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Nomenclature
Ca rotor torque coefficient, O/ pzR*(QR)* R
Cr rotor thrust coefficient, 7'/ pR*(QR)*

R rotor radius, ft

T rotor thrust, Ib

Vi rotor induced velocity, ft/s

Vz vehicle vertical speed, ft/s, positive in descent

VRS vortex ring state

0o collective pitch, deg

Ai non-dimensional induced velocity, V, / QR

Az non-dimensional vertical speed, V,/QR,
positive in descent

p air density, slug/ft®

Ce equivalent rotor solidity

n normalized climb rate, —ﬂz I\Cr 12, positive
in climb

Y normalized induced inflow, /11./ C,/2

Q rotor rotational speed, rad/s

DTO collective pitch angle
DTC lateral cyclic pitch control
DTS longitudinal cyclic pitch control
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DTA tail rotor collective pitch angle
Phel b Qhel b Rhel

U,.sV,1» W, ) helicopter velocity vector in  the
helicopter coordinate system

roll, pitch, yaw rates

A helicopter horizontal speed

Vi or Vig main rotor mean inflow in hover

Vimur main rotor mean induced velocity

Vimtgr or Vimran  tail rotor mean induced velocity

(Vx , Vy WV, ) helicopter velocity vector in the
earth coordinate system

0,0 bank and pitch angles

Abstract

This paper presents results from an on-going
collaboration between ONERA and the Georgia
Institute of Technology on Vortex Ring State
(VRS) modelling, analysis and simulation.
Specifically, validation of a previously developed
‘Vortex Rings’ model, which is capable of
predicting rotor inflow behaviour in axial descent
including the VRS, is presented. A methodology
for the use of a VRS inflow model in the nonlinear
analysis of the helicopter flight dynamic behaviour
during descent flight is described. Results from an
initial application of the method by bifurcation
theory, are compared with flight test data in the
prediction of the VRS boundaries.



Introduction

A helicopter is able to stay aloft in the air because
its rotor pushes the air downwards and generates
an upward thrust to balance the rotorcraft weight.
When a helicopter increases its sink rate,
especially when its sink rate is close to the rotor
induced velocity, the rotor enters its own wake and
creates a doughnut-shaped ring, known as the
Vortex Ring State (VRS). Flight in VRS condition
can be dangerous as it may result in excessive
unsteady blade loads, thrust and torque
fluctuations, vibration, unsteady heave dynamics,
and loss of control effectiveness.

Within a French / US MoA task dedicated to
rotorcraft flight dynamics, a cooperation between
ONERA and the Georgia Institute of Technology
has been established. The activity is first focused
on the VRS problem as a continuation of their
previous work (Ref. 1) on this topic. Beyond the
modelling problem, a methodology is set up to use
mathematical tools like bifurcation theory which
are able to provide a more comprehensive
understanding of non-linear system dynamics.
Indeed, in some areas of the rotorcraft flight
envelop, the non-linear terms in the dynamic
equations become predominant. That is the case
of the flight dynamics in the VRS.

The paper is arranged in two parts. The first part
describes rotor inflow modelling in the VRS and
validation using windtunnel test data. The second
part describes a methodology for bifurcation
analysis of rotorcraft flight dynamics in the VRS.

Part 1 : Rotor Inflow Modelling in the VRS

Castles and Gray (Ref. 2) performed wind-tunnel
tests of rotors operating in the VRS. Four rotor
configurations were examined in order to
investigate the influence of blade twist, blade
taper, rotor thrust coefficient, rotor speed, and
rotor diameter. Variations of induced velocity,
collective pitch, and torque coefficient were
studied at different descent rates (wind-tunnel fan
speed). Significant influence of twist was
described while impacts from thrust coefficient,

rotor speed, or rotor diameter were found
negligible.
In order to analytically predict the VRS

boundaries, Wolkovitch (Ref. 3) assumed that the
slipstream was surrounded by a protective tube of
vorticity in descent and concluded that VRS would
occur when the flow at the core of the tube was
zero.

Wang (Ref. 4) attempted to apply classical vortex
theory in vertical descent. Instead of the
conservation of circulation in an ideal flow, Wang
assumed a linear decay of circulation of trailing
vortices, typical of a real wake. The distance
required for the linear decay (down to zero) was
further assumed to be directly proportional to the
transport velocity of trailing vortices. The direction
of vortex shedding depended on the direction of
the transport velocity. With appropriate selection
of a few parameters, Wang was able to show
good correlation between induced velocity and
descent rate, as compared with the experimental
data from (Ref. 2).

