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Dynamic Behaviour and Response of a Two–Bladed Gimballed Rotor
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Abstract

This paper aims to analyze the characteristics of a novel,

two-bladed gimbaled rotor featuring a homokinetic joint

between driving shaft and rotor yoke and a fly-bar with

paddles. The design and testing of this novel rotor config-

uration is part of the development program of a lightweight

helicopter in the VLR rotorcraft certification framework.

The rotor is designed with the main objective of solving

some of the negative issues that affect the use of teetering

rotors on light helicopters, such as strong 2/rev oscillatory

loads, poor response at low g’s and a pronounced sensitiv-

ity to gusts and/or large pilot inputs. A simple dynamic

model is developed to allow for the interpretation of peri-

odic motions of the system and to determine the effects of

design parameters on the rotor response by means of nu-

merical simulation and a stability analysis, a study carried

out to fully assess the possible advantages of the gimbaled

configuration with respect to a more traditional teetering

rotor.
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Nomenclature

a lift curve slope of the blade/paddle section
c blade/paddle chord
I1,I2 moments of inertia about feathering and flap-

ping axes, respectively
K hub stiffness
KT feathering hinge stiffness
p̄, q̄ roll and pitch rates of the non-rotating

shaft frame in wind axes
R blade radius
R1,R2 fly–bar root cut–out and radius
Rfb fly–bar mean radius = (R2 +R1)/2.
u1, u2 hub tilt angles in the non-rotating frame
Greek symbols
β, η hub flapping and feathering angles
γbl blade Lock number = 2ρablcblR

4/I2
γfb Lock number of fly–bar

= 2ρafb(R2 −R1)cfbR
3
fb/I1

θ blade pitch angle
θ0 collective pitch command
θc cyclic pitch angle
θSW longitudinal cyclic pitch command
λ non–dimensional uniform inflow velocity
µ advance ratio
ρ air density
φSW lateral cyclic pitch command
ψ blade anomaly
Ω rotor angular speed
Subscripts
bl blade
fb fly-bar



H hub frame
R rotating–shaft frame

Introduction

In this paper the behaviour of a novel two–bladed rigid
gimballed rotor equipped with fly–bar and paddles will
be analyzed in order to outline possible advantages
and peculiarities with respect to more conventional
teetering rotors of equivalent size, for use on a light
helicopter.

In spite of the extensive literature dealing with ro-
tor dynamic behaviour, two–bladed teetering rotors
received a marginal attention from the researchers.
Teetering rotors were adopted in the past for relatively
large military rotorcraft, such as the Bell models 205
[1] and 212. Nowadays they are still popular for light
helicopters, such as the Robinson R–22, and remotely
piloted vehicles (RPV) like the Yamaha R–Max, as
far as the two–bladed configuration has several ad-
vantages in the framework of low–cost rotorcraft: it
allows for storage in smaller hangars than those re-
quired by larger, three or four–bladed rotors, and, at
the same time, the simpler configuration, featuring a
single flapping hinge and no lag hinges reduces main-
tenance costs. Light helicopter using teetering rotors
are also renowned for some disadvantages, especially
in terms of vibrations transmitted to the vehicle and
possible instabilities that resulted into serious acci-
dents, such as the mast–bumping phenomenon [2].

Teetering rotor dynamic characteristics are often
improved by means of additional devices, such as a
stabilizing Bell bar, as on the AB–47 helicopter, or the
Bell–Hiller bar, featuring aerodynamic paddles, such
as in the Yamaha R–Max RPV [3]. These devices are
effective in improving the dynamic characteristics of
the rotor, especially during manoeuver transients, yet
they are designed on the grounds of some reasonable
engineering practice, previous experience and flight
testing. A simple model that describes teetering ro-
tor dynamics was derived by Chen [4] as a particular
case of articulated rotor blades, but to the authors’
knowledge, a systematic analysis of the effects of sta-
bilizing bars on the dynamics of teetering rotors is not
reported in the available scientific literature.

