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ABSTRACT 

The term inceptor refers to the controls pilots use to orientate and manoeuvre an aircraft, applicable to both 

fixed or rotary-wing aircraft. Active inceptors are unique in that they include the ability to provide tactile force 

feedback from the aircraft control surfaces to the pilot; the pilot is able to experience the aircraft dynamics.  

Typical active inceptor anatomies comprise components interconnected through a network of mechanical links 

and understanding how these individual components behave collectively under the influence of helicopter 

vibratory loads is crucial in assessing the dynamic response of the entire inceptor. This paper presents an 

investigation into the mathematical modelling of a candidate inceptor mechanism using a dynamic modelling 

approach formulated by Udwadia-Kalaba to explore resonance frequencies. Results demonstrate the ability of 

the Udwadia-Kalaba scheme to model and capture the location of the inceptor mechanism’s resonance 

frequencies. Sensitivity studies were also conducted on selected inceptor design parameters to demonstrate 

that system resonance frequencies may be influenced and tuned away from baseline values.  

 

1. INTRODUCTION 

Inceptors, whilst commonly referred to as ‘sticks’, 

incorporate a whole class of pilot interface controls 

ranging from centre sticks, side sticks, cyclics, 

collectives and throttles. Active inceptors include the 

additional ability to provide tactile force feedback from 

the aircraft control surfaces to the pilot. Whilst 

typically reserved for military applications1, there has 

been a gradual shift in focus to integrate active 

inceptors within the civilian aviation sector fuelled by 

some notable high profile events2.  

However, current research trends on aircraft active 

inceptors for fly-by-wire systems have focused 

predominantly on fixed wing aircraft and as such 

there is a relative lack of research and guidance 

associated with active inceptors for rotorcraft 

applications3. Underlying rotorcraft phenomena such 

as Rotorcraft Pilot Couplings (RPCs) and pilot 

Biodynamic Feedthrough (BDFT)4,5 may introduce 

adverse and undesired destabilizing aircraft 

vibrations and are examples of adverse associations 

that exist between rotorcraft and their vibrations 

which continues to be an active field of research6. 

Typical active inceptor anatomies utilise 
combinations of linear and torsional springs, servo 
actuators, motors, spherical bearings, ball bearings 

and displacement and force transducers8. These are 
all interconnected through a network of mechanical 
links and as illustrated in the block schematic in 
Figure 2. Understanding how these individual 
components behave collectively when under the 
influence of helicopter vibratory loads is crucial in 
assessing the dynamic response of the entire 
inceptor unit and maintaining the performance levels 
required throughout its service life. Rotary vibratory 
loads are considered the key driver when designing 
for vibrations within a helicopter9 and some inceptor 
system resonances may well occur at or near the 

Figure 1: Aircraft inceptor control systems7 
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aircraft’s forcing frequencies and it is imperative that 
this is avoided.  

Figure 2 depicts the general functional requirements 
and anatomy of a typical active inceptor system 
detailing the connections between servo actuation, 
electronic controller, spring assembly and force 
sensor sub systems8.  

In early industrial design stages, the dynamic 
characteristics and performance of an active inceptor 
may not be adequately assessed nor predicted; the 
inceptor design is said to be in a continual state of 
change and the use of finite element analysis to 
assess the dynamic behaviour of the full system may 
not be efficient or even appropriate until the detailed 
design stage. This limitation can present a challenge 
if significant issues emerge once the inceptor design 
is finalised, such as system component resonances 
occurring at or close to the aircraft’s forcing 
frequencies dominated by rotating components such 
as the main or tail rotor as specified by the MIL-STD-
810G9 and as illustrated schematically in Figure 3. 

Additional iterations in the design cycle may lead to a 
shift of inceptor component resonances to now occur 
near the aforementioned forcing frequencies. 
Coupled with the requirement to completely rebuild or 
update models and the adverse impact on industrial 
project time scales, there is a general reluctance 
within industry to modify an inceptor design upon its 
finalisation.  

The drawbacks of this current design approach 
motivate the need to develop an efficiently 
configurable mathematical model of a candidate 
active inceptor. The development of a mathematical 
model of an active inceptor would provide an early 
low-cost means of predicting the dynamics of the 
inceptor mechanism in the preliminary design stage. 
The occurrence of adverse vibration issues may be 
pre-empted through frequency response analyses 
and, by conducting sensitivity study investigations on 
system design parameters, inceptor resonant 
frequencies may be identified and tuned to arrive at 
acceptable design configurations that comply with 
specified frequency restrictions. The intention being 
that this process would aid and inform conceptions of 
Computer Aided Designs (CAD), Finite Element (FE) 
models and experimental units in the detailed design 
phase.  

Figure 3 illustrates a vibration profile termed ‘Sine on 
Random’. Sine on Random refers to a specific class 
of vibration profiles designed for the purpose of 
vibration testing of helicopter internally stored cargo 
as outlined within MIL-STD Category 9 Method 
514.69. The intention is to simulate the worst-case 
environments the component may be subjected to 
throughout its lifetime. Sine on Random profiles are 
helicopter specific as illustrated in Figure 3 for the 
UH-60 helicopter. 

