AMODULE-LEVEL TESTING ENVIRONMENT FOR

ERFSG1-18

SAFETY-CRITICAL SOCFTWARE SYSTEMS

A Silva, L.Marcocci, M.Didoné

Agusta S.p.A. Business Unit Systems & Space
Tradate Unit, Tradate (VA) Italy

Abstract

Full coverage of Software Testing, from both
the Functional and Structural viewpoints, is a
key aspect in the assurance of Safety-Critical
Systems, and a major portion of the Develop-
ment effort. A strategy has been developed to
achieve most of coverage during module test-
ing in isolation. A Testing Environment allow-
ing to describe the test cases in an
understandable and formal language, and to
execute them on the Target machine has been
developed. It produces automatically a detailed
set of Test Reports, covering the Module’s
functionality as well as the Module's structure
and execution threads down to the machine

elementary instructions It has been integrated -

with SD-SCICON’s Perspective Development
Environment and targeted for the Motorola
M680X0 Microprocessors. The Testing Phase
of the Software Development Life Cycle has
been formalized in much the same way as the
Application Software Development, introduc-
ing a standard approach, a set of rules and
Configuration Management of the Module
Test Sets, along with a substantial advantage in
terms of efficiency and usage of human and
machine resources. The product is currently in
operation and has been extensively used on the
EH101 Autopilot Safety-Critical Software.

Background

The Unitary Testing Phase is always on the
critical pathin the development of Safety-Criti-
cal Software Systems. This is due to the central
position of this phase, downstream of actual
code production and preliminary to integration
testing. The criticality of this phase is further
increased by the very stringent requirements

This Paper is being simultaneously
presented at MILCOMP Europe 91

that must be complied with in order to achieve
certification. The effort for this phase often is
so high that the phase can be considered the
only real project bottleneck, for both man-
power and computing resources.

Agusta Approach

The AGUSTA approach to Testing for Safety-
Critical Avionics has been worked out within
the EH-101 Anglo-Italian Helicopter
Programme, and particularly for the Automatic
Flight Control System (AFCS), developed in
cooperation with Smiths Industries PLC for
Westland Helicopters LTD. The approach has
been to follow the rules given in RTCA-DO-
178A for Level 1 criticality classification. The
requirements call for full idendfication and
coverage of functional capabilities at the S/W
module level, as well as structural coverage of
the produced code.

This approach is very well suited for control
systems, where the design is such that most of
the functionality is built combining a set of
basic building blocks, with function com-
plexity increasing with successive aggrega-
tions in the S/W hierarchical structure. Testing
proceeds therefore in a bottom-up fashion,
proceeding to the next higher level only when
the current level is test-cleared. It became im-
mediately clear, during the early stages of
Unitary Testing, that the workload was large,
comparable to the sum of the other develop-
ment phases, also taking into account the need
for non-regression testing following changes.
The need to reduce workload, as well as to
orderly maintain Test cases and results for
multiple simultaneous baselines forced the
decision to automate the process.

165

Automation had to satisfy two main require-
ments:

« non-intrusive checking

+ integration with the EH-101 Software
Development Environment, based on the
Perspective PASCAL / Assembler
development environment (SD-SCICON),
targeted in this case for the Motorola 68000
microprocessor. The Environment is in-
stalled on VAX/VMS Host.

The concept was to provide rules and tools to
the development team with facilities for:

« writing the Test Cases in a language easy
to understand and maintain

« automatic generation of code for giving
stimuli to the Module Under Test (MUT)
and forretrieval and check of MU respon-
ses

« automatic generation of command sequen-
ces for building executable Test Cases

¢ automatic run of a single Test Case or a full
set of Test Cases on emulators or standard
Boards and generation of Test Reports

e automatic run of a full set of Test Cases
with trace and generation of Test Coverage
Reports

« easy rebuild of a test suite for any Module
revision

Test Environment Components

The Test Environment has been developed in
three phases, clearly separating the require-
ment and strategies definition, the Functional
Test Environment implementation and the
Structural Coverage Analyzerimplementation.

