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Abstract
Accurate linear helicopter models are needed for control system development and simulation and can be

determined by system identification when appropriate test data are available. Standard methods for ro-

torcraft system identification are the frequency domain maximum likelihood method and the frequency

response method that are used to derive physics-based linear state-space models. But also the optimized

predictor-based subspace identification method (PBSIDopt), a time domain system identification method

that yields linear black-box state-space models, has been successfully applied to rotorcraft data. As both

methods have their respective strengths and weaknesses, it was tried to combine both techniques. The pa-

per demonstrates the successful complementary use of physics-based frequency domainmethods and the

black-box PBSIDopt method in the areas of database requirements, accuracy metrics, and model structure

development using flight test data of DLR’s ACT/FHS research rotorcraft.

NOMENCLATURE

ax , ay , az longitudinal, lateral, and vertical

acceleration, m/s
2

A, B, C,D state-space matrices (continuous-

time )

CRj Cramer-Rao bound ot the j -th pa-
rameter

H Hessian matrix

J cost function

L,M , N moment derivatives

n model order

ny number of model outputs

p, q, r roll, pitch and yaw rates, rad/s

u, v , w airspeed components (aircraft

fixed), m/s

u, x , y input, state, and output vectors

X , Y , Z force derivatives

�lon, �lat longitudinal and lateral cyclic in-

puts, %

�col , �ped collective and pedal inputs, %

�, � roll and pitch attitude angles, rad

��� unknown model parameters
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Acronyms
ACT/FHS Active Control Technology / Flying

Helicopter Simulator

CR Cramer-Rao

DLR German Aerospace Center

FR Frequency Response

ML Maximum Likelihood

PBSIDopt optimized Predictor-Based Sub-

space Identification (method)

1. INTRODUCTION
Linear rotorcraft models are essential for flight me-

chanics analysis, simulation, and flight control de-

sign and are often derived from flight test data us-

ing system identification techniques. Most of the ro-

torcraft system identification that is performed uses

classical methods like the frequency domain Maxi-

mum Likelihood (ML) method or the frequency re-

sponse (FR) method (see Ref.
1
) to derive physics-

based linear state-space models of the correspond-

ing vehicle. The identified models can be accu-

rate for frequencies up to 30 rad/s depending on

the model complexity, and whether rotor states

like flapping and inflow/coning or engine states

like rotor speed and torque are included. A good

overview over high-order rotorcraft modeling for

system identification can be found in chapter 15 of

Ref.
2
.

But today, state of the art time domain system

identification methods like the optimized predictor-

based subspace identification method (PBSIDopt)

also offer the possibility to estimate high-order

models from open- and closed-loop data for mul-
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tiple input and output systems, see Refs.
3,4
. The

PBSIDopt method has been applied to simulated

data of the Bo105 helicopter in Ref.
5
and to flight

test data of a light utility helicopter prototype in

Ref.
6
.

The DLR (German Aerospace Center) Institute of

Flight Systems operates the ACT/FHS (Active Control

Technology/Flying Helicopter Simulator) research

helicopter, see Figure 1. The ACT/FHS is a highly

modified Airbus Helicopters (former Eurocopter)

EC135, a twin-engine helicopter with a maximum

takeoff weight of about 2.9 t, a bearing-less main

rotor and a fenestron. The ACT/FHS is equipped

with a full-authority fly-by-wire/fly-by-light control

system which enhances its mechanical controls. An

integrated experimental system is able to apply

test control inputs to the ACT/FHS in flight. As the

ACT/FHS is not equipped with the standard EC135

stabilization system, its dynamics are not compara-

ble to those from a production EC135 rotorcraft.

Figure 1: DLR’s research helicopter ACT/FHS

Linear models of different complexity for the

ACT/FHS have been identified using the classical ML

and FR methods (see Refs.
7–11
) leading to physics-

based models with a model order of up to n = 17.
But also the black-box PBSIDopt method has been

successfully applied to ACT/FHS data. In Ref.
12
a

model with an order of n = 38 (subsequently re-
duced to n = 18) was identified from flight test

data. High-order models including engine effects

were identified in Ref.
13
, and in Ref.

14
models for

handling qualities and dynamic stability prediction

were extracted with model orders of n = 12 and
n = 18.
As both the classical physics-based and the black-

box methods have their respective strengths and

weaknesses, it was tried to combine both tech-

niques such that they complement each other.