Sine on Random vibration profiles are unique in that 
they comprise strong narrowband peaks of sinusoidal 
vibration provided by the helicopter’s rotating 
components (predominantly driven by the main rotor 
and tail rotor) superimposed over a wideband low-
level random vibration due to aerodynamic flow.  

Requirements stipulate a duration of 12 hours for 
such vibration testing, which will provide an 
equivalent effective representation of 2500 
operational hours.  

The nature of the inceptor involving components 
characterized by kinematic non-linearity that can 
endure significant displacements highlights the 
importance of investigating Multi-Body Dynamic 
(MBD) modelling approaches if an accurate 
mathematical representation model of the inceptor 
mechanism system is to be developed.  

The contribution of this paper is the application of the 
dynamic modelling approach formulated by Udwadia-

Figure 2: Active Inceptor functional diagram8 

Figure 3: ‘Sine on Random’ vibration profile for 

a UH-60 Helicopter. Level information extracted 

from MIL-STD Category 14 Method 514.69 
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Kalaba10 for use in this work to model a candidate 
inceptor mechanism system such that system 
resonances may be explored and tuned through 
sensitivity analyses of design parameters. The 
Udwadia-Kalaba approach is proposed due to its 
handling of mechanical systems subjected to 
kinematical constraints, its applicability to a wide 
class of constraints10 and ability to provide explicit 
equation of motions without the use of Lagrange 
multipliers11. 

The following section provides a brief summary of the 
Udwadia-Kalaba dynamic modelling approach and 
description of terminologies adopted. Section 3 
presents an application study of the Udwadia-Kalaba 
dynamic modelling approach on a test case study 
model prior to application on the inceptor which is 
presented in Section 4.  

 

2. THE UDWADIA-KALABA DYNAMIC 
MODELLING SCHEME 

The Udwadia-Kalaba10 equation of motion as 
formulated in Eq.(1) tackles the issue of multibody 
mechanical systems subjected to kinematical 
constraints by reducing the system to a 
corresponding system of particles with the system’s 
physical geometric constraints included as a separate 
entity. The equation of motion formulated by 
Udwadia-Kalaba is often referred to as ‘The 
Fundamental Equation’. 

�̈� refers to the vector of true accelerations of the 
multibody system under the influence of its geometric 
constraints relative to the global reference frame. 

𝐚 is the vector of accelerations of the multibody 
system in question due to the influence of impressed 
forces acting upon it. This term 𝐚 is often referred to 
as the vector of accelerations of the unconstrained 
system. The size of this vector is (𝑞 x 1) with 𝑞 
denoting the number of system state variables.  

𝑴 is the mass/inertia matrix of the system, size (𝑞 x 𝑞) 

+ is the Moore-Penrose generalized pseudoinverse 
function12. 

The Udwadia-Kalaba approach assumes that the set 
of constraint equations obtained for any generic 
system when differentiated twice with respect with 
time will yield a set of constraint equations that can 
be expressed as linear equality relations regarding 
accelerations between the particles of the system as 
in Eq.(2) 

𝑨 is a (𝑝 x 𝑞) matrix obtained from differentiating the 
system’s geometric constraint equations twice with 
respect to time and expressed in the form of (2). The 
quantity 𝑝 denotes the number of independent 
geometric constraint equations associated with the 
system and terms within the matrix 𝑨 consist of those 
associated with state accelerations.  

𝒃  is a (𝑝 x 1) vector of terms not associated with state 
accelerations when the constraint equations are 
differentiated twice with respect to time. 

 

The combined right hand side terms in Eq.(1) 

consisting of 𝑴−
𝟏

𝟐 (𝑨𝑴−
𝟏

𝟐)
+

(𝐛 − 𝑨𝐚) effectively 

represent the additional accelerations and 
subsequent additional forces required to ensure the 
system complies with any kinematical constraint that 
it is subjected to.  

 
This dynamic formulation approach has been 
investigated by Nielson et al 13, Li et al 14 and 
Pennestri et al 15 who all found convincing agreement 
of simulated system dynamic results with reference 
data. 
 

3. MODEL TEST CASE: THE OVERCENTRE 
MECHANISM 

 
Initial investigations into this MBD modelling 
approach firstly considered a test case study model 
system in order to provide an application study of the 
Udwadia-Kalaba dynamic modelling approach prior 
to application on the inceptor. The Overcentre 
Mechanism (Figure 4) was chosen as the test case 
model due to its basic, albeit crude, geometric 

(1)                �̈� = 𝐚 + 𝑴−
𝟏

𝟐 (𝑨𝑴−
𝟏

𝟐)
+

(𝒃 − 𝑨𝐚) 

(2)                                    𝑨�̈� = 𝒃 

Figure 4: The Overcentre Mechanism 
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parallels with that of an inceptor involving linkages 
connected through joints.  
 
This mechanism has also been studied previously by 
Knowles16 including its nonlinear characteristics 
thereby providing a case study for which some results 
could be compared. This section details investigative 
studies associated with the Overcentre Mechanism 
and provides a formulative description of the 
Udwadia-Kalaba modelling process applied to this 
test model system.  
 