A two–bladed gimballed rotor was considered in the
60’s as a possible configuration for heavy lift heli-
copters with tip jets and no pitch hinge [5]. The
spherical hinge, allowing for feathering motion, and
a blade circulation control based on small jets dis-

tributed along the blade span should have allowed
for full rotor control. The model developed in [5]
represents the starting point for the development of
a more complete one, at the basis of the study of
a two–bladed gimballed rotor configuration discussed
in this paper, featuring a fly–bar with paddles, which
is being considered as a possible way for alleviating
some of the drawbacks that affect conventional tee-
tering rotors.

The configuration here considered relies on a rigid
yoke articulated with respect to the shaft by means of
a spherical hinge, realized by means of a set of elas-
tomeric springs to improve the handling qualities of
the helicopter at low load factor. Two rigid blades are
connected to the hub yoke by means of coning hinges,
while the fly–bar features two low–aspect–ratio pad-
dles at the tips. Finally the hub has some under-
sling to address the issue of 2/rev loads due to the
hub springs. From the purely mechanical standpoint,
this configuration allows one more degree of freedom
to the blades in the rotating frame with respect to
a conventional teetering rotor, as the flapping mo-
tion around the axis perpendicular to both the shaft
and blade axes is accompanied by a feathering motion
around the blade axis itself, this latter rotation corre-
sponding to the flap angle for the fly–bar. The actual
pitch angle of each blade will thus result from the
combination of the direct command, delivered by a
conventional swash–plate, and the feathering motion
of the rotor.

The analysis of the system is carried out using a rel-
atively simple dynamical model capable of describing
the effects of various rotor-bar parameters and suit-
able for understanding the peculiar characteristics in
terms of periodic motions and stability of this novel
gimbaled rotor. The presence of a sustained wob-
bling motion is probably the principal characteristic of
the two–bladed gimbaled rotor, as already observed
in Refs. [5, 6].

As a first step, the validity of the simple model is
assessed by comparison with a more accurate non-
linear model of the same rotor in order to verify the
consistency of predictions at different flight speed, as
long as the baseline model presents significant simpli-
fications in the evaluation of blade and paddle aero-
dynamics. In spite of the availability of a more accu-
rate model, the study is based on the simplified one,
because (i) it allows to highlight in a more straight-
forward way the physical mechanism at the basis of
the dynamic behaviour of the rotor, (ii) a more effi-



cient search in the parameter space that define the
rotor configuration is possible, for identifying those
values that either cause critical phenomena or provide
a better response and (iii) a rigorous stability analysis
is possible, based on this simple linear model.

Numerical simulations are then considered to ana-
lyze the effects of principal design parameters of the
configuration such as hub spring and feathering hinge
stiffness on the wobbling motion and the resulting
loads transmitted to the rotor shaft. Finally, rotor
stability is investigated to fully evaluate the possible
advantages of the gimbaled configuration, by ruling
out the insurgence of unstable motions.

In what follows, the formulation of rotor model is
outlined in the next Section. The accuracy of the
simplified model is assessed, the main features of the
wobbling motion are discussed and the effect of design
parameters on the stability of the system is analyzed.
A section of conclusions ends the paper.

Rotor Model

The simplified model of the rotor sketched in Fig. 1
is developed under the following assumptions:

– rotor blades are rigid in bending and torsion
– rotor angular rate is constant
– blade cg’s lies on the feathering axes
– the pitch angle of the paddles is constant
– airfoil lift coefficient is a linear functions of the

angle of attack
– compressibility, unsteady aerodynamics, stall

and reversed flow effects are neglected
– a uniform quasi–static inflow is assumed
– tilt angles of the hub are small
– blade twist and rotor undersling are not taken

into consideration, and coning angle is zero.