The paper will first give a short introduction into

the applied identification methods. Next, the two

techniques will be combined to address the areas

of flight test database requirements, parameter ac-

curacy metrics, and model structure specification.

Finally, the results will be summarized and more

areas, where the two methods might complement

each other, will be outlined.

2. APPLIED METHODS
All of the applied identification methods yield linear

state-space models of the form

(1)
_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

and are based on measured data for the input vari-

ables u and output variables y .

Regarding the classical methods, the ML method

in the time domainminimizes the output errors and

the frequency domain ML method optimizes the fit

of the output spectra. In contrast, the FR method

solves a quadratic cost function to match the fre-

quency responses in amplitude and phase. An op-

tional coherence weighting allows to put an empha-

sis on matching the frequency responses in those

frequency ranges with the highest coherence and

de-weighting data with low coherence.

The PBSIDopt method uses a predictor form

model representation in the discrete time do-

main. The predictor form state-space model al-

lows to transform the system identification problem

into a high-order vector-ARX model (AutoRegres-

sive model with eXogenous input), which is solved

by a linear least-squares problem. Then, the esti-

mated ARX parameters are used to reconstruct the

model states applying a singular value decomposi-

tion. This step can be interpreted as a model reduc-

tion step. Finally, the discrete time state-space ma-

trices are estimated in a least-squares sense com-

prising the inputs, outputs, and the reconstructed

system states.

More details about the classical ML and FR meth-

ods as well as the PBSIDopt method can be found

in the appendix.

The classical identification methods need data

from special maneuvers like frequency sweeps and

multistep inputs that have to be performed open-

loop, thus requiring specially trained test pilots.

In contrast, the PBSIDopt method works also in

closed-loop operation and does not require special

maneuvers. Of course, sufficient system excitation

is needed for all system identification methods. In

Ref.
15
generalized binary noise excitation data from

closed-loop operation has been shown to give com-

parable results to open-loop data and simplify sys-

tem identification flight tests.
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ML/FR PBSIDopt

frequency domain time domain

requires special open-loop maneuvers only sufficient excitation required

(frequency sweeps, multistep maneuvers) (works closed-loop and with noise excitation)

model structure including state variables must

be specified

only model order and two integer parameters

must be specified

physically meaningful states state variables selected automatically

(non-physical)

(potentially) sparse system matrices fully populated system matrices

Cramer-Rao bounds as accuracy metrics no direct parameter accuracy metrics available

Table 1: Characteristics of the applied identification methods

For the classical methods, a model structure has

to be specified, which is usually derived from phys-

ical considerations. Only the model order and two

integer parameter (past and future window length)

have to be specified for the PBSIDopt method.

Then, the model states are then selected automat-

ically by the algorithm. The resulting models have

fully populated system matrices and usually non-

physical states. However, the identified model can

be transformed in such a way that the first ny state
variables correspond to the output variables by us-

ing the transformation described in Ref.
13
.

The classical identificationmethods yield Cramer-

Rao bounds as accuracy metrics for the identified

model parameters. No such metrics are available

for the PBSIDopt method.

Table 1 summarizes the characteristics of both

identification methods.

3. DATABASE
For the classical system identification methods,

dedicated flight tests have to be performed to gen-

erate a suitable database for identification and val-

idation. Models of the ACT/FHS research helicopter

have been identified using these classical frequency

domainmethods with such flight tests, see Refs.
7–11
.

The corresponding database consists of manually

flown frequency sweeps and computer-generated

multistep maneuvers for all control inputs at var-

ious reference speeds. During these open-loop

flight test maneuvers, the pilot applied uncorre-

lated, pulse-type controls to maintain a flight state

near the reference trim condition. The described

approach allows to extract accurate bare airframe

dynamic models using frequency domain system

identification but requires specially trained test pi-

lots.

Flight test maneuvers for system identifica-

tion purposes are usually performed open-loop,

because feedback controller suppress the low-

frequency inputs resulting in poor low-frequency

identification performance. Furthermore, correla-

tions between multiple inputs and between distur-

bances and inputs are introduced resulting in bi-

ased estimates and reducing the off-axis model ac-

curacy for classical frequency domain methods as

described in detail in chapter 5.8 and 8 of Ref.
2
.