The Overcentre Mechanism is a planar mechanism 
involving two rigid bars (denoted bar 1 and bar 2 in 
accordance with the notation in Figure 4) connected 
through a revolute joint. One end of bar 1 is attached 
to the ground through a revolute joint whilst the end 
of bar 2 is attached to the ground through a 
translational/revolute joint to allow for translational 
displacement. Bars 1 and 2 are connected via a 
revolute joint at their connection and a spring-dashpot 
attached between the two rigid bars provides means 
of translational resistance and energy dissipation. An 
external force (F) is chosen to be applied vertically at 
the connection between bars 1 and 2 although this 
point of application is not limited.  

 
The mechanism is defined by six geometric position 
states (x1, y1, θ1, x2, y2, θ2 where θi represents bar 

rotations relative to the horizontal and xi, yi denote 
bar centre of gravity translations). Table 1 presents a  

brief summary of model parameters. The Udwadia-
Kalaba dynamic modelling scheme places heavy 
emphasis on the accurate derivation of the system’s 
geometric constraint equations. For the overcentre 
mechanism these are presented below through Eqs. 
(3) to (7). In order to compare the dynamic behaviour 
results of the Overcentre Mechanism from the 
Udwadia-Kalaba dynamic model, which is referred to 
as model 1, two other models were created. These 
are: 
 
Model 2: MATLABs Simscape MBD toolkit17 model    
               (Figure 5).    
 
Model 3: A reduced order model modelled through     
               the Lagrange formulations  

Parameters Units Value 

L1 metres 2√2 
 

L2 metres 2√2 
 

𝑚1 kg 1 

𝑚2 kg 1 

m metres 0 

n metres 0 

Spring stiffness,  k Nm-1 50 

Dashpot damping 

coefficient,  c 

Nsm-1 5 

Table 1: Overcentre Mechanism parameter values 

Figure 5: (a),(b),(c), MATLAB Simscape MBD 

model representation of the Overcentre 

Mechanism.  

(a) 

(b) 

(c) 

Massless 

slider 

Spring-dashpot 

attachment 

points 

(3)                              x1 −
L1

2
cos(θ1) = 0  

(4)    y1 −
L1

2
sin(θ1)  = 0  

(5)            x1 +
L1

2
cos(θ1) − x2 −

L2

2
cos(θ2) = 0  

(6)    y1 +
L1

2
 sin(θ1) − y2 −

L2

2
 sin(θ2) = 0 

(7)                  y2 −
L2

2
sin(θ2)  = 0 
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Considering equations (3) to (7), it may be observed 
that the specification of a single state variable would 
be sufficient in providing a full description of the 
overcentre mechanism’s position and orientation. 
This is the basis of Model 3, a reduced order 
mathematical model dependent only on state θ1, and 
modelled through the Lagrange equations of motion. 
 

3.1 Static Model 

Validation of the derived geometric constraint 
equations was performed through modelling the 
system’s static responses using MATLAB’s in-built 
FSOLVE function (version 2017a) and comparing 
responses with the dynamic Simscape MBD model. 

External constant forcing of varying magnitude was 
applied vertically at the connection between bars 1 
and 2 as in Figure 4. This external forcing was chosen 
to be the variable parameter and thus the static 
analysis conducted using MATLAB, formulated from 
the system’s geometric constraint equations, required 
an additional static moment equilibrium equation as 
in Eq.(8) 

The terms w1 and w2 denote the weight of bars 1 and 
2. The terms Fsx1 and Fsy1 refer to spring-dashpot  
reaction forces associated with bar 1 in the global X 
and Y directions as in Figure 4. Considering the 
baseline system with parameters outlined in Table 1, 
Fsy1 has a value of 0 and the expression for Fsx1 is 
as follows.  

L0 is the natural unstretched length of the spring. 
Terms associated with velocity (ẋ1, ẋ2) are ignored 
within the static model.  

Results in Figure 6 from the static analysis of the 
Overcentre Mechanism show a strong agreement 
between the model formulated from the systems 
geometric constraint equations and that produced 
from the dynamic Simscape MBD model. 

3.2 Dynamic Model  

Effectively validating the derived system geometric 
constraint equations, the dynamic model of the 
mechanism was formulated within MATLAB based on 
the Udwadia-Kalaba dynamic approach. In 
accordance with the process outlined in section 2, the 
required matrices were derived as presented in 
Eqs.(10) to (13).  

 

 

 

 

 

 

 

 

 

 

I1 and I2 are the inertia terms of bars 1 and 2, taken 

about their C.G locations and in the axis about which 

they rotate (Z-axis). 