With reference to [7] for the details on the for-
mulation of the mathematical model of the rotor
system, the non–dimensional equations of motion
are expressed as follows, in the reference frame
(xH , yH , zH) of rotating, hub-fixed principal axes of
inertia

ω̃′1 = −ω̃2 +
N1

I1Ω2
(1)

ω̃′2 = ω̃1 +
N2

I2Ω2
(2)

The kinematic model is written in terms of β and η
that, under the small angle assumption, correspond

Figure 1: Rotor coordinate system.

to the flapping and feathering angles of the hub with
respect to the rotating shaft–fixed frame (xR, yR, zR)

η′ = ω̃1 − β (3)

β′ = −ω̃2 + η (4)

The terms N1 and N2 sum aerodynamic, elastic and
inertial moments. In this respect, the blade azimuthal
coordinate has origin with the blade in the negative
direction of the wind axis, and the roll p̄ and pitch
q̄ components of rotor angular velocity are also ex-
pressed in wind axes.

The inertial moment components (N i
1, N i

2) about
the feathering and the flapping axes are, respectively

N i
1 = −2I1Ω2(p̄ sinψ + q̄ cosψ) (5)

N i
2 = −2I2Ω2(p̄ cosψ − q̄ sinψ) (6)

while the elastic ones (N el
1 , N el

2 ), due to the hub and
feathering hinge stiffnesses, are

N el
1 = −Kη + 2KT θc (7)

N el
2 = Kβ (8)

where K is the hub stiffness, KT that of the feath-
ering hinges, and θc the pitch angle component due
to cyclic command. Assuming that the aerodynamic
force is applied in the aerodynamic center of the air-
foils, aerodynamic moment components Na

1 and Na
2

due, respectively, to paddles and blades are expressed



in closed form as

Na
1 =

γFb

2
Ω2I1

[
µ2J cosψ sinψη − ω̃1

+p̄ cosψ − q̄ sinψ + µJ cosψλ] (9)

Na
2 =

γBl

8
Ω2I2

[
−ω̃2 + 2µ2 sinψ cosψβ

+(1 + 2µ2 sin2 ψ) θc − (p̄ sinψ + q̄ cosψ)]

−γbl

3
µ sinψ

(
θ0 +

3
4
λ

)
(10)

where J = R2
fb/R

2 and γbl, γfb are, respectively, the
Lock numbers of blade and paddle. Note that the
paddle surface is limited due also to the high root
cut-out, and that the fly-bar is rigidly connected to
the hub with the paddle chord parallel to the rotor
plane. As usual, the blade pitch angle is the result of
the collective θ0 and cyclic θc commands. The latter
has two contributions, namely
—————————————————————–

—————————————————————–
(i) a primary command φSW cosψ − θSW sinψ that
corresponds to the longitudinal θSW and lateral φSW

tilts of the swash–plate;
(ii) a secondary command due to the tilt of the hub
about the blade feathering axis, that can also be re-
garded as the fly–bar flapping angle θfb = η.

Therefore, the pitch command (considered as the
blade rotation around the feathering axis with respect
to the gimbaled yoke) is expressed as

θ = θ0 ∓KH(φSW cosψ − θSW sinψ + η) (11)

where the gain KH gives the swash–plate/blade–
pitch command ratio. This is something similar to
what happens in teetering rotors equipped with a fly–
bar, with the major difference that, in the present
case, the fly–bar is rigidly connected to the yoke and
it directly drives it by means of its flapping motion.

As a result, Eqs. (1)-(4) are rewritten as

ω̃′1 = −ω̃2 +
γfb

2
[
−ω̃1 + µ2J cosψ sinψη

+(p̄ cosψ − q̄ sinψ) + µJ cosψλ]
−2(p̄ sinψ + q̄ cosψ)− k1η

−2kTKH(φSW cosψ − θSW sinψ
+η) (12)

ω̃′2 = ω̃1 +
γbl

8
[
KH(1 + 2µ2 sin2 ψ)(φSW cosψ

−θSW sinψ + η)− ω̃2

− (p̄ sinψ + q̄ cosψ) + 2µ2 sinψ cosψβ
]