No such strict flight test requirements exist for

the PBSIDopt method. The PBSIDopt method op-

erates directly on the measured input-output data

and is able to estimate asymptotically unbiased

models from noisy closed-loop data, see Refs.
3,16,4

or the overview in Ref.
17
. In Refs.

12,13
models of the

ACT/FHS research rotorcraft have been identified

applying the PBSIDoptmethod to open-loop system

identification flight test data. The identified (high-

order) models provide very good accuracy and show

that the PBSIDopt method is applicable to open-

loop rotorcraft system identification flight test data.

Furthermore, in Ref.
15
it has been shown that com-

parable identification results can even be obtained

with (generalized) binary noise excitation in closed-

loop operation under noisy conditions.

Therefore, the first idea for a complementary use

of black-box and physics-based identification was

as follows:

• use PBSIDopt to identify a high-order black-box

model from data with binary noise excitation,

• generate frequency response data from this

identified model (analytically),

• use this frequency response data to identify a

physics-based model with the FR method.

The FR methods needs accurate frequency re-

sponses as a basis for the identification of a

physics-based model. Usually, the required fre-

quency responses are extracted from flight test

data with frequency sweep excitation using seg-

menting and windowing techniques and applying

multi-input/multi-output conditioning and compos-

ite windowing techniques as described in chapters

7, 9, and 10 from Ref.
2
. Alternatively, the local poly-

nomial method can be used for FR generation, see

Ref.
18
.
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Figure 2: Frequency responses generated from binary noise and from sweep excitation

Figure 2 compares the resulting FRs applying the

segmenting and windowing technique to data with

binary noise and sweep excitation. It can be seen

that the results differ clearly in the low-frequency

region and that the coherence is much lower for the

binary noise excitation. Thus, this type of data can-

not be used for direct FR extraction.

For the FR generation from the binary noise data

with the PBSIDopt method, a model order with

n = 18 was selected to include the higher-order ro-
tor dynamics. The output variables of the PBSIDopt

model were chosen as u, v , w , p, q, r , �, �, ax ,
ay , and az . The linear accelerations were explic-
itly included as output variables because they are

needed by the physics-based model as variables to

be matched.

An 8-DoFmodel with explicit flapping formulation

as described in Ref.
19
with a model order of n = 10

was then extracted both from FRs generated from

sweep data and from the FRs resulting from the

PBSIDopt model. As the PBSIDopt model gives no

coherence information, the same frequency ranges

as for the sweep-derived FRs were used but no ex-

plicit coherence weighting was used.

Figure 3 compares the resulting match in pitch

rate q and yaw rate r as well as in vertical velocity
w . It can be seen that both approaches yield com-
parable results. The same holds for the eigenvalues

of the identifiedmodels that are listed in Table 2 and

shown in Figure 4.

This investigation demonstrates that FRs that are

derived from a black-box model can be used as a

database for an identification of a physics-based

model. This allows to use flights test maneuvers for

system identification that are not suitable for eval-

uation with the classical identification methods. A

Mode Sweep-FR PBSIDopt-FR

spiral -.0641 -.0236

phygoid [-.266,.465] [-.233,.476]

pitch -.472 -.493

dutch roll [.321,1.81] [.289,1.82]

pitch/flap [.810,4.96] [.855,5.05]

roll/flap [.760,10.3] [.759,11.3]

Table 2: Eigenvalues of the identified models

([�; !] = s2 + 2�! + !2), see also Figure 4

disadvantage is, that the frequency responses that

are generated from a PBSIDopt model yield no co-

herence information so that no coherence weight-

ing in the FR method can be used and the selection

of the frequency ranges for the different FRs to be

matched have to be selected from physical consid-

erations.

Problems with the identification of a physics-

based model can arise, when the frequency re-

sponses that result from a PBSIDopt model are not

physically consistent. For the current investigations,

first FRs generated from a 14th order PBSIDopt

model were used. With these FRs, it was not possi-

ble to identify a physics-based model that matched

the frequency responses for both lateral acceler-

ation and roll rate due to lateral cyclic input at

the same time. A sufficient match in p=�lat could
only be obtained when de-weighting the match in

ay=�lat and vice versa.
To find a reason for this problem, the FRs

for the linear accelerations ax ; ay ; az were deter-
mined both from the corresponding model output

equations and by calculating them from the state

equations for the velocity components _u; _v ; _w and
the output equations for the angular rates p; q; r
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Figure 3: Identification using frequency responses from sweeps and from PBSIDopt model (8-DoF, 60 kn)
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Figure 4: Eigenvalues of the identified models

shown in Figure 3 and listed in Table 2 (8-DoF, 60 kn)

and Euler angles �; � using the trim conditions

(u0; v0; w0; �0; �0).