 

 

 

 

 

(8)  Fsx1 ∗ [(
1

2
−

m

L1
) ∗ tan(θ1) − (

1

2
−

n

L2
) ∗ tan(θ2)] +

        Fsy1 ∗ [
m

L1
−

n

L2
] +

1

2
∗ (w1 + w2) + F = 0 

(10)    𝐴 =

[
 
 
 
 
 
 
 1 0      

L1

2
sin(θ1)  0 0  0

0 1  −
L1

2
cos (θ1)  0 0 0

1 0 −
L1

2
sin(θ1)  −1 0

L2

2
sin (θ2)

0 1
L1

2
cos(θ1)  0 −1 −

L2

2
cos(θ2)

0 0 0     0 1 −
L2

2
 cos(θ2) ]

 
 
 
 
 
 
 

 

 

 

(11)            𝑏 =

[
 
 
 
 
 
 
 −

L1

2
θ̇1

2cos (θ1)

−
L1

2
θ̇1

2sin(θ1)

L1

2
θ̇1

2cos(θ1) −
L2

2
θ̇2

2cos(θ2)

L1

2
θ̇1

2sin(θ1) −
L2

2
θ̇2

2sin(θ2)

−
L2

2
θ̇2

2sin (θ2) ]
 
 
 
 
 
 
 

 

 

 

(12)              𝑀 =

[
 
 
 
 
 
𝑚1 0 0     0 0 0
0 𝑚1 0     0 0 0
0 0 I1     0 0 0
0 0 0     𝑚2 0 0

0 0 0     0 𝑚2 0

0 0 0     0 0 I2 ]
 
 
 
 
 

 

 

 

(13)                            a =

[
 
 
 
 
 
𝑎𝑠𝑝𝑟𝑖𝑛𝑔

−𝑔

0

𝑎𝑠𝑝𝑟𝑖𝑛𝑔

−𝑔

0 ]
 
 
 
 
 

 

 

 

(9)  Fsx1 = −[k ∗ (x1 − x2 + L0) + c ∗ (ẋ1 − ẋ2)]  

 

Figure 6: Overcentre Mechanism static response to 

a steady force application with varying magnitude. 
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The accelerations due to gravity (𝑔) and action of the 

spring-dashpot restoring forces (𝑎𝑠𝑝𝑟𝑖𝑛𝑔) are 

considered in Eq.(13), the vector of accelerations of 
the unconstrained system.  

 

The dynamic modelling of this mechanism was 
formulated within MATLAB based on the Udwadia-
Kalaba approach. Models 2 and 3 (Simscape MBD 
and Lagrangian) were used to verify the system 
dynamic responses obtained from the Udwadia-
Kalaba method through time history simulations.  

Comparative studies were also carried out on 
configurations of the overcentre mechanism that 
deviated from geometric symmetry. These included 
combinations of the spring-dashpot being orientated 
arbitrarily, differing linkage lengths and arbitrary force 
application locations along the mechanism. 

A Frequency Response (FR) analysis was also 
conducted on the baseline Overcentre Mechanism 
configuration defined in Table 1 to explore the 
location of the mechanism’s theoretical natural 
frequency (1-Degree of Freedom, DoF).  For this 
analysis the reduced order model modelled using the 
Lagrange formulations was considered and a 
sinusoidal force in the form F=F0sin(ωt) prescribed 
vertically at the bar connections as in Figure 4 to 
provide the excitation. 

 

 

 

 

 
 
 
 

 
 
 

Figure 8: Frequency Responses (FR’s) of the 

Overcentre Mechanism when subjected to a 

sinusoidal force of increasing forcing amplitudes 

(F0). Damping coefficient: 1 Nsm-1. 

Figure 7: Baseline Overcentre Mechanism a) Free dynamic response (forcing amplitude, F0=0N), b) Dynamic 

response of the mechanism when subjected to two sinusoidal forces (forcing frequency, ω: 1.5 rads-1, forcing 

amplitudes, F0= 3N and 10N). 

b) a) 
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3.3 Results 

It is clear from results in Figure 6 that nonlinearity is 
present within the system. The appearance of a 
hysteresis loop is indicative of the system’s bi-
stability, with the mechanism’s steady state 
responses able to switch between the upper and 
lower branch solutions depending upon whether the 
applied external force surpasses the respective limit 
points.   

Figures 7a) and b) show the dynamic response of the 
baseline Overcentre Mechanism under free and 
forced excitation both starting with θ1=45° at time t=0. 
For the forced excitation case, a sinusoidal force in 
the form F=F0sin(ωt) was considered to mimic 
harmonic vibration loads and applied vertically at the 
bar connections as in Figure 4. Two forcing cases 
were considered, one with a forcing amplitude of 3N 
and the other with forcing amplitude 10N. The value 
of forcing frequency applied for both was 1.5 rads-1. 
Figure 7b) illustrates the nonlinear nature of the 
Overcentre Mechanism, with responses attracted to 
either ‘upper’ limit cycle solutions (θ1>0) or ‘lower’ 

limit cycle solutions (θ1<0) depending upon the 
magnitude of forcing amplitude applied, indicative of 
the bi-stable nature of the mechanism. In the cases 
presented in Figure 7b), upper limit cycle solutions 
are obtained when F0=3N and lower limit cycle 
solutions are obtained when F0=10N.  

Figure 7b) also provides further demonstration of the 
capabilities of the Udwadia-Kalaba scheme to 

accurately model non-linear systems. The strong 
agreement in Figures 7a) and b) between the three 
modelling approaches verifies the formulations of the 
dynamic equations used within the Udwadia-Kalaba 
modelling approach. 