A significant development of VRS study in recent
years was the time-accurate free-vortex wake
scheme initiated by Leishman and Bhagwat (Ref.
5). The aerodynamics phenomenon associated
with descending flight is described as follows: In
hover and at low descent rates, the rotor wake is
inherently unstable. As descent rate increases, the
wake is more prone to be unstable and regular
helical structure of the wake tends to break down.
As net velocity near the rotor becomes low at
higher descent rates, vorticity accumulates near
the rotor plane and individual tip vortices form tight
bundles of vorticity resembling vortex rings. These
rings are found to be spatially and temporally
unstable, and break away from the rotor disk,
resulting in the fluctuations of blade loads and
rotor thrust.

The free-vortex wake approach in (Ref. 5) offers a
better understanding of the initiation and
subsequent development of VRS through detailed
computation of the flow behaviour. Nevertheless, it
is also realised that this approach s
computationally expensive and has inherent
difficulties in integrating it with current helicopter
flight simulation models.

Momentum theory has been widely used in hover,
climb, and even forward flight conditions for flight
mechanics analyses and flight simulation. It has
also been recognised that the theory breaks down
in descent flight due to the collapse of smooth
slipstream. Nevertheless, rotorcraft researchers
have developed various methods in extending the
momentum theory in descending condition due to
its simplicity. One of the earliest efforts can be
traced back to Glauert in 1926 (Ref. 6). Recent
attempts were from He, Lee and Chen (Ref. 7)
and ONERA (Ref. 8-9). They individually
formulated parametric extension of the momentum
theory in the flow model to remove the modelling
singularity in VRS and rendered simulation models
covering the full range of flight conditions. Also,



ONERA performed a flight test campaign
dedicated to the VRS using a Dauphin helicopter
(Refs. 10-11).

Perhaps the most comprehensive parametric
extension of the momentum theory was from
Johnson (Ref. 12). A broad review of available
wind tunnel and flight test data was conducted for
rotors in VRS. Based on the available data, a VRS
model was developed suitable for simple
calculations and for real-time simulations. With
this VRS model, Ref. 12 showed negative
(unstable) heave damping for certain range of
descent rates and the VRS boundaries were thus
defined in terms of the stability boundary of the
aircraft flight dynamics.

A new simplified inflow model called the ‘Vortex
Rings’ model was developed in (Ref. 13) to
account for the additional induced inflow at the
rotor due to rotor-wake interaction during axial
flight. The inflow model of Ref. 13 assumes
slipstream in the rotor centre with a series of
vortex rings located at the rotor periphery. All
those vortex rings induce additional downward
velocities at the rotor disk. The summation of
these additional velocities and the original induced
velocity (obtained from the momentum theory)
provides an improvement in predicting the inflow
at the rotor disk in descent flight.

The present work considers validation of the
vortex rings model using the wind-tunnel
experimental data of Ref. 2. First a brief
description of the vortex rings model is given. This
is followed by model validation results.

A Simplified Rotor Inflow Model
for Vertical Descent

As pointed out in Ref. 13, one of the reasons for
the under-prediction of induced velocity by the
momentum theory is the ignorance of the
interaction between the rotor, its wake and the
surrounding airflow. The interaction may be less
significant at hover or in climb. Nevertheless, it
becomes more and more intense as a helicopter
increases its descent rate due to larger velocity
gradients between the upflow outside the wake
and the downflow inside the wake.

The vortex rings model assumes slipstream in the
rotor centre with a series of vortex rings located at
rotor periphery. The formation of a vortex ring is
caused by the aerodynamic interaction. A vortex
ring moves downward along the wake at low
descent rates (see Fig. 1a), or accumulates at the

blade tip at moderate descent rates (when the
total velocity at the blade tip is close to zero, see
Fig. 1b), or moves upward along the wake at high
descent rates (see Fig. 1c). After a blade rotation
of 2rn radians, a new vortex ring is formed.
Therefore, at every instant, there are a series of
discrete vortex rings along the wake and their
locations are determined by the product of total
velocity at the blade tip and time to travel across
the azimuth of 2mm/Q (m: an integer). All these
vortex rings induce additional downward velocities
at the rotor disk (Ref. 14). The summation of these
additional velocities and the original induced
velocity (obtained from the momentum theory)
provides an improvement in predicting the inflow
at the rotor disk in descent flight.
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Figure 1a : Motion of Vortex Rings at Hover and Slow
Descent.
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Figure 1b : Motion of Vortex Rings at Moderate
Descent Rate.
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Figure 1c : Motion of Vortex Rings at High Descent
Rate.

An important issue is to decide the strength of
vortex rings. As the vortex ring is formed by the
aerodynamic interaction at the blade tip, the
strength of a vortex ring is proportional to the



velocity gradient at that location. Although it is still
difficult to determine the exact value of the
strength, it can be compensated by selecting
proper number of vortex rings to correlate with
experimental data. The number has significant
impact on the add-on portion of induced velocities
when the vortex rings accumulate at moderate
descent rates. In the subsequent validation, the
nominal number is set at 4. The actual number
can be varied in a pre-defined range. In fact, the
uncertainty of the number reflects the reality
where the rings in VRS condition may burst in a
random fashion. This indeed provides a numerical
means of randomness in the distribution of
induced velocity and hence, the thrust coefficient.