−γbl

3
µ sinψ

(
θ0 +

3
4
λ

)
−2(p̄ cosψ − q̄ sinψ) + k2β (13)

η′ = ω̃1 − β (14)

β′ = −ω̃2 + η (15)

where k1 = K/Ω2I1, k2 = K/Ω2I2 and kT =
KT /Ω2I1. The system can thus be written in concise
form as ẋ = A(ψ)x + B(ψ)u, the state and control
vectors being, respectively, x = (ω̃1, ω̃2, η, β)T and
u = (λ, θSW , φSW , p̄, q̄)T . For the sake of simplicity,
the inflow parameter λ is regarded as an exogenous
input, to be assigned depending on thrust level. The
state–matrix of the system (12)–(15) is given by

A(ψ) =


−γfb

2
−1

γfb

2
Jµ2 cosψ sinψ − k1 − 2kTKH 0

1 −γbl

8
γbl

8
KH(1 + 2µ2 sin2 ψ)

γbl

4
µ2 cosψ sinψ + k2

1 0 0 −1
0 −1 1 0

 (16)

Note that hub tilt can be also described by means
of the angles u1 and u2 in a non-rotating frame, de-
fined as (Fig. 1)

u1 = −β cosψ + η sinψ (17)

u2 = −β sinψ − η cosψ (18)

where the angle u1 is positive when the hub is tilted
in the rear direction, while u2 is positive when it is
tilted to the right.

Model validation

As a first step, validation of the simplified model is
carried out using a full nonlinear, single–blade simu-
lation model of the gimbaled rotor with rigid blades
[7] formulated without small angles assumptions or
linearizing techniques in order to analyze the rotor
behavior in a variety of motions not limited to small
perturbations. Principal features of the general model
are

– lift and drag coefficients of blade section are in
tabular form for −180 ≤ α ≤ 180 deg, and for
Mach number between zero and 0.8

– aerodynamic loads are computed by numerical
integration over the blade span in the framework
of blade element approach
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Figure 2: Comparison of the simplified (linear) and gen-
eral (nonlinear) rotor model responses to a longitudinal
cyclic command θSW = 5 deg; µ = 0, K = 3, 610
Nm/rad.

– a three–state Pitt-Peters dynamic inflow model
[8] is used whereas dynamic stall and unsteady
aerodynamics effects are not included

– the rotor is homokinetic, that is, the modules of
hub and shaft angular rate vectors are equal

Assuming no coning angle, no twist and no un-
dersling of the blades, Fig. 2 shows a comparison
of the hub response (in the u1-u2 plane) to a cyclic
command θSW = 5◦ in hovering with K = 3, 610
Nm/rad, as obtained from the simplified and com-
plete models, with the trim value of the rotor thrust
T = 6, 400 N. Rotor data in both cases are shown in
Table 1.

It is apparent that the rotor responses obtained
from the two models are in good agreement in spite
of the large value of the considered cyclic command.
In forward flight, the description of the rotor behavior
by means of the simplified model becomes less accu-
rate even for relatively small advance ratios, mainly
because of the effects of the nonuniform inflow. This
is illustrated in Figs. 3 where the response of the
tilt angles u1 and u2 to a step variation µ = 0.05
of the advance ratio from hovering is reported. The
significant differences in the two solutions visible in
Fig. 3.a for a rather low advance ratio are due to the
non–uniform inflow in the general model, whereas the
response is again very similar when a uniform inflow is
assumed (Fig. 3.b). If on one side this last result rules
out the possibility of adopting the simplified model
for a realistic simulation of the full vehicle, on the
other one its capability of capturing the fundamental
aspects of the motion is demonstrated.
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a) general rotor model with 3–states inflow model
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b) general rotor model with uniform inflow

Figure 3: Comparison of the simplified and general rotor
model responses to a perturbation of the advance ratio
µ = 0.05; K = 3, 610 Nm/rad.