(2)

ax = _u + w0q � v0r + g cos �0�

ay = _v + u0r � w0p � g cos�0 cos �0�

+ g sin�0 sin �0�

az = _w + v0p � u0q + g sin�0 cos �0�

+ g cos�0 sin �0�

Figure 5 shows the resulting transfer function for

ay=�lat . It can be seen that a clear difference ex-
ists, especially in amplitude. Due to the black-box

approach, the model outputs for the linear veloci-

ties u; v ; w and the accelerations ax ; ay ; az are not
coupled by the kinematic relations, leading to dis-
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Figure 5: ay=�lat from output equation and calcu-
lated from state variables

crepancies when the linearized kinematic equations

(2) are applied. This discrepancy is believed to have

caused the identification problems.

4. ACCURACY METRICS
The identification process returns the state-space

model that best matches the flight test data. A mea-

sure of the accuracy or relative degree of confi-

dence of the identification parameters is desirable

for several reasons:

• During the identification process of a physics-

based model, the information of the relative

accuracy of the parameters as well as the infor-

mation about parameter correlations are used

to refine the model. Parameters with low confi-
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dence are fixed at physically reasonable values

or are eliminated from the model.

• If the identified model is to be used for control

system design, a measure of parameter accu-

racy is needed to analyze and ensure robust-

ness. Many control design procedures use es-

timates of expected uncertainties in the design

process. Once a control system design is com-

pleted, the estimated uncertainties are used to

evaluate expected degradation with respect to

the nominal performance.

• The evaluation of apparent differences be-

tween flight test identified and simulation pa-

rameters requires knowledge of the level of

confidence with which the identified parame-

ters are known.

Ref.
20
provides a complete discussion of the

mathematical basis for the theoretical accuracy

analysis of the classical identification methods. The

Cramer-Rao inequality provides the fundamental

basis for the theoretical accuracy analysis. The

Cramer-Rao bound CRj establishes the minimum

expected standard deviation in the parameter es-

timate �j that would be obtained from many re-

peated maneuvers.

The Cramer-Rao bound CRj of the j -th identified
parameter is determined from the associated diag-

onal element of the inverse of the Hessian matrix

H

(3) CRj =
√
(H)�1j j

whereH is defined as

(4) H = r2
��� =

@2J

@���@���T
:

The Hessian matrix is usually determined numeri-

cally by evaluating the gradients of the cost function

J with respect to perturbations in the converged pa-
rameter values.

For subspace identification methods, the anal-

ysis of the asymptotic variance has been investi-

gated in Ref.
21
and explicit expressions for it have

been worked out, but the resulting expressions are

very complicated and costly to implement. There-

fore, a bootstrap approach was suggested in Ref.
6

to evaluate the standard deviation of invariants of

PBSIDopt estimated models, such as the eigenval-

ues and the transfer functions. This approach, how-

ever, does not provide accuracy information for

the model parameters (the matrix elements) them-

selves.

For this reason, the idea for a complementary use

of of physics-based and black-box modeling was as

follows:

• Identify a model with the PBSIDopt method,

• Implement the identified model into the ML

or FR algorithm and calculate Cramer-Rao

bounds for all model parameters (matrix ele-

ments).

The test case was an 8-th order model that was

identified with the PBSIDopt method from ACT/FHS

simulator test data for 60 knots forward flight in

a closed-loop experiment design with computer-

generated generalized binary noise excitation and

a signal-to-noise ratio of 25 (see Ref.
15
).

To make the results easier to compare to deriva-

tives from a classical physics-based model, the

PBSIDoptmodel was first transformed such that the

state variables are identical to the output variables

using the method described in Ref.
13
. With the cho-

sen output variables of u, v , w , p, q, r , �, �, this cor-
responds to a classical 6-DoF model.

For comparison, a classical 6-DoF model that was

identified with the frequency domain ML output er-

ror method from sweep input maneuvers was used.