Test Strategy and Language Definition

A Test Strategy has been defined, dictating the
requirements for the Test Environment. The
Strategy has been oriented purely to Unitary
Testing of Modules, based on the following
definitions and considerations:

< a basic Module needs only external data

< a compound Module needs both external
data and external services

+ external services are provided by either
basic or compound Modules

« a capability is defined as an observable
functional topic, i.e., a suitably small
software computation that processes ob-
servable (and in most cases alterable) in-
puts to yield observable outputs

 basic Module procedures are fully tested
across their set of capabilities, including
accuracy and precision performances

» compound Modules are tested covering the
capabilities they perform internally, i.e.,
intermediate computations and calls to ex-
ternal services

« external services called are substituted by
instantiations of a Generalized Stub
Module, that implements a linear input-to-
output transfer or constant (presettable)
output. The Stub enables recording of call
sequences and invocation parameters for
thetr retrieval and check

This strategy allows to focus the attention on
software-only issues, decoupled from system-
level functionality, limiting the use of simula-
tion data to the bare minimum. The check of
system-level functional performances is
deferred to higher levels of Integration and
System Test.

A Test Language has been defined, that allows
writing of a Test Case typically reflecting the
test cycle: stimulus data preset, invocation of
the Module Under Test, check of outputs
against expected values. Each Test Case can
contain several test cycles for the MUT.

A Test Case is structured in a standard fashion,
dictated by the Language syntax and depend-
encies; a typical Test Case skeleton, omitting
the details of the language syntax, 1s described
in the following:

Test Specification Section: This section
declares the Test Spec and the MUT charac-

teristics within the Software Factory.

Header Section: Textual description of the
Test Case. For Critical Software, it contains
administrative data, like author, revision, date
and revision history.

Declaration ion:
= Mode Specification, declaring Langunage
or initialization mode

» Procedure (Function) Name Specification,
identifying the entry to be tested and its
parameters

166

For M68000 assembly modules, where
parameters are passed in registers, the
paratneter list reflects registers identifiers.

» Module and Interface Specification, iden-
tifying the MUT interface characteristics

+« External Modules and Interfaces
Specification, identifying external services
and data areas

» Data Type Definition Specification (used
when the MUT requires complex struc-
tured data defined externally).

» Variable Data Access, declaring access
mode for all set and check points

In 1

» Input Constant Specification (integer, Hex
or Scaled decimal), loading setpoints with
data

+ Input Sequence Specification for repeated
setpoint loads and invocations (LOOP)

Invoke Section: Invoke the MUT proce-
dure/function a specified number of times
(default: once)

Output Section
« Single Output Specification to read a
checkpoint, defining expected value/range

» Qutput Sequence Specification with ex-
pected check value/range sequence (to be
used in conjunction with Input Sequence
specifications and LOOP structures)

End Section: This section instructs the Com-
piler to stop parsing of the Test Specification
Source,

The Language has been designed to run tests
non-intrusively, and therefore no keywords are
provided to instrument the code. This is essen-
tial to ensure that the tested Modules are the
actual code that will be incorporated in the
embedded application.

Compiler Development

A Compiler has been developed for the Test
Language. It produces Perspective Pascal
code, including a Pascal process providing
stimuli to the MUT, collecting output values,
checking them against expected output and
producing a report file on the Host.

The Compiler provides also source code for the
assembly language interface routines neces-
sary for register setup and checking, as well as
command streams for the complete build of the
Test Case Executable image within the PSP
Software Factory. Different variants of build
are generated for Emulation and Host-Target
run using standard Boards

The output file concatenates all necessary
items, separated by appropriate tags for auto-
matic separation and run. The Compiler is
lodged under Configuration Control and
stamps the output file with its revision.

Functional Test Flow Diagram

Figure 1 shows the structure of the Functional
Test toolset and its interaction with the PSP
Software Factory.

Functional T R

Figures 2 and 3 show respectively a sample of
a Test Case and the corresponding Test Report.

INPUTC 3Y9 ISLLEE ALLRR4 20 U 9M 7 := S0,
[SLL. ICC2.AKRSA.Rotl.rata.tular_tta)
INPUTC SYS ISLLEE SLLRRG 24 & M 7 = &0,

LOQP 2
INFUT PAS INSERT := 1.4 { imsert.pointer }
INPUT D2 :w 2.2: { maiact Roll }
INPUT ENY SYLRR4 B := 1.0; {3VL.ICCI-AHRSL_Roll_rate.validityl}

INYOKE
QUTPUT PAS OUMPS{2].0.R{2] SM 7 CHECK S50.,60.;
ENCLGOR

{AHRS.. Lo}

Fig.2 Sample of Test Case

167

el ITERATION 3 e

INSERT iu i
SVLRR4 . 1

oz te 2
-— IMVGKED -~ COR -

YARTRGLE NAME COMPUTED YALUE RESUL? EXPECTED YALUE
DuMes(z).DoRI2} 12800 PASSED 12800
——— ITERATION 2 wen

INSERT P i
SYLRRA . 9

az i- 2
-- INMVOXEIO -- COR -

YARIABLE NAME COMPUTED VALUE RESULY IXFPECTED VALUE
ouMPs(2).0-R{2] 18340 PASSED 18360

Fig.3 Same Section of Report

Structural Coverage Toolset Development

The Structural Coverage Toolset has been
developed combining the RTCA-DO-178A re-
quirements and the concept of assessing the
coverage of the actual code instead of an inter-
pretation of the design.