The vortex rings model is implemented in the

generic  rotorcraft  flight  simulation code
FLIGHTLAB (Ref. 15). With the vortex rings
model, additional downward velocities are

achieved along both helicopter and windmill
branches. According to Ref. 13, the transition
between these two branches can be initiated
through reduction in collective pitch during full-
vehicle dynamic response simulation. The
dynamic process essentially forces the total inflow
to change its sign, hence the switch between two
steady state solutions. This corresponds to the
migration between two domains of attraction in the
nonlinear system analysis. The suggested
dynamic response is consistent with the pilot’s
experience when he/she lowers the collective
control lever to flat pitch in order to enter into
autorotation.

With the modification to induced velocity, the
collective pitch needed for a descent rate is
different. Especially at moderate descent rates (n
roughly from -0.5 to -1.5), the increase in induced
velocity from the vortex rings model reduces the
effective blade angle of attack, and thus requires a
larger collective pitch to balance the vehicle
weight. Thus, higher collective pitch may be
required to increase the rate of descent. By the
same token, larger values of rotor torque can also
be observed at moderate descent rates.

With the vortex rings’ model, there is not only an
additional component of induced velocity beyond
what is predicted by the momentum theory, but
also a steeper and varying gradient of the v-n
curve. This indicates that the increase of induced
velocity is more rapid than the increase of descent
rate. The direct impact of the steeper gradient is
the change of the sign of heave damping at
certain descent rates, as shown in (Refs. 12, 13).

Model Validation

The wind tunnel experimental data presented in
Ref. 2 is used in the vortex rings model validation.
The validation results presented are for the
nominal rotor configuration used in Ref. 2, ie.,
constant chord and no blade twist.

Modelling and Froude Scaling

The baseline wind-tunnel model in Ref. 2 is a
three-bladed, 3-foot radius rotor with an effective
solidity of 0.05. The constant chord, untwisted
blade has NACA 0015 airfoil section. The nominal
rotational speed is 1200 RPM.

During the modelling process and simulation
evaluations using the Flightlab, it is found that
there are a few disadvantages if the original size
of the rotor model is adopted. First, the rotor
rotational speed is excessive as compared with
that of a typical full-size rotor. It requires a very
fine time step, which may cause numerical
problems in the simulation. Second, the tip
velocity of the blade (377 ft/sec) is smaller than
that of a typical full-size helicopter rotor by nearly
a factor of 2. This brings a suitability issue in the
application of existing aerodynamics look-up
tables in FLIGHTLB, as they are more applicable
for higher Reynolds number. Third, the values of
airfframe moments of inertia are so small that it
may introduce numerical inaccuracy for the
subsequent full vehicle dynamic response
simulation.

As such, Froude scaling scheme is adopted to
enhance numerical reliability of the simulation. In
this modelling, the Froude Scale number is set at
3. This will bring the scaled rotor tip velocity to 650
ft/sec.

Induced Velocity Variation along Helicopter and
Windmill Branches

Variation of normalised induced velocities from the
vortex rings model is shown in Figure 2a. The
prediction from momentum theory and results from
the wind-tunnel tests of Ref. 2 are also shown in
the figure. Simulation was conducted under two
different Cy: 0.002 and 0.004. Two observations
can be made from Figure 2a. First, the calculated
induced velocity variation from the vortex rings
model captures the right magnitude as compared
with the experimental data. If the number of vortex
rings is varied in a small range, a fluctuation
pattern of induced velocities can be created (see
Figure 8 in Ref. 13). Second, there is no
significant difference in the normalised induced
velocity distribution due to variations in the thrust



coefficient. This observation is consistent with the
conclusion from Ref. 2.
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Figure 2a : Variation of Induced Velocity along
Helicopter & Windmill Branches.

Collective Pitch Variation along Helicopter and
Windmill Branches

The collective pitch variation with respect to
vertical descent rate is shown in Figure 2b. Notice
that from hover to roughly n=-1.5, the collective
pitch predicted by the vortex rings model is almost
constant, the same trend revealed by the
experimental data. This reflects the fact that the
add-on downward velocity induced by the vortex
rings reduces the blade angle of attack and
requires to maintain or even slightly increase the
collective pitch for the purpose of trimming.
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Figure 2b : Collective Pitch Variation along
Helicopter & Windmill Branches.

Torque Coefficient Variation along Helicopter and
Windmill Branches

The torque coefficient variation is presented in
Figure 2c, which shows good agreement between
the prediction from the vortex rings model and
experimental data. These results highlight the
important inclusion of the add-on downward
velocity in rotor power prediction.
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Figure 2¢ : Torque Coefficient Variation along
Helicopter & Windmill Branches.