Similar investigative studies were also conducted on 
the configurations of the overcentre mechanism that 
deviated from geometric symmetry. Throughout, 
strong agreement was observed between the 
dynamic responses provided from models derived 
through the Udwadia-Kalaba approach, the 
Lagrangian approach and MATLAB MBD toolkit 
Simscape. Similar to previous studies 13, 14, 15, the 
results demonstrate the capability of the Udwadia-
Kalaba scheme to model a generic multi-body system 
subjected to kinematical constraints.  
 

An FR analysis was conducted on the baseline 
Overcentre Mechanism to identify the location of its 
theoretical resonance frequency due to the parallels 
and wider purpose of exploring the natural 
frequencies of the candidate inceptor system.  

The FR’s in Figure 8 generated from the Lagrangian 
reduced order model of the Overcentre Mechanism 
suggest the systems resonant frequency location lies 
in the region of 4 rads-1. A separate eigenvalue 
analysis of the linearized version of this reduced order 
state model predicted a single natural frequency of 
4.083 rads-1. Findings from Figure 8 also demonstrate 
the nonlinear nature of the overcentre mechanism in 
addition to the conclusions arrived at from the static 
analysis investigation in Figure 6.  In Figure 8, the 
nonlinear softening effect is observed as system 
resonant frequency peak locations reduce with 
increasing external forcing amplitudes. Further 
evidence of nonlinearity is seen with the heights of the 
system resonance peaks which do not scale in a 
linear manner with external forcing amplitudes which 
may be observed from the normalized FR plots in 
Figure 9. The presence of sub harmonic peaks in the 
forcing frequency region of 2 rads-1, approximately 
half of the system’s resonant frequency can also be 
attributed to the systems non-linear behaviour 
property.  
 

Dynamic analysis of the presented Overcentre 
Mechanism has demonstrated the applicability of the 
Udwadia-Kabala dynamic modelling approach for 
multibody systems subjected to kinematical 
constraints. This approach is now proposed for the 
dynamic modelling of the inceptor to explore its 
dynamic characteristics. 

 

 

Figure 9: Normalized Frequency Response 

(FR’s) of the Overcentre Mechanism from Figure 

8. Damping coefficient: 1 Nsm-1. 
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4. THE CANDIDATE INCEPTOR  

The candidate inceptor is an active collective stick 
unit. Helicopter collective sticks govern the pitch 
angle of main rotor blades collectively, thereby 
dictating the vertical lift generated. Figure 10a) is an 
example of a collective stick inceptor. However this 
work will only consider the modelling of the inceptor 
mechanism within the chassis as opposed to 
complete system unit. A MATLAB Simscape 
representation of the kinematical behaviour of the 
inceptor mechanism is presented in Figure 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The inceptor mechanism components of interest 
include the control stick, seen protruding out of the 
inceptor chassis in Figure 10a). In addition, a servo 
actuator gearbox is connected to the control stick via 
a rotating shaft element that is also rigidly connected 
to a crank arm link. In Figure 11, the control stick is 
represented by the yellow-green-red link connection 
whilst the crank arm is represented through the cyan 

link. The end of this crank arm is connected to a force 
sensor element represented as the orange link which 
is fixed in position at its other end.  
 
The application of the Udwadia-Kalaba modelling 
scheme to the inceptor mechanism poses unique 
challenges due to the 3D mechanical nature of the 
inceptor mechanism with multiple components 
rotating out of plane. Whilst the control stick may 
rotate in the Y-X plane through an angle φ as seen in 
Figure 11a), the crank arm which is also connected to 
the servo actuator gearbox shaft, rotates in its local 
Y-Z plane through an angle δ shown in Figure 11b). 
 

4.1 Inceptor Mechanism Static Model 

The inceptor mechanism was discretized into a 

series of individual bodies deemed of interest and 

geometric constraint equations governing the 

kinematic behaviour of each body derived in similar 

fashion to those for the Overcentre Mechanism 

outlined in Section 3.  

A brief summary of the processes involved in deriving 
the geometric constraint equations of each body of 
the inceptor mechanism is presented. 
 
The system of geometric constraint equations 
governing the positions of individual bodies were 
constructed by firstly defining the Centre of Gravity 
(CG) positions of each body with respect to their local 
co-ordinate system frame.  

Matrix Transformations are then successively applied 
to obtain the position of the body CG in the Global 
reference frame. A generic outline is presented in 
Eq.14.  
 
 
 

Ri denotes a rotation transformation with respect to a 
specific axis as in Eqs. (17) to (19). T denotes a 
Translational transformation.   
 
 

 

 

: spherical joint  : revolute joint  

b) 

Figure 10: Collective stick inceptor  a) Example 

collective stick inceptor system18  b) functional 

block diagram schematic of inceptor central 

components.  

(17)  RX
 = [

1 0 0
0 cos (δ) sin (δ)
0 −sin (δ) cos (δ)

] 

 

 

 

a) 

CG position of Body 1 in the 

frame of reference denoted 

‘Frame’ 

PBody1 
Frame : 

(14)     PBody1 
Global = [  (Ri) * PBody1 

local  ]  +  T 

 

(16) PBody1 
local = [

𝑥CG

𝑦CG

𝑧CG

] 

 

(15)  PBody1 
Global = [

XCG

YCG

ZCG

] 
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The static response of the inceptor mechanism 
associated with the derived constraint equations was 
firstly modelled and solved through the MATLAB 
FSOLVE function. The control stick angle φ was 
selected as the user-varied parameter and the ratio 
of variation of control stick angle φ with servo actuator 
shaft rotation δ represents the quantity to be 
investigated for static analysis.  
 