Since full functional coverage is mandatory for
critical applications, the Structural Coverage
has been designed from the start with the aim
of maximum reuse of functional Test Cases.
This approach is particularly promising when
most of the application software is written in
assembly language for performance reasons,
and does not include unusual code constructs
generated by a High-Level Language com-
piler.

The Structural Coverage requirements have
thus been interpreted as follows:

¢ the structure of the actual MUT machine
code must be precisely identified, i.e., all
conditional branch points, flow junctions
and the sequential code segments between
them must be recognized and listed.

» the MUT must be exercised with a number
of runs and stimuli conditions sufficient to
execute all code instructions, giving
evidence that no code section has been
neglected. Hardware or Software con-
straints preventing complete coverage
must be clearly identified and justified.

+ all conditional paths based on machine-
level (binary) decisions must give
evidence of the decision effects in both
cases. Structures implying no black-box
difference in the executed statements in the
two cases (e.g.,REPEAT.UNTIL loops)
must be identified and covered at the func-
tional level.

The check for complete coverage, according
with the criteria stated above, can alsc be con-
sidered a way of highlighting deficiencies in
the functional tests, although not implying
complete functional test when successful.

The development has been split in two major
areas: a Code Analyzer and a Coverage Check-
er.

The Code Analyzer

The Code Analyzer processes directly the as-
sembly source code, parses the code, identify-
ing branch points, junction points and
loopback branches, as well as the sequential
code fragments between them.

The outputs of the Code Analyzer are:

< amarked listing, where special mark labels
are added to the source code, highlighting
branch points, junctions and loopback
branches.

» a list of sequential code fragments, each
identified by the pair of mark labels it
interconnects. This list will be used by the
Coverage Checker as a column of labels in
Route Table matrices (for single Test
Cases or for the whole Test Set [Global
Route Table}), where other columns (one
for each MUT invocation) will show a
mark in each row corresponding to an ex-
ecuted fragment.

The advantages of this approach are:

« 1o interpretation mistakes may occur
« the process is automated and repeatable

« evidence of the structure is computer-
based, mapped onto the actual source code
and bound by naming conventions to the
MUT’s controlled revisions.

» the process’ outputs can be used by sub-
sequent automated procedures.

168

The tool relieves the two major drawbacks of
techniques of the past, when paper-and-pencil
techniques have been used, involving structure
diagrams and decision tables to show the shape
of the Module or Procedure:

« drawing diagrams takes time, since
diagrams must be based on the source
code, rather than a higher-level description
(e.g.,PDL), and the diagrams must be
revised whenever the source code changes.

» drawing diagrams and filling decision
tables is a process prone to human error,
and extensive verification effort is re-
quired. Decision tables turn out to be trivial
for assembly code, where all decisions are
binary, but their size easily grows to im-
practcal magnitudes.

Th v heck

Given a set of Test Cases, their executable
image is run on In-Circuit-emulators, activat-
ing a trace window over the MUT’s program
segment.

The execution output is a Trace File for each
Test Case, each of which may contain multiple
invocations of the MUT. Each Trace File is
used for three purposes:

+ asitis, to map the Test Case coverage onto
the marked listing

+ merged with Trace Files from other Test
Cases to produce a map of the whole Test
Cases set onto the marked listing

+ split by individual MUT invocations, for
three purposes:

* fill the single Test Case Route Table with
a column for each invocation run

* fill the Global Route Table, invocation
by invocation, for the part pertaining to
the Test Case

map the single invocation run onto the
marked listing

Mapping is shown on the marked listing by
strings highlighting the executed path, making
verification against the Test Specification easy.
The different types of coverage listings allow
immediate detection of neglected segments
and give a clear picture of the executed path for
each invocation.