Table 1: Rotor parameters
rotor angular rate Ω 53 rad/s
rotor radius R 3.8 m
blade chord cbl 0.23 m
fly–bar radius R2 1.45 m
fly–bar root cut-out R1 1.15 m
paddle chord cfb 0.25 m
hub stiffness K 3,610 Nm/rad
feathering hinge stiffness KT 150 Nm/rad
primary command ratio KH 0.57

blade Lock number γbl 4.13
fly–bar Lock number γfb 0.53

J 8.52
k1 0.642
k2 0.007
kT 0.027



Wobbling Motion

As stated previously, one of the most relevant char-
acteristics of the two–bladed gimballed rotor is the
onset, in most operating conditions, of a wobbling
motion of the rotor hub, which corresponds to a pre-
cession motion of the hub axis with respect to the
shaft axis. The simplified model [Eqs. (12)–(15)],
provides some physical insight into the system that
allows for understanding how the wobbling motion is
triggered by the periodic loads in the presence of a
cyclic pitch command or forward flight condition.

A steady–state condition for the rotor with a con-
stant tilt angle with respect to the shaft axis (that is,
without wobbling motion) requires ω̃1 = ω̃2 = 0. To
this end, the moments N1 and N2 need to be con-
stantly zero, which is not true in general, as these
terms represent periodic forcing functions.

With reference to Eqs. (1)–(2), assuming a forc-
ing term along the feathering (xH) axis (Fig. 1)
N1/(I1Ω2) = A cosψ, the resulting periodic mo-
tion at steady–state is ω̃′1 = −ω̃2 = (A/2) cosψ
and ω̃′2 = ω̃1 = (A/2) sinψ. This means that
the angular speed components ω̃1 and ω̃2 continue
to oscillate with constant amplitude A/2 and phase
∆ψ = π/2, thus resulting in a precession motion of
the hub axis, namely the wobbling. A similar argu-
ment holds for a periodic forcing term around the
flapping, N2/(I2Ω2) = B cosψ as, given the system
linearity, the perturbed motions can be superimposed.

When considering the effects of cyclic commands
in hovering (µ = 0) with zero angular velocity of
non–rotating frame (p̄ = q̄ = 0) and zero stiffness of
the feathering hinges (KT = 0), all higher–order har-
monic terms are zero and Eqs. (12) and (13) become

ω̃′1 = −ω̃2 −
γFb

2
ω̃1 − k1η (19)

ω̃′2 = ω̃1 +
γBl

8
[KH(φSW cosψ

−θSW sinψ + η)− ω̃2] + k2β (20)

With K = 0, the steady-state solution is

β = −φSW sinψ − θSW cosψ (21)

η = −φSW cosψ + θSW sinψ (22)

that gives constant hub tilt angles u1 = θSW and
u2 = φSW , as obtained by substituting Eqs. (21)
and (22) into Eqs. (17) and (18), with the blade
tip-path-plane (TPP) parallel to the swash–plate.

Figure 4 shows the system response as function of
rotor revolutions in the two considered circumstances
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c) hub tilt angles K = 3, 610 Nm/rad

Figure 4: Response to a longitudinal cyclic command
θSW = 10 deg.

following a longitudinal cyclic command. In the ideal
case with K = 0,the hub angular position achieves a
constant value (Fig. 4.a), while in Fig. 4.b the flap-
ping (continuous line) and feathering (dotted line) an-
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Figure 5: Response to a longitudinal cyclic command
θSW = 10 deg in terms of flapping coefficients.

gles show a sinusoidal oscillation in quadrature, and
the longitudinal (continuous line) and lateral (dot-
ted line) tilt angles of the TPP, u1 and u2, become
constant in a time interval corresponding to 15 revs,
the time–constant being approximately proportional
to the fly–bar inertia I1.