 

 
 
 
Static analysis was also conducted on an additional 
MATLAB Simscape inceptor mechanism model and  
results from both methods cross compared with 
baseline provided data for validation 
 
Figure 12 shows that Inceptor static responses 
obtained from the system of derived algebraic 
geometric constraint equations and Simscape MBD 
model showed close agreement with the provided 
inceptor data. The very slight variations were 
assumed to be due to the assumed geometry 
simplifications and definitions in adopted parameter 
values, complications arose in attempting to attain 
exact matching between the algebraic constraint 
model and Simscape MBD model with provided data.   
 
It is clear from the behaviour of variables considered 
in the static analysis that the inceptor system is non-
linear, with clear disproportionate variations in the 
ratio of control stick angle and servo actuator shaft  
rotations.  
 
Results from Figure 12 suggest operating in the 
control stick range 0° ± 5° would provide the subject  
pilot with optimal collective stick control due to the 
maxima of ratios between applied control stick angle 
and servo actuator shaft rotations. A systematic offset 
exists between angular definitions relating to the 
control stick angle from the horizontal. 
 
 
 

(18) RY
 =  [

cos (θ) 0 −sin (θ)
0 1 0

sin (θ) 0 cos (θ)
] 

 

 

 (19) RZ
 =  [

cos (α) sin (α) 0
−sin (α) cos (α) 0

0 0 1

] 

 

 

 

Figure 11: MATLAB Simscape kinematical model of the collective stick inceptor. SJ denotes a Spherical Joint. 

a) b) c) 

SJ SJ 

Control stick pivot  

+Y 

+X 

φ 

β +Y 

+Z δ 

α 

Figure 12: Inceptor static response 

when control stick angle φ varied.   
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4.2 Inceptor Mechanism Dynamic Model 

 
Dynamic modelling of the inceptor mechanism using 
the Udwadia-Kalaba approach was conducted upon 
validating the derived geometric constraint equations 
with provided data. This dynamic model was then 
used as the basis to conduct a frequency response  
analysis to determine the inceptor mechanism’s 
resonant frequencies.  
 
Frequency response analyses were conducted by 
modelling the application of an externally applied 
displacement base excitation to the inceptor 
mechanism to mimic excitation via a translational 
shaker table. The external displacement was 
modelled as a sinusoidal waveform with point of 
application at the control stick rotational pivot point 
deemed the initial ground datum position. This ground 
pivot is illustrated in Figure 11 by the solid blue block.  
 
The sinusoidal displacement applied at the inceptor 
control stick rotational pivot point is in the form  
D=D0sin(ωt) with D representing the applied 
displacement (mm) in the horizontal axis, D0 the 
displacement amplitude (mm) and ω the applied 
displacement frequency (rads-1). Damping in the form 
of a rotary damper was modelled at the rotating shaft 
element located at the end of the inceptor’s servo 
actuator gearbox.  
 
Within the Udwadia-Kalaba dynamic formulations, 
this horizontal sinusoidal displacement was 
embedded within the geometric constraint equations 
associated with horizontal translational states.   
 
23 positional and angular orientation states 
describing the inceptor mechanism were identified 
and 21 constraint equations formulated. 
Theoretically, two resonant frequency peaks are 
expected from the outcomes of frequency response 
analyses, implying the inceptor mechanism as 
effectively a 2-DoF system.  
 
Time simulations of increasing external displacement 
frequency levels were initially performed using coarse 
frequency increments of 1 rads-1 to provide early 
indications of the inceptor mechanism’s possible 
resonance frequency locations. Additional time 
simulations were then performed using refined 
frequency step increments of 0.1 rads-1 in the 
frequency regions identified as likely containing the 
inceptor mechanism’s resonant frequencies in order 
to further explore the inceptor mechanism’s dynamic 
behaviour. The maxima of response solutions within 
the settled state response regions were then 
extracted for the FR analysis. Figure 13 is a time  
 
 

 
history of the dynamic behaviour of the inceptor 
mechanism control stick angle φ under the influence 
of the applied horizontal sinusoidal displacement and 
illustrates the process involving coarse and refined 
displacement frequency increment levels to build an 
insight into the inceptor mechanism’s dynamic 
response. The value of base-excitation displacement 
amplitude presented in Figure 13 is 7mm and 
responses in red were obtained from time simulations 
that used a coarse frequency step increment of 1 
rads-1. Responses in blue were obtained from time 
simulations that used the refined frequency step 
increment of 0.1 rads-1. The fine vertical response 
limits observed in Figure 13 represent transient 
responses as system initial conditions are re-

Figure 14: Frequency response of the inceptor 

mechanism control stick angle φ (°). D0 = 7mm. 

Damping coefficient: 50 lbfs-inch/rad. 