Transition

The steady state results described above are
mainly obtained along the helicopter and the
windmill branches. As mentioned before, the
transition phase can be initiated by collective pitch
reduction in full-vehicle dynamic response
simulation.

The reduction profile of collective pitch used in this
study is shown in Figure 3a. The collective pitch is
initially decreased gradually, as shown in the first
three gentle reductions. A large decrease occurs
at approximately 53 seconds into the simulation,
after which the collective pitch remains
unchanged. The corresponding vertical descent
rate is presented in Figure 3b.



T T T T T T T
I I I I I I
M | |
B B = ]
I | I | I | I
| | | | | | |
| | | | | | |
e et et et e i It e
3 | | | | | | |
5 | | | | I | I
%’3’”’\’”’\””\’”’\”"\””\””F”*
< L L L
E e e el el i Al el Al
o | | | | | | |
4 | | | | | | |
'% SF---r---F---rFr--—-F--—-Fq--F-—----—
% | | | | | | |
| | | | | | |
© 6 - ——F-———F-——F-———k—— - - —-——-—— —
| | | | | | |
| | | | | | |
e
| | | | | | |
| | | | | | |
-8 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

time, sec

Figure 3a : Collective Control Reduction Profile for
Dynamic Response.
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Figure 3b : Time History of Vertical Descent Rate
for Dynamic Response.

During the first two mild reductions of collective
pitch, the descent rate decreases moderately.
However, there is a rapid drop in the descent rate
during the third mild reduction, indicating the
presence of unsteady heave dynamics. During the
process, the total velocity at blade tip decreases
rapidly. When it is close to zero speed, it triggers
the need for a large reduction in collective pitch.
The amount of reduction corresponds to the
collective pitch difference between the steady
state values at m=-1.5 and n=-2.0. At the final
stage of dynamic simulation, the descent rate
reaches a steady value, roughly n=-2.0.

The variation of normalised induced velocity
versus vertical descent rate is shown in Figure 3c.
The presence of a transition between helicopter
and windmill branches is clear. Also, indications of
transition are seen in Figures 3d and 3e in which
both total inflow and torque coefficient change
sign after transition occurs.
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Part 2 : Non-linear Analysis of Flight Dynamics
in the VRS

Following the “Study of the VRS by bifurcation
theory” initiated in (Ref. 1), Georgia Tech has
carried on with the modelling problem (as
presented in the first part), whereas ONERA has
focused on the non-linear flight dynamics analysis.

In this second part, the rotor inflow model used for
the VRS investigation is the ONERA model
presented in (Refs. 8-9). This model provides a
continuous solution for computing the mean inflow
for any vertical and horizontal speeds
combination. As shown in Fig. 4 (extract from Ref.
9) for axial descent, this extension of the
momentum theory gives results which are similar
with those of the vortex rings model approach
presented in Part 1 (see Fig. 2a).

35

Experimental data

~ == Momentum theory

3t Yo =+~ Extended momentum
s — Corrected Model

ViNio

L L 1 L L L
-3 -25 -2 -15 -1 -05 0
Vz/Vio

Figure 4 : ONERA mean inflow model in descents.

Nonlinear analysis methods have previously been
applied to the flight dynamics problems mostly in
the fixed-wing area, for example, spin motion,
wing rock, air combat (Refs. 16-17). But very few
examples of application to the rotorcraft flight
dynamics have been published (e.g. Ref. 18, for
aggressive helicopter manoeuvre and Ref. 19 for
the helicopter with a slung load). However,
rotorcraft flight dynamics involves various
nonlinear effects coming from: e.g. individual

component aerodynamics, aerodynamic
interactions  between  components, inertial
coupling, ... Moreover, the algorithms used in most

of the simulation codes are, in general, inefficient
in capturing all the non-linear behaviours. For
example, the trim algorithms are mostly based on
the Newton-Raphson method, and are, in general,
not efficient in predicting possible multiple
equilibrium points for the same flight condition. As
an illustration of the possibility of multiple

equilibrium points, a typical variation of collective
pitch (DTO) required to trim a helicopter as a
function of descent rate (Whel) and horizontal
speed (Uhel) is shown in Figure 5. Note the fold in
the equilibrium surface at low forward speed,
indicating the existence of multiple equilibrium
solutions, in this case three values of descent rate,
for a selected value of the collective pitch.
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Figure 5 : Fold on the equilibrium surface.