On the converse, when K 6= 0, the TPP angles u1,
u2 have periodic variations (Fig. 4.c) that prevent
the system from achieving a constant equilibrium as
the elastic moment about the feathering axis induces
a nonzero ω̃1 rate that triggers the wobbling motion.
In other words, in this case no equilibrium can be
established about the feathering axis due to the effect
of the periodic elastic moment as, also, the moment
of inertia is minimum and the aerodynamic moment
of the paddles is small. As far as the equilibrium
about the flapping axis is concerned, note that the
aerodynamic moment is orders of magnitude higher
than the moment due to hub stiffness.

In order to gain some further insight in the wob-
bling motion characteristics, the feathering and flap-
ping angles can be expressed as

β = −a1 cosψ − b1 sinψ (23)

η = c1 sinψ − d1 cosψ (24)

to introduce the longitudinal a1, c1, and lateral b1,
d1 flapping angles of, respectively, blade and fly–bar
TPP’s. When Eqs. (23), (24) are substituted into
Eqs. (19), (20) written in terms of η and β, applica-
tion of the harmonic balance method [9] yields a set
of differential equations for the TPP flapping degrees
of freedom.

Figure 5 shows the responses to a 10 deg longitu-
dinal cyclic command (already illustrated in Fig. 4
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Figure 6: Response to a perturbation of the advance ratio
µ = 0.05.

considering hub flap and feathering angles) in terms
of TPP flapping coefficients. It is worth to observe
that after a few rotor revolutions, the orientations of
the two planes carved out by blade and paddle tips
become constant in spite of the sustained wobbling
oscillations in the case with nonzero hub stiffness. As
a consequence, the thrust vector direction is constant
and, as a further observation, wobbling motion can be
interpreted as a 2/rev oscillation of the hub plane be-
tween the blade and paddle TPP’s, the amplitude of
which depends on the relative orientation of the two
TPP’s. For K = 0, when the wobbling motion sub-
sides at steady–state, the TPP’s of blades and fly–bar
are parallel to the swash–plate (a1 = c1 = θSW = 10
deg, b1 = d1 = φSW = 0). In the case K 6= 0,
the fly–bar TPP mainly flaps to the left (c1 = 0.5
deg, d1 = −2.2 deg) while the blade TPP is flapping
backward (a1 = 6 deg) and to the left (b1 = −1 deg),
and the wobbling amplitude is about 6 deg.

When a the response to a step variation of forward
speed is considered, Fig. 6 shows that the wobbling
motion develops even for K = 0 as the moment equi-
librium on the feathering axis is now unbalanced by
the periodic variation of the aerodynamic moment of
the paddles.

As for the effect of the KH ratio, a lower KH de-
termines a reduction of the limit cycle amplitude to-
gether with a minor effectiveness of the command
because the time constant of the rotor response is
increased and, in the situation with nonzero K, the
hub rotation is smaller for the same cyclic command
amplitude.

As shown in Fig. 7, the effect of the feathering
hinge stiffness on the evolution and amplitude of the
wobbling motion is negligible for the nominal value
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Figure 7: Response to a longitudinal cyclic command
θSW = 10 deg; KT 6= 0.

KT = 150 Nm/rad (the situation with KT = 0 cor-
responds to the dotted line in Fig. 4.a). Increasing
the value of KT determines a reduction of the limit
cycle amplitude together with a major effectiveness
of the command at hovering.

As far as the influence of hinge stiffness on wob-
bling is concerned, it is apparent that the elastic mo-
ment along the feathering axis is proportional to θc

and acts in the sense of reducing the relative orienta-
tion of the non-feathering–plane (NFP) and the fly–
bar TPP. Therefore, a reduction of the wobbling am-
plitude due to a restrain action of the pitch hinges can
be obtained only in the circumstances, such as hover-
ing, when the angle between NFP and blade TPP is
small, while in all the other operating conditions (i.e.
advancing flight) the stiffness increases the relative
orientation of blade and fly–bar TPP’s with the al-
ready cited effect of increasing the amplitude of hub
oscillatory motion.