Figure 13: Time history simulation of the inceptor 

mechanism control stick angle φ (°). D0 = 7mm. 

Damping coefficient: 50 lbfs-inch/rad. 
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initialised every displacement frequency increment. 
Figure 14 is the corresponding frequency response 
spectrum of the inceptor mechanism’s control stick 
angle time response behaviour from Figure 13.  
 
The time duration simulated at each displacement 
frequency level was determined based on specifying 
a target value for the number of oscillation cycles 
associated with the applied sinusoidal displacement 
to achieve steady periodic response behaviours prior 
to a frequency step increment  
 
From Figure 14, resonance is observed at 
displacement frequency levels of 13.2 rads-1 and 26.7 
rads-1. However, the second resonance peak 
indicates the presence of a level of nonlinearity in the 
sense that this peak is not well defined as in linear 
cases. Evidence of nonlinearity may also be seen 
through the inceptor mechanism’s frequency 
responses through the sharp increases in frequency 
resonance responses prior to gradual decreases as 
seen in Figure 14. These observations are more 
notably so at the mechanism’s first resonance 
frequency peak, alluding to complex behaviours.  
 
The amplitude of the applied displacement excitation 
(D0) was reduced to investigate whether it influences 
the complex nonlinear behaviour observed in the 
regions of the mechanism’s resonance frequencies.  
In Figure 15, the amplitude of the applied 
displacement excitation (D0) was reduced from 7mm 
to 5mm.  
 
Observations from Figure 15 suggest that when the 
amplitude of the applied displacement excitation is 

reduced to 5mm, the first resonance peak remains 
comparable with that of D0=7mm. Resonance is still 
observed at displacement frequency level 13.2  
rads-1. However, the appearance of the mechanism’s 
second resonance frequency peak drastically alters. 
Reducing the displacement excitation amplitude to 
5mm appears to have significantly reduced the 
magnitude of the second resonance peak, whilst 
additionally increasing this observed resonance 
frequency by about 3% to 27.5 rads-1. These 
observations further illustrate complex nonlinear 
dynamics of the inceptor model. The effect of 
nonlinearity is not discussed further in this paper for 
conciseness. Therefore, the following section 
detailing sensitivity analyses will continue to assume 
the displacement excitation amplitude case of 7mm.  
 
 

4.2.1  Sensitivity Analyses 
 

Sensitivity studies were conducted on the inceptor 
mechanism model formulated from the Udwadia-
Kalaba scheme for the external displacement 
excitation amplitude case considered, D0 7mm.  
 
The intention of conducting sensitivity analysis for this 
work is to demonstrate that altering inceptor design 
parameters may influence resonant frequencies. The 
results would give insight into how these parameters 
can be tuned to move resonant frequencies away 
from baseline nominal values.  
 
Consequently, only two inceptor design parameters 
were considered for sensitivity studies, outlined 
below: 
 

• Force sensor stiffness            : ±10% 

• Servo actuator gearbox mass: ±5% 
 

The servo actuator gearbox was considered due to its 
highest weight contribution within the inceptor  
mechanism. Individual masses of bodies within the 
inceptor mechanism are typically fixed, however a 
modest value of +5% to the servo actuator gearbox 
mass was investigated to account for the influence of 
cabling connections to the gearbox. -5% of the servo 
actuator gearbox mass was also considered as part 
of the parametric study. Limits of ±10% were 
considered for the force sensor element stiffness 
based on advice.  
 
The influence of lengths and distances between 
individual inceptor mechanism component bodies 
were not considered due to their influence on the 
mechanism’s static response behaviour (Figure 12).  
 
The baseline inceptor mechanism is identified as 
having two distinct resonance frequencies located at 
13.2 rads-1 and 26.7 rads-1 as presented in Tables 2 

Figure 15: FR comparison of the baseline inceptor 

mechanism between displacement excitation 

amplitude (D0) cases of 7mm and 5mm. Damping 

coefficient: 50 lbfs-inch/rad. 
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and 3 for the displacement excitation amplitude case 
of 7mm. This value reflects a representative value of 
a shaker table providing base excitation to the 
collective  stick unit system.   

  
 
 
 

Table 2: Sensitivity of the inceptor resonance 

frequencies with ±10% change in the mechanism’s 

force sensor stiffness. D0=7mm 

 
Sensitivity 

Study: 

 
Baseline 

Mechanism  

 
+10% 
Force 

sensor 
stiffness 

 
-10% 
Force 

sensor 
stiffness 

 
 

First  
mode 

 
 

ω =13.2 
rads-1 

 
-5.30% 

 
(ω = 12.5 

rads-1) 
 

 
+1.52% 

 
(ω = 13.4 

rads-1) 
 

 

 
 

Second 
mode 

 
 

ω = 26.7 
rads-1 

 
-4.12%  

 
(ω = 25.6 

rads-1) 
 

 
+9.36%  

 
(ω = 29.2 

rads-1) 
 

 

 
Sensitivity 

Study: 

 
Baseline 

Mechanism 

 
+5% 

Servo 
actuator 
gearbox 
mass: 

 
-5%  

Servo 
actuator 
gearbox  
mass: 

 
 