Several non-linear analysis software tools exist,
such as XppAut (including the bifurcation program
AUTO) used in Ref. 1. The present study uses the
non-linear analysis tool ASDOBI (“Analyse des
Systemes Différentiels Ordinaires par la méthode
des Blfurcations”), a Fortran code developed by
ONERA (Ref. 16-17). A first step towards the use
of ASDOBI is the coupling of ASDOBI with the
comprehensive rotorcraft simulation code HOST,
(“Helicopter Overall Simulation Tool” created by
EuroCopter and developed with contributions of
ONERA Refs. 20-21). Hereafter, the minimum
required mathematical background is summarised,
as well as the HOST — ASDOBI coupling, in order
to give the needed information for the
understanding of the application to the VRS study.

Numerical treatment of the bifurcation problem

The purpose of this paper is not to describe in
detail the mathematics on which the study of non-
linear system dynamics are based. For example, a
good presentation of bifurcation theory is provided
in the books of Guckenheimer and Holmes (Ref.
22) or 100ss and Joseph (Ref. 23). The numerical
aspects can be found in the book of Kubicek and
Marek (e.g. Ref. 24). Hereafter only an overview
of the method is presented.



Bifurcation theory concerns the behavioural

changes of a dynamical system XzF(X,U)
when the parameters of the system are varied,
with X the state vector and U the parameter or
control vector. It deals with systems governed by

ordinary differential equations and focuses mainly
on the asymptotic behaviour of the solutions.

Parameter values for which the system dynamics
are not structurally stable are called bifurcation
values, that is to say critical values such that a
small parameter variation lead to qualitative
changes of the trajectories of the system

dynamics. Local bifurcations occur when the
Jacobian matrix Dy F(X,,U,)= {aFi(g(O’UO):l
x.
J

has at least one eigenvalue whose real part is
zero.

Bifurcation of real or complex eigenvalues leads to
different structural changes. When one real
eigenvalue crosses the imaginary axis (becoming
zero), there may be a creation or a destruction of
some steady states. When one pair of complex
eigenvalues has zero real parts, there may be a
creation or a destruction of a periodic cycle (Hopf
bifurcation).

Any application of the bifurcation theory to
practical problems implies first to compute the
steady states or equilibrium points of the model
described by its differential equations. The
continuation algorithm is capable of solving for the
equilibrium curve even in the presence of folds or
other complex patterns resulting from the non-
linear terms within the system dynamics. The
continuation algorithm allows the resolving of a set
of equations defining an implicit solution, i.e. we
are looking for the solution of

%1 = fi(xp,..x,,u)=0
: which is a set of
Xy =fn(x1,...,xn,u)=0

nequations with (n+1) variables. (U) the

(control) parameter vector is therefore reduced to
ascalar (u). Let :

fl(xl,...,x”,u)
X=(x,...,x,), F(X,u)= f
fn(xl,...,xn,u)

and (Xo,uo) be a solution.

The implicit function theorem states that if the
Jacobian matrix DXF(XO,uO) is non-singular,
then there is a neighbourhood of the solution
(Xo,uo) on which the solutions are given by a
unique continuous function of the parameter:
u— (xl,...,xn).

The numerical implementation of the continuation
algorithm in ASDOBI allows computing the implicit
solution and managing the critical points.

The algorithm is based on the repetition of four
steps :

Step 1: finding a point on the equilibrium curve
Step 2: predicting the direction of the tangent
Step 3: predicting the next point

Step 4: correcting the predicted point

Step 3 is based on an Adams-Bashforth-like
integrator whereas steps 1 and 4 are based on the
Newton-Raphson scheme adapted to the implicit

problem of n equations with (n + 1) variables.

The kind of computations which can be performed
by ASDOBI are :

¢ Jlocus and stability characteristics of the
equilibrium points,

equilibrium surface (set of equilibrium curves),
locus and characteristics of real bifurcations,
locus and characteristics of Hopf bifurcations,
envelop of periodical orbits.

* & o o

For finding bifurcation points, another equation is
added in the form of det(D,F(X,u,,u,))=0

where the (control) parameter vector is a two-
dimensional vector (i.e., a parameter couple for
which there is a bifurcation). Thus, bifurcation
points are obtained by solving the following set of

(n+1) equations with (1 +2) variables:

xl(xl,...,xn,ul,uz)zO

xn(xl,...,xn,ul,uz)zo
det(D,F(x,,...,x,,u,,u,))=0

HOST — ASDOBI Coupling

The trim option in the rotorcraft simulation code
HOST is used to find a first equilibrium point

(Xo,uo) (far from suspected bifurcation points),
for example hover. Then the continuation



algorithm in ASDOBI can be used to find all the
equilibrium curve. Variations in the parameter
vector (U) are carried out in ASDOBI while HOST
provides the system dynamics. The interaction
between ASDOBI and HOST is depicted in Fig. 6.