The kinematic coupling terms had to be removed

from the state matrix elements of the PBSIDopt

model to compare the results for the derivatives of

the ML and PBSIDopt models. The corresponding

equations are

(5)

Xq = A(1; 5) + w0; Xr = A(1; 6)� v0;

Yp = A(2; 4)� w0; Yr = A(2; 6) + u0;

Zp = A(3; 4) + v0; Zq = A(3; 5)� u0;

where A(i ; j) denotes the element in the i -th row
and j -the column of the state matrix A.
Figure 6 shows the obtained results for some sta-

bility and control derivatives where circles mark the

identified values and whiskers the Cramer-Rao un-

certainty bounds. It can be seen that both meth-

ods yield similar results for the identified derivatives

and that the uncertainty bounds of the PBSIDopt

model are generally higher than those of the ML

derived model. This is probably due to the fact, that

the systemmatrices of the PBSIDopt model are fully

populated and thus contain more parameters to be

estimated.

As the C-matrix of the transformed PBSIDopt

model is an identity matrix and the D-matrix is

empty, this results in 64 variable parameters in the

A-matrix and 32 elements in the B-matrix. For the

classical 6-DoF model, all matrix elements corre-

sponding to pitch and roll angle are known quan-

tities. This results in a maximum of 36 unknown pa-

rameters in the A-matrix and a maximum of 24 un-

known parameters in the B-matrix. Usually, these

numbers are further reduced in the model struc-

ture determination process. For the present exam-

ple, the ML derived model had 46 unknown param-

eters compared to 96 for the PBSIDopt model.
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Figure 6: Identified stability and control derivatives with corresponding uncertainty bounds

This example shows, that a classical ML or FR

identification method can be used to derive CR

bounds for the parameters of a PBSIDopt model.

However, in the cases investigated by the authors,

this approach only worked formodel orders of up to

n = 8. For higher model orders, the large increase
in unknown parameters led to numerical problems

and excessive correlation between the model pa-

rameters, thus preventing the calculation of mean-

ingful accuracy bounds.

5. MODEL STRUCTURE
Finally, the requirement of specifying a model struc-

ture is addressed. Physics-based models are of-

ten preferred because of their rather sparse model

structure and because they offer physical insight

and it is easier to omit certain effects or to split the

model into submodels. But sometimes a physics-

based model for a subsystem is not available be-

cause no measurements of the internal variables

exists.

For example, to be able to extract a physics-based

engine model from flight test data, it is necessary to

have a fuel flow measurement. In ACT/FHS system

identification, a model for rotor speed and torque

dynamics was needed to account for the torque in-

fluence mainly on yaw rate. As no measured engine

parameters such as fuel flow or generator speed

were available, it was not possible to identify a

physics-based engine model.

Therefore, in Ref.
19
a model for rotor speed and

torque dynamics was derived from transfer func-

tion approximation and then transformed into a

state-space system. This model only covers the re-

sponse due to collective and pedal inputs and has

deficits for pedal inputs in forward flight. The iden-

tified model was then coupled with a flight mechan-

ics model including rigid-body and rotor dynamics.

As a physics-basedmodel for the rotor speed and

torque dynamics is not necessary in this case, it

was tried to identify an improved model with the

PBSIDopt method. The inputs for the model were

the four pilot controls as well as the vertical velocity

w and yaw rate r to account for coupling effects.
The outputs were rotor speed and torque, and a

model order of n = 4 was selected. Figure 7 shows
the match for the PBSIDopt model in comparison

to the ML derived model from Ref.
19
. It can be seen

that both models perform comparably well for col-

lective inputs (third column from the left) but that

the PBSIDopt model performs better for all other

control inputs as it was expected.

Calculating the Cramer-Rao uncertainty bounds

for the PBSIDopt model, as described in the pre-

vious section, indicated that more than half of the

model parameters could be safely omitted. Thus, a

model reduction process was performed with the

ML frequency domain method, resulting in a sec-

ond order model. This reduced rotor speed/torque

model was then coupled to a helicopter model

covering the rigid-body and rotor dynamics as de-

scribed in Ref.
19
.
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Figure 7: Time domain comparison of physics-based (ML) and black-box (PBSIDopt) engine model
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Figure 8 shows that the reduced PBSIDopt en-

gine model performs as well as the transfer func-

tion derived model that was used before regarding

the yaw response to collective inputs. Furthermore,

the PBSIDopt-derived engine model covers the ro-

tor speed and torque response to other control in-

puts as well.