First  
mode 

 
 

ω = 13.2  
rads-1  

 
-2.27% 

 
(ω = 12.9 

rads-1) 
 

 
-2.27% 

 
(ω = 12.9 

rads-1) 
 

 
 

Second 
mode 

 
 

ω = 26.7 
rads-1 

 
0% 

 
(ω = 26.7 

rads-1) 
 

 
+3.37%  

 
(ω = 27.6 

rads-1) 
 

 

Table 3: Sensitivity of the inceptor resonance 

frequencies with ±5% change in the mechanism’s servo 

actuator gearbox mass. D0=7mm 

Figure 17: Sensitivity analysis of baseline inceptor 

mechanism against mechanism with ±5% Servo 

Actuator Gearbox mass. D0: 7mm. Damping 

coefficient: 50 lbfs-inch/rad. 

Figure 16: Sensitivity analysis of baseline inceptor 

mechanism against mechanism with ±10% Force 

Sensor stiffness. D0: 7mm. Damping coefficient: 50 

lbfs-inch/rad. 
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Results in Figures 16 and 17 show that the resonance 
frequency locations of the inceptor mechanism may 
indeed be influenced through modifications to design 
parameters.  
 
Varying both the force sensor stiffness and servo 
actuator gearbox mass is seen to influence the datum 
settling responses of the inceptor mechanism control 
stick angle φ, seen through the vertical shifts in 
frequency response curves. These observations are 
expected due to alterations in the baseline inceptor 
mechanism configuration with design parameter 
modifications.   
 
Tables 2 and 3 present a summary of findings of the 
observed shifts in the appearances of the inceptor 
mechanism’s resonance frequencies from the 
conducted parameter studies. Results suggest that 
varying the force sensor element stiffness by ±10% 
provides an effective shift of the frequency spectrum 
either side of the baseline inceptor mechanism 
frequency spectrum, not accounting for the changes 
in datum φ orientations. With a +10% increase in the 
inceptor mechanism’s force sensor stiffness, the first 
and second resonance frequencies are observed to  
shift by -5.30% and -4.12% respectively whilst a 
corresponding 10% decrease in force sensor stiffness 
is seen to provide a +1.52% and +9.36% resonance 
frequency shift. The unbalanced levels of resonance 
shifts recorded with modifications to force sensor 
stiffness coupled with the extent to which the 
mechanism’s second resonance frequency 
magnitude compressed with the 10% reduction in 
force sensor stiffness further demonstrates the 
nonlinear nature of the inceptor mechanism. 
 
The results in Table 3 for the study of varying the 
inceptor servo actuator gearbox mass by ±5% 
appears to suggest that the addition of a 5% servo 
actuator gearbox mass does not influence the 
mechanism’s second resonant frequency which is 
recorded to remain at the baseline mechanism’s 
value of 26.7 rads-1. The mechanism’s first resonance 
frequency is observed to reduce by 2.27% relative to 
baseline values, however observations from Figure 
17 and results in Table 3 suggests this 2.27% 
reduction in first resonance frequency may also be 
achieved with a 5% reduction in servo actuator 
gearbox mass. A +3.37% increase in the 
mechanism’s second resonance frequency is 
observed with a 5% decrease in servo actuator 
gearbox mass. 
 
Overall results presented in Tables 2 and 3 show that 
the resonance frequency locations of the inceptor 
mechanism may indeed be influenced through 
modifications to design parameters. The observed 
variations in datum orientations of the control stick 
angle φ with parameter modification are expected 

due to alterations in the baseline inceptor mechanism 
configuration. 
 
 

5. CONCLUSIONS 
 

This paper explores the dynamic modelling 
methodology formulated by Udwadia-Kalaba and its 
application to a candidate inceptor mechanism, and a 
case study model was illustrated. Dynamic analysis 
of the initially presented case study model, the 
Overcentre Mechanism, demonstrated the 
applicability of the Udwadia-Kabala dynamic 
modelling approach for multibody systems subjected 
to kinematical constraints that also display nonlinear 
behaviour.  

Static modelling of the sample inceptor mechanism 
system has provided means of validation for the 
derived geometric constraint equations. 

For the candidate inceptor, dynamic analysis of the 
inceptor mechanism system using the Udwadia-
Kalaba scheme adequately predicted the presence 
and locations of the mechanism’s resonance 
frequencies.  

Additionally, sensitivity analysis investigations on 
inceptor mechanism design parameters 
demonstrated that system resonance frequencies 
may be influenced and tuned away from nominal 
baseline values.  

The development of an efficiently configurable 
mathematical model of an active inceptor would 
provide an early low-cost means of predicting 
inceptor mechanism dynamics in the preliminary 
design stage. Adverse vibration issues may be pre-
empted through frequency response analyses and 
acceptable design configurations identified that 
comply with specified frequency restrictions through 
sensitivity study investigations on system design 
parameters.  

Future research efforts will focus on incorporating 
flexibility of elements within the inceptor mechanism, 
experimental testing for cross comparison and 
validation, and implementing numerical continuation 
methods for computational efficiencies. Additional 
work will be directed at investigating the observed 
nonlinearity presented in this work. 
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