Coupling
H.O.S.T. AS.D.OBL
/" HASDOBLF
Initialisation
Models and links,
data and options PP
Initialisation
(Xo .U ) data and
1st TRIM options,
Xohal®0) "
NL Dyn. Computation ASDOBI Algorithms
(aeromechanics models) (Bifurcation Diagram, ...)

G
All the steady states and their stability,
bifurcation points, limit cycles, ...

Figure 6 : HOST — ASDOBI coupling.

A validation of the integration between ASDOBI
and HOST codes is carried out by comparing the
trim results obtained using the HOST code alone
(point by point trim with a sweep on V, using the
Newton-Raphson algorithm) and using the
integrated ASDOBI — HOST code (with DTO as
parameter in the continuation algorithm). As
shown in Figure 7, the trim results are identical
(within the tolerance of computational error), thus
validating the integration between ASDOBI and
HOST codes.

poggg HOST
B

s
(Newton-Raphson algorithm)
Figure 7 : Comparisons of HOST / ASDOBI trim
computation.

(Continuation algorithm)

Application to Descent Flight

As a first step, the VRS analysis has been
conducted using the ‘first model level’ available in
HOST for the Dauphin helicopter. The main rotor
is represented by a rotor disk model without
flapping dynamics and with the induced velocity
model in the VRS developed by ONERA (Refs. 8-
9).

In this model, the helicopter flight dynamics is
characterised by the state variables:
X = {Uhe/ b Vhel b VVhel H l)hel H Qhel b Rhel H ¢’ 0’ VimMR H VimTR }

(10 state variables) which involve the classical
ones in aircraft flight dynamics

{Uhel’Vhel’Whel’Phel’Qhel’Rhel’¢90} and the
mean inflow through the main rotor and the tail
rotor {VimMR,VimTR}, respectively, which are
more specific to helicopter applications. The
controls are U ={DT0,DTC,DTS,DTA}

(collective pitch, lateral and longitudinal cyclic
pitch, tail rotor collective pitch).

Helicopter Equilibrium Calculation

The continuation algorithm works only with one
parameter (because a numerical solution to the
implicit problem is sought). The collective control
DTO being the most important in descent flight, it
has been chosen as the first critical parameter.

But in fact, when DTO is varied using the
continuation algorithm, the other controls and
parameters in the helicopter model must also vary.
That is also the case for the classical point by
point trim computation (by Newton — Raphson
algorithm) for a sweep on flight condition (forward
or descending speed for example). Hence, certain
hidden constraints are implicitly used.

For example, if from a hovering flight, the
collective control is decreased, then the torque of
the main rotor varies, and hence, the yaw trim is
no longer insured. Therefore for the study of the
VRS, the yaw rate is set to zero while allowing the
tail rotor collective to change. This is easily
accomplished by using the algebraic equation

R,,, =0 and by freeing the DTA command. Thus

some extra algebraic equations must be
considered. In the case of the VRS, they are:

Ry, (X,U,DTC,DTS,DTA)=0
V,(X,UDTC DTS,DTA4)=0
V.(X,U,DTC, DTS, DTA) = Const

With the above flight condition constraints, the
corresponding controls are free to vary within the
trim computation: the condition on the yaw rate will
make mainly vary the tail collective pitch DTA, the
condition on the lateral velocity will make mainly
vary the lateral cyclic pitch DTC and the condition
on the forward speed will make mainly vary the



longitudinal cyclic pitch DTS. The resulting 13
equations are:

State equations:

X= {Uhel > Vhel > Whel > Phel ) Qhel ) Rhel > ¢., 9, VimMR > VimTR }: 0

Constraints: {Rhe, NS }= {0,0, const}

and the corresponding 14 variables are:

State variables:

X= {Uhel Vet Wiet s Brers Qpet> Ryer s 050, Vim g, Vi }
Control parameter: U = {DT0}

Supplementary controls: {DTC,DTS,DTA}

Figure 8 shows the equilibrium curves (with stable
and unstable branches) computed by the
continuation algorithm for the Dauphin helicopter
in vertical descent. The stable steady states are
the values towards which the helicopter is likely to
stabilise whereas the unsteady ones cannot really
be considered as possible flight conditions
because one single perturbation makes the
helicopter leave the unstable steady state, but it
helps to understand the underlying dynamics.

The investigation of the VRS instabilities implies
flight in a vertical plane (x, z) of the earth
coordinate system. The relevant variables
characterising the stability properties are
{VX,VZ,VimMR} in the earth frame, which

correspond in the chosen helicopter frame to »~

{Uhd,Vhd,th,VimMR}. Indeed, among all the

state variables characterising the helicopter flight
dynamics, some variables are needed to get
concrete values but don’t really count much as far
as stability is concerned. As a consequence, it is
better to determine stability from a reduced set of
state variables which are relevant from a physical
viewpoint for the studied phenomenon.