This example shows that the PBSIDopt method

can be used for (sub)model identification where a

physical model structure does not exist and is not

required. Performing an accuracy analysis on the re-

sulting model with classical identification methods

allows to perform a model reduction to gain a more

robust model.

6. SUMMARY AND OUTLOOK
This paper has shown that black-box and physics-

based system identification techniques can comple-

ment each other and can be combined in the follow-

ing ways:

1. An identified high-order black-box model

can be used to generate transfer functions

which can then be used as a frequency re-

sponse database for identifying a physics-

based model. This offers the possibility to use

flight test data generated in closed-loop oper-

ation without specially trained pilots and to re-

duce flight test time.

2. The FR or ML output error method can be used

to get accuracy metrics for the parameters of

an identified black-box model.

3. Black-box modeling can be used for subsys-

tems and these submodels can then be inte-

grated into an overall physics-based model.
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Problems that were encountered during the in-

vestigations are:

1. Transfer functions generated from black-box

models contain no coherence information,

therefore no coherence weighting can be used

in the subsequent identification with the FR

method.

2. Transfer functions that are generated from a

black-box model might be physically incon-

sistent. This can cause problems in fitting a

physics-based model to this data.

3. Extracting accuracy metrics for parameters

from a fully populated black-box model was

successfully performed for model orders of up

to n = 8. For higher model orders, numerical
problems and excessive correlation prevented

the calculation ofmeaningful accuracy bounds.

For the future, it is planned to use black-box iden-

tification also for modeling the remaining deficits

of a physics-based model. In Ref.
22
these model

deficits are described as parametric input filters (pi-

lot remnants) to be added to the system inputs. The

calculated pilot remnants are derived using inverse

simulation techniques and are then approximated

by low order transfer functionmodels. Alternatively,

a linear black-box MIMO system could be used for

this purpose.
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A. APPLIED IDENTIFICATION METHODS
Symbols
Ad , Bd , Cd ,

Dd

discrete-time state-space matrices

AK , BK predictor form state-space matri-

ces

ek , uk , xk ,

yk

discrete-time innovation, input,

state, and output vectors at k -th
time step

E, U , X , Y data matrices for system innova-

tion, input, state, and output

f , p future and past window length

K Kalman gain matrix

K(p)
extended controllability matrix

Mf ,Mn,Mp sets for f , n and p
nu number of model inputs

N number of data points

O(f )
extended observability matrix

R measurement noise covariance

matrix

s Laplace variable, 1/s

S diagonal singular values matrix

T frequency response matrix

wap relative weighting ampli-

tude/phase errors

w
 coherence weighting

ym;k measured output (index m)

zk merged input-output vector at k -th
time step

Z data matrices for merged input-

outputs (used with indexes)


2uy coherence between u and y
� regularization parameter

! angular frequency, rad/s

�(: : :) standard deviation

� time delay, s

] phase angle, deg

j : : : jdB amplitude, dB

A.1. ML Output Error Method
The system to be identified is assumed to be de-

scribed by a linear state-space model

(A.1)
_x(t) = A(���)x(t) +B(���)u(t)

y(t) = C(���)x(t) +D(���)u(t)

where x denotes the state vector, u the input vec-

tor and y the output vector. The systemmatricesA,

B, C and D contain the unknown model parame-

ters ���. Measurements z of the outputs exist for N
discrete time points tk

(A.2) zk = y(tk) + v(tk) ; k = 1; : : : ; N:

The measurement noise v is assumed to be char-

acterized by Gaussian white noise with covariance

matrix R.

The ML estimates of the unknown parameters���
and of the measurement noise covariance matrixR

are obtained by minimizing the cost function

(A.3)

J(���;R) =
1

2

N∑
k=1

[z(tk)� y(tk)]
T
R�1

� [z(tk)� y(tk)] +
N

2
ln (det (R)):

If themeasurement error covariancematrixR is un-

known, as it is usually the case, the optimization of

eq. (A.3) is carried out in two steps. In the first step,

it can be shown that for any given value of ���, the
ML estimate of R is given by

(A.4) R =
1

N

N∑
k=1

[z(tk)� y(tk)] [z(tk)� y(tk)]
T

which means that the output error covariance ma-

trix is the most plausible estimate for R.

Presented at 44th European Rotorcraft Forum, Delft, The Netherlands, 19–20 September, 2018.