After building a Global Route Table, it is
checked with the following criteria:

+ all identified paths should have been ex-
ecuted at least once

+ all conditional paths, with the exception of
paths starting at a loopback branch point,
should result skipped at least once

« all conditional branch points, with the
same exception, should be reached at least
twice, with execution continuing once on
the left and once on the right following
fragment

The outputs of the Coverage Checker are:

By default:

« Coverage Listings (for each Test Case and
Global)

» Route Tables (for each Test Case and
Global)

» Coverage Analysis Report

On Request:

» Single run Coverage Listings

Structural Test Flow Diagram and Route Tables

Figures 4 and 5 show the phases of a typical
Structural Test session and a filled Route

Table.

169

e e dor e o e e +

ILINK_ID | | i

B et ek e e Lt s

I TOL_BOLE® [xexs| 1 I

{BOL_TOR2} % | * *{ | I

[TO2.8021 % | wxwa] I [
|
|

- {1 TO3.B03] * | [k
Fig.5 1803..7041 * | [ox
| TO4.BO4| * | | exux| |
i | TO5_BOS| * | | | ek
Filled Global B | ! exnl

| TO6_BOGI * |] | muwe|
Route Table | TOP_BO7 | 3| wknh] sk | Wik |
1B807..T08[% [rxxa| { |
| TOBLBOB! rd | h k| wkud| kkk¥|

| BOB._TOS] * | [RELLY |

| TODBOG] k] sk | ke | wgxsy|

|BOSLTLO] * | i | Ao |

| TLO_B1Q| *%| swxs] mxus| wesn|

(T11.B11] *[*{ 5| %]

o ——— L e e L Ly
User Interfac

The Test Environment has been designed to
allow interactive and batch testing of Modules,
with the possibility to run single Test Cases or
a full suite of Test Cases (particularly useful for
non-regression testing).

A User Interface has been developed, that al-
lows the User 10 select the mode of operation
and the steps in the Test Process, as well as to
preset parameters for batch-mode operations
for several MUTs in a single session, including
commands and parameters caching.

STRUCTURAIL TEST

Operating instructiona
Other commands

Listing file generation
Listing file marking
Trace fila(s) Generation
Teat coverage computing
Route Table generation
Ganearal compr routs table
Routs tabla verification
Exit

Copirazrs s

Figures 6 to 9 show actual J§ rest case name
samples of the User Interface J y.or pse

Summary of opsrating instructions:
Jata bazse nams

fest spac name

Whole operation

Preprocesaor (interactive only)

Canstruction of Sysiem tast (Turbo)
Split of system test in files
Compilation of generated system
Preparation of files for TEX

Exit

Tacr ipeen: TRPZAEE OB

Summary of operating instructlions:
Select current Job

Craate batch test spsc liat
Current batch List execution
Currant jfob listing

Erass of current job

Exit

[Nl Fiew)

Fig.7 Baich Functional Test Main Menu

Whole test operations (the
same of teat command TST)

Not executad instructiona
{GEM+MRI+TRC +HEX)

Multipla route
(OEM+MRK+TRC+RTT+CUR+ERT+UER)
Test case global route
{GEH+MRK+TRC+RTT)

Multi test, route & cover
{WTST+UCRT)

Yariant:

trezage.018):

[1:
: Passud
forms, for Functional (6 & 7)and [22330 .ee name (H1:
Structural (8 & 9) Test, inInter- § .10 veme —
1 Revision number {001:
active and Batch test modes. YL Lon e e SeBAEEODL:
SW bBuild variant [al:
Flg.g Acauire Systam [$£00.441;
Environmental user [EEQ0.07}:
Compilation context [C&8KCEXL:
Batch Global Targst nams [DSBKCEX]:
. Target map file nama
Test Pal'ametel's {CADMHG : [EHUGBK ID6OKCEQOX..07. MPT]:

Ten nare: [NHK_weLL]

Constmsction af yob Lizt

170

I number: 1

Conclusions

A computer-aided Test approach has been
developed, focusing on the software aspects
rather than system aspects in the conduct of
formal Unitary Testing. Usage of the Test En-
vironment in the EH-101 AFCS program has
proved invaluable in Test effectiveness, limit-
ing the effort to testdesign only. The traditonal
Unitary Testing bottleneck has been alleviated
by usage of Hardware resources 24-hours aday
in batch mode, ease of re-test of changed
Modules and test data Configuration Manage-
ment.

The introduction of a simple, yet powerful Test
l.anguage has allowed to transfer good
Software Engineering practices to the Testing
Phase, with substantial benefits in Test main-
tainability across several baselines and
numerous revisions of the application com-
ponents.

The automation of Coverage Checking, based
on actual code constructs, has reduced effort,
human errors and verification needs, introduc-
ing full repeatability in this Testing step.

171