Computation of the Locus of Bifurcation

As seen in the mathematical description, the
bifurcation computation is performed with two
control parameters, hence, only two constraints
are needed instead of three. The longitudinal
motion Vx is unconstrained and the longitudinal
cyclic control DTS is the second control-parameter
resulting in:

control parameters: U ={DT0, DTS}
algebraic equations: {Rhe, v, }: 0
supplementary controls: {DTC,DTA}

The bifurcation points correspond to the values for
which there is a “jump” between the helicopter and
windmill stable branches. The locus computed
using the integrated ASDOBI-HOST code with a
first level model’ of the Dauphin helicopter and the
ONERA’s VRS inflow model (Refs. 8 and 9) is
compared with flight tests results in Figure 9.

OTC DEG 0TS DEG

UHELMSE

L, WHELMS

DTA DEG

RS
E

VIM-MR VIM-FAN WS

00 DEG

Unstable equilibrium

., PHIDEG

07O DEG

HOST-ASDOBI Equilibrium :

—— Stable equilibrium

Figure 8 : Equilibrium in axial descents computed with HOST-ASDOBI (continuation algorithm on DTO).
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There are two other boundaries shown in Figure 9,
which are arrived at using a previously proposed
criterion in the literature: the cancellation of the
convection speed of the rotor tip vortices (Refs. 8-
9 for the “ONERA first criterion” and Ref. 25 for
the “Peters and Chen criterion”).

« DBO7S Fight Tests
- QNERA first WAS Critarion (g = 0.25)
Patars Chan YRS Criterion
— Biturcation Critarion

2 =t 1 1 L 1 1

[¢] 02 0.6 0a 1 12
Whivih

Figure 9 : VRS boundaries of the Dauphin helicopter
(Vin : mean inflow in hover)

The locus of the computed bifurcation points from
the proposed method shown as ‘Bifurcation
criterion’ in Figure 9, surrounds well the VRS
unstable domain. One discrepancy is that the
bifurcation criterion predicts a lower descent rate
limit of roughly 12 m/sec (see Fig. 10) which is
above the flight test data at low forward speed.

In fact, as illustrated in Figure 10, the HOST-
ASDOBI results highlight that the bifurcation from
the wind-mill branch to the helicopter branch
occurs for lower descent rates. The flight tests
were done from the helicopter regime. Hence, the
“Vz stabilization” points correspond to higher
descent rates on the wind-mill branch. Thus the
flight test results show the ‘exit of the VRS’ from
the helicopter branch, whereas the bifurcation
criterion reveals the ‘entry into the VRS’ from the
windmill branch.

Model Sensitivity of the Bifurcation Locus

The ONERA VRS model (Refs. 8-9), adds an
extra induced velocity to the momentum theory
value, similar to the vortex rings model (Ref. 13)
presented in Part 1, to account for the increase of
downwash due to the interaction with the vortex
wake coming closer to the rotor. Also, similar to
the vortex rings model of Part 1, the ONERA VRS
infow model exhibits nonlinear behaviour with
descent rate.

In order to study the influence of the nonlinear
behaviour of the induced velocity model on the
VRS boundaries prediction, the curvature of the
extra downwash (“expo” parameter) is varied,
getting a family of curves shown in Figure 11 for
example in axial descent. The resulting variation in
the total flow through the rotor in vertical descent
is shown in Figure 12. As a consequence, the
collective pitch needed to create the adequate
thrust for trimming the helicopter in axial descent
is different as shown in Figure 13.

| 2t
“ Vu=0km/h Helicopter Branch N
T l Jump |
* | Jump | |
7 i Windmill Branch
N

N L L L L
5 B1 62 B3 6 85 56 B7
DTG ideg)

1 L
58 59

This part of the windmill branch is

T
2 Vzdop
W Wz stabilization

—— Bifurcation Critarion H

not seen in the flight tests

30 35 40

VH {kmih)

Figure 10 : The bifurcations from the windmill branch (“square”) are not caught in the flight test.
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Figure 11 : Effect of model variations on the mean
induced flow in axial descent.
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Figure 12 : Total mean flow through the rotor in axial
descent.
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Figure 13 : Effect of model variation on trim collective
in axial descent.
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Figure 14 : Effect of model variation on VRS
boundary.

The corresponding effect on the complete locus of
the bifurcation points surrounding the VRS region,
is shown in Fig. 14 in the plane (Vx=Vy, Vz). The
results shown in Fig. 9 with the original inflow
model (Refs. 8-9) correspond to the curves with
“expo = 4" in Fig. 14.