This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2018 by author(s).
Page 10 of 13



Thus, the variable part of the cost function re-

duces to

(A.5) J(���) = ln (det (R)):

If the covariance matrixR is assumed to be a diago-

nal matrix, the cost function reduces to the product

of the output error variances of all output variables

(A.6) J(���) =

ny∏
j=1

(
1

N

N∑
k=1

[
zj(tk)� yj(tk)

]2)
:

Frequency Domain Variant
The discretely sampled time-dependent variable

(A.7) xk = x(k�t) ; k = 0; : : : ; N � 1

with the sampling time interval �t is transformed
into a frequency-dependent variable using the

Fourier transform

(A.8)
x(!k) =

1

N

N�1∑
k=0

xke
�i!kk�t

!k = k � 2�=tN with tN = (N � 1)�t :

Transforming the variables _x , x , u, y of the lin-
ear model from eq. (A.1) into the frequency domain

leads to the following model equations in the fre-

quency domain

(A.9)
i!x(!) = A(���)x(!) +B(���)u(!)

y(!) = C(���)x(!) +D(���)u(!):

The ML cost function in the frequency domain is

derived analogously to the one in the time domain

with the output error covariance matrix R replaced

by the spectral density matrix of the measurement

noise. The ML cost function in the frequency do-

main is therefore

(A.10) J(���) =

ny∏
i=j

�2
(
zj � yj

)
with

(A.11)

�2
(
zj � yj

)
=

1

N

N�1∑
k=0

[
zj(!k)� yj(!k)

]
�
[
zj(!k)� yj(!k)

]
where (:)� denotes the conjugate transpose of a
complex value and �2(:) the model variance.
Minimization of the cost function from eq. (A.6)

or eq. (A.10) is performed using e.g. a Gauss-Newton

optimization method.

A.2. Frequency Response Method
The ML method in the frequency domain is based

on matching the Fourier transform of the out-

put variables. In contrast, the frequency response

method is based on matching the frequency re-

sponses, i.e. the ratio of the output per unit of con-

trol input as a function of control input frequency.

The frequency response matrix of the identifica-

tion model T (s) relates the Laplace transform Y (s)
of the output vector y to the Laplace transform

U(s) of the input vector u

(A.12) Y (s) = T (s)U(s):

For the linear state-space system from eq. (A.1), the

frequency response matrix is determined as

(A.13) T (s) = C(sI � A)�1B +D

where I denotes the identity matrix.

The quadratic cost function to be minimized for

the frequency response method is

(A.14)

J =
20

N!

N!∑
k=1

w
(k)
[
(jTm(k)jdB � jT (k)jdB)

2

+wap (]Tm(k)� ]T (k))
2
]

where T and Tm are a single frequency response
and its measured counterpart. N! is the num-

ber of frequency points in the frequency interval

[!1; !N!]. j : : : jdB denotes the amplitude in dB and
](: : :) the phase angle in degree.
w
 is an optional weighting function based on

the coherence between the input and the output at

each frequency. It is defined as

(A.15) w
(k) =
[
1:58(1� e


2
xy (k))

]2
;

wap is the relative weight between amplitude and

phase errors. The normal convention is wap =
0:01745.
When several frequency responses are approx-

imated together, the overall cost function is the

average of the individual cost functions. A good

overview of system identification using the fre-

quency response method can be found in Ref.
2
.

A.3. PBSIDopt Method
The starting point for the PBSIDopt method is a lin-

ear discrete-time state-space model in innovation

form

(A.16)
xk+1 = Adxk +Bduk +Kek

yk = Cdxk +Dduk + ek
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with the input vector uk 2 R
nu , the outputs yk 2

R
ny and the states xk 2 R

n
. The innovations ek 2

R
ny are assumed to be zero-mean white process

noise. A finite set of data points uk and yk with

k = 1 : : : N is considered for system identification.
Assuming there is no direct feedthrough, i.e.

