Case and
Global)

• Route Tables (for each Test Case and
Global)

• Coverage Analysis Repon

On Request:

• Single run Coverage Listings

Structural Test Flow Diagram and Route Tables

Figures 4 and 5 show the phases of a typical
Structural Test session and a filled Route
Table.

169

Fig.5

Filled Global

Route Table

+-------+--+----+----+----· +
I LINK-IDI
+-:------- 'f'--+----+---- 1·--~·~.,

ITOLB01!* 1****1
!B01_T02!* I * *I
!T02-B021* 1****1
IT03-B031 * I 1****1
IB03_T041 * I I * *I
I T04-B041* I 1****1
IT05-B051 * I I 1****1
1806_ 1061 * I I I * *I
I T06-B061 * I I l*#**l
I ro7_Bo71 **1****1****1****1
IB07_T081* 1****1 I I
ITOB-6081 **1****1****1****1
IBOB_T091 * I 1****1 I
I rog_so9J **l****l****l**~$1
IB09-T101 * I I 1****1
I T10_B10I **1****1****1****1
I T1LB111 $J *I lSJ "'I
+-------+--+----+----+----+

User Interface

The Test Environment has been designed to
allow interactive and batch testing of Modules,
with the possibility to run single Test Cases or
a full suite ofT est Cases (particularly useful for
non-regression testing).

A User Interface has been developed, that al­
lows the User to select the mode of operation
and the steps in the Test Process, as well as to
preset parameters for batch-mode operations
for several MUTs in a single session, including
commands and parameters caching.

ST:RUCTURAL TEST

HlP
All
GEH
MRK
TRC
CUR
RTT
CRT
UER
FIN

Operating instructions
Other coMflla.nd~

Lietina file teneration
Lietina file Markin~
Trace file(s) Generation
Te~t coverage coMputing
Route Table aeneration
General co~pr route table
Route table verification
Exit

1i!U!@!i@ I

T E S T

HLP Suf"W"'ar~ of opewat.ina inetructione:
DBN Oato b~e natt~e

SPE Teet epee name
TST ~,ole operation
PRE Preproce~~or {interactive onl~:~)

PSP Con~truction of s~:~~te~ te~t {Turbo)
CUT Split of sy~teM t~~t in file~
SYS CoMPilation of ienerated s~:~~te~
ICE Preparation of files for TEK
FIN Exit

11111111111

I Fig.6 Functional Test Main Mellii]

HLP
JOB
fiL
BAT
LST
OEL

·r E S ·r H A ·r C H

Su~ry of operatint in~truction~:
Select current Job
Create batch test spec list
Current batch list execution
Current job lietint
Erase of current job

FIN Exit

11111111111

Fig.7 Batch Functional Test Main Menu

WTST

WTHX

WCRT

WTRT

WAll

Whole test operations (the
same of test COMMand TST)
Not executed instructions
(GEN+MRK+TRC+HEX}
f"/Ul tiple route
(OEN+MRK+TRC+RTT+CUR+CRT+UER)
Test ca~e alobal route
{GEN+MRK+TRC+RTT)
f"/Ulti test, route & cover
(IHST +IJCRT)

TRCV BATCH --- COMMAND: WALL

Figures 6 to 9 show actual
samples of the User Interface
forms, for Functional (6 & 7) and
Structural (8 & 9) Test, in Inter­
active and Batch test modes.

Fig.9

Batch Global

Test Parameters

Teet caee nart~e

User PSP
Pasewd

Modul& Nat"'e
Revision nurrber
Master t. epee n~
SW build variant

[TPZAEE-018}: I

[N6]:

[t1P2AEE):
[00 1:
[TPZA££00]:
[~]:

Acquire Syste~ [SE00-11]:
En~iron~ental user [E£00-07):
Co~ilation context [C68KCEil:
Tar~et name [D68KC£1]:
Taraet ~ap file name

(CADNH6:(EHU68K]D68KCEOOI-07.NPT]:

Jnb t1i"f'"'=' [N!~N_hlttll] Jo:lb n•11•ol:le1· 1

170

Conclusions

A computer-aided Test approach has been
developed, focusing on the software aspects
rather than system aspects in the conduct of
formal Unitary Testing. Usage of the Test En­
vironment in the EH-101 AFCS program has
proved invaluable in Test effectiveness, limit­
ing the effort to test design only. The traditional
Unitary Testing bottleneck has been alleviated
by usage of Hardware resources 24-hours a day
in batch mode, ease of re-test of changed
Modules and test data Configuration Manage­
ment.

The introduction of a simple, yet powerful Test
Language has allowed to transfer good
Software Engineering practices to the Testing
Phase, with substantial benefits in Test main­
tainability across several baselines and
numerous revisions of the application com­
ponents.

The automation of Coverage Checking, based
on actual code constructs, has reduced effort,
human errors and verification needs, introduc­
ing full repeatability in this Testing step.

171