Stability Analysis

The periodic terms in the state–matrix A [Eq. (16)]
depend on forward speed so that the system achieves
a time–invariant form in hovering. In this circum-
stance Eqs. (19)-(20) can be re–written in terms of
flapping and feathering angles. Keeping only the ho-
mogeneous terms, the governing equations become

β′′ = −γbl

8
β′ − (1 + k2)β − γbl

8
(KH − 1)η

η′′ = −γfb

2
η′ − (1 + k1 + 2kTKH)η − γfb

2
β

(25)

Table 2 shows the modal characteristics of this
system for K = 0 and K = Knom = 3, 610 Nm/rad,

Table 2: Eigenvalues of the uncoupled system with
and without paddles at fly–bar tips.

a) Fly–bar Lock numb. γfb = 0 K = 0 Knom

Natural frequency ωn/Ω
Flapping

√
1 + k2 1. 1.003

Feathering
√

1 + k′
1 1. 1.282

Damping coefficient ζ
Flapping γbl

16 /
√

1 + k2 0.261 0.260

Feathering
γfb

4 /
√

1 + k′
1 0. 0.

b) Fly–bar Lock numb. γfb = 0.53 K = 0 Knom

Natural frequency ωn/Ω
Flapping

√
1 + k2 1. 1.004

Feathering
√

1 + k′
1 1. 1.281

Damping coefficient ζ
Flapping γbl

16 /
√

1 + k2 0.255 0.254

Feathering
γfb

4 /
√

1 + k′
1 0.147 0.115

when small coupling terms are neglected for the sake
of simplicity and k′1 = k1 + 2kTKH . Two configu-
rations are considered: Case a (reported on the top
portion of Tab. 2), when no aerodynamic paddle is
present and the resulting fly–bar Lock number is 0;
Case b (reported below), when paddles are present
and γfb = 0.53. For γfb = 0 the damping of the
feathering motion vanishes, so that a weakly stable
system is obtained at hovering. This means that,
as already observed in [5] and [6], a regressive mo-
tion would be induced on the rotor by the periodic
aerodynamic load in forward flight. This character-
istics strongly supports the need for the presence of
paddles, which thus perform and important stabiliz-
ing action for the two–bladed gimbaled rotor, without
affecting the characteristics of the flapping mode.

The dynamic analysis of the system supports the in-
terpretation of the effect of hub stiffness on command
response illustrated in Figs. 4 and 5. For K = 0.
flapping and feathering modes are both at resonance
so that, as already observed, the blade and fly–bar
TTP’s are both tilted backward. When the stiffness
K takes its nominal value, the feathering frequency is
increased and this motion, when represented in terms
of TPP position, lags flapping by 77 deg, which turns
out in the observed lateral flapping of the fly–bar
TPP (Fig. 5). This means that, when the motion
is referred to a single angular variable ψ, such that
ψfb = ψ + π/2, η lags β of 167 deg, which corre-
sponds to what is observed in Fig. 4.

Note also that the sustained wobbling motion at
steady–state induces a not negligible variation of the
cyclic pitch command, with a 60% reduction of am-
plitude and a 9 deg phase delay with respect to the
situation with K = 0. As a consequence, if on one
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Figure 9: Root locus as a function of KT ; µ = 0,
K = 3, 610 Nm/rad.

side flapping frequency remains close to unity as K is
varied (the unit circle corresponding to ωn/Ω = 1 is
shown in the figures), feathering frequency increases
significantly with stiffness, due to the low inertia of
the fly–bar, if compared with elastic moments, as
demonstrated also by Figure 8. A similar effect on
feathering eigenvalues is obtained by increasing the
stiffness of the feathering hinges KT . Figure 9 shows
the eigenvalues for KT varying from 0 to 150 Nm/rad,
for the nominal value of K. Again, flapping eigen-
value presents a negligible variation.

Increasing the inertia of the fly–bar leads to the
variation of two