Dd = 000, the system in eq. (A.16) is transformed into
the one-step ahead predictor form

(A.17)
xk+1 = AKxk +BKzk

yk = Cdxk + ek

with AK = Ad � KCd , BK = (Bd K) and zk =
(uk yk)

T
. Furthermore, it is assumed that all eigen-

values of AK are inside the unit circle. Accordingly,

the given predictor model is stable. The (k+p)-th
state xk+p is given by

(A.18)

xk+p = AKxk+p�1 +BKzk+p�1

= A
p
Kxk

+
(
A
p�1
K BK A

p�2
K BK : : : BK

)︸ ︷︷ ︸
K(p)


zk
zk+1
.
.
.

zk+p�1


and the (k+p)-th output yk+p is determined

(A.19) yk+p = CdA
p
Kxk+CdK(p)


zk
zk+1
.
.
.

zk+p�1

+ek+p

with the extended controllability matrix K(p)
and

the past window length p. Since AK is stable, the

expression A
p
K in eqs. (A.18) and eq. (A.19) can be

neglected for large p: Ap
K ' 000. Therefore, repeat-

ing eqs. (A.18) and (A.19) for the (p+1)-th to the N-th
element yields

X(p+1;N) = K(p)Z(1;N�p);p(A.20a)

Y(p+1;N) = CdK(p)Z(1;N�p);p + E(p+1;N)(A.20b)

with

(A.21) X(p+1;N) =
(
xp+1 xp+2 : : : xN

)
and analogous definitions for Y(p+1;N) and

E(p+1;N). The merged inputs and outputs are

combined as

(A.22) Z(1;N�p);p =


z1 z2 : : : zN�p

z2 z3 : : : zN�p+1
.
.
.

.

.

. : : :
.
.
.

zp zp+1 : : : zN�1

 :

The predictor Markov parameters CdK(p)
are es-

timated in a least-squares sense with Tikhonov reg-

ularization to prevent ill-posed problems. The regu-

larized least-squares problem is given by

(A.23)

min
CdK(p)

(∥∥∥Y(p+1;N) � CdK(p)Z(1;N�p);p

∥∥∥2
F

+ �2
∥∥∥CdK(p)

∥∥∥2
F

)
:

The regularization parameter � is chosen with

the Strong Robust Generalized Cross Validation

method, see Ref.
23
for an introduction and a com-

parison of parameter choice methods.

The estimated predictor Markov parameters

CdK(p)
can be interpreted as a high-order vector-

ARX model (AutoRegressive model with eXogenous

input). High-order ARX models based on eq. (A.20b)

are asymptotically unbiased by correlation issues

for large N and p, see Ref.24. Thus, this step is
essential for subspace identification methods like

PBSIDopt to provide consistent estimates even in

correlated closed-loop experiments.

Defining the extended observability matrix O(f )

with the future window length f

(A.24) O(f ) =


Cd

CdAK

.

.

.

CdA
f�1
K

 ;

the product of the extended observability matrix

O(f )
and the extended controllability matrix K(p)

is set up using the estimated predictor Markov pa-

rameters CdK(p)

(A.25)

O(f )K(p) '
CdA

p�1
K BK CdA

p�2
K BK : : : CdBK

000 CdA
p�1
K BK : : : CdAKBK

.

.

.
. . .

. . .
.
.
.

000 CdA
f�1
K BK


According to eq. (A.20a)

(A.26)

O(f )X(p+1;N) = O(f )K(p)Z(1;N�p);p

= USVT

=
(
Un Un

)(Sn 000
000 Sn

)(
VT
n

VT
n

)
the singular value decomposition is applied to re-

construct an estimation of the system states

(A.27) X̃(p+1;N) = S
1
2
n VT

n :
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The model order n corresponds to the n largest sin-
gular values in Sn used for the state sequence re-

construction.

Finally, the system matrices Ad , Bd , Cd and K

from eq. (A.16) are calculated. First,

(A.28)

(
X̃(p+2;N)

Y(p+1;N�1)

)
=

(
Ad Bd

Cd 000

)(
X̃(p+1;N�1)

U(p+1;N�1)

)
is solved forAd ,Bd andCd in a least-squares sense.

The Kalman gain K is then calculated from the co-

variance matrix of the least-squares residuals and

the system matrices Ad and Cd by solving the sta-

bilizing solution of the corresponding discrete-time

algebraic Riccati equation, see Ref.
24
and the refer-

ences therein.

The inverse bilinear (or any other discrete-time to

continuous-time) transform is then applied to calcu-

late the continuous-time state-space model

(A.29)
_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t):

Selecting only the largest n singular values to re-
construct the state sequence in eq. (A.27) already

corresponds to a model reduction step. If neces-

sary, further model reduction techniques as de-

scribed in Ref.
12
can be used to adapt a high-order

black-box model to the frequency range of interest

or to reduce its complexity. In the examples pre-

sented in this paper, no further model reduction

techniques were applied.
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