The circles and squares are the bifurcation points
in axial descent. The circles on these figures are
the bifurcations from the helicopter branch (low
descent rates), and the squares are the
bifurcations from the windmill branch (high
descent rates). The parts between these symbols
shown on the curves of Figures 11-13 are
unstable equilibrium. For a small perturbation of
the collective control (DT0) from a steady-state
close to these bifurcation points, the rotorcraft
state will quickly transition toward the other stable
branch leading to a significant change in the
vertical speed (Vz). Except for the curves obtained
with the “momentum theory”, “expo=1" and
“inflexion”, there are three equilibrium points for
the range of (DT0) between the bifurcation points
as can be seen in Figure 13. The model with
“expo=1" is not physically representative since it
predicts that the trim collective must increase for
very low descent rates right from hover. The part
of the “expo=1" curve between hover and the
maximum of DT0 is unstable.

The results shown in Figures 11 through 14 may
be used to postulate the following requirements on
the rotor inflow model to represent the VRS
instabilities. First, a requirement for the existence
of the VRS unstable region is that there must exist
two points at which d(V, +Vim,,)/dV. =0 (see
Figure 12), which is equivalent to saying that there
must exit two points at which (dVim g /dV, =-1)



(see Fig. 11). Second, these two points are
separated by an inflexion point

(szimMR /dVZ2 =O) such that the corresponding

points in Figures 12 and 13 are a minimum and a
maximum. More precisely, the bifurcation for the
low descent rate (bifurcation from the helicopter
branch) must be a minimum of (Vz+Vimyg) = f(Vz)
and the other must be a maximum. Physically
speaking, a rotorcraft will encounter the VRS from
the helicopter mode when by decreasing the
collective, it will reach a local minimum (shown by
a circle on Figure 13) of the equilibrium curve (Vz,
DTO0). By continuing to decrease DTO0, it will enter
the VRS and then stabilise at a higher descent
rate on the windmill branch.

Hence, from a modelling point of view, the model
with “expo=1” leads to a wrong VRS prediction
because the curve (Vimyg=f(Vz)) does not exhibit
an inflexion point. The curve noted ‘“inflexion”,
although it has an inflexion point, will also not
represent the VRS because it does not have two
points with the required slope:

(dVlmMR/dVZ = —1)

Therefore, it is not sufficient for a model to predict
an increase of the downwash over the one given
by the momentum theory (see the cases of “expo
= 1” and “inflexion”). The increase of the mean
inflow in descent flight must be non-linear in such
a way that :

+ on the helicopter branch (from hover until the
circles) : dVim < -dVz

+ at the bifurcation noted by a circle:
dVim = -dVz

¢ between the two bifurcation
square) : dVim > -dVz

+ at the bifurcation noted by a square :
aVvim = -dVz

¢ then: dVim<-dVz until (Vim)
maximum and then decreases with
increasing descent rate.

It is important to note that some of the above

requirements are similar to those described in

Refs. 12-13, arrived at by considering the heave

stability.

(circle and

reaches a
the

From the physics point of view, this non-linear
increase of (Vim) with the descent rate (in addition
to the increase predicted by the momentum
theory) is probably due to different phenomena.
The mean convection airspeed (Vz+Vimyg) of the
vortex layers generated by the rotor must have a
non-linear variation in descent. But the
geometrical explanation of the increase of
downwash by the fact that the vortices are coming

13

closer to the rotor may not be the only reason. It
can be noticed in the experimental data (see Fig.
4) as well as in the ONERA model (Figures 4 and
11) that the maximum of mean induced flow (Vim)
is not reached for (Vz+Vimyg) = 0. The induced
flow at the rotor level increases not only with the
decreasing distance between the vortices and the
rotor disk, but also with their vortex strengths
which may also have a non-linear variation with
the descent rate.

Conclusions

Recent results from an on-going cooperation
between ONERA and the Georgia Institute of
Technology on rotor inflow modelling and analysis
during descent flight including the VRS are
presented as two parts. In the first part, results
from a validation study of the vortex rings model
developed in Ref. 13 are given. It is shown that
vortex rings along the wake at rotor periphery
induce additional downward velocities at the rotor
disk. The magnitude of the additional part of the
induced velocity reaches a point where higher sink
rate requires larger collective pitch for trim. The
steeper gradient of the v-n curve from the vortex
rings model gives rise to a reversal in the heave
damping for a range of descent rates. Validation
results show good correlations between
predictions from the vortex rings model and wind
tunnel experimental data.

In the second part, a methodology based on the
bifurcation theory for analysis of the helicopter
non-linear flight dynamics in the VRS is described.
Results from an application of the methodology for
prediction of the VRS boundaries are compared
with Dauphin helicopter flight test data. An
important result is that the VRS unstable region is
well surrounded by the prediction given by the
locus of the bifurcation points of the system
dynamics in descent flight. Using results from a
model sensitivity study, it is shown that the
additional downwash (over the momentum theory
prediction) from the VRS inflow model must exhibit
certain nonlinear characteristics with descent rate
for a good prediction of the VRS boundaries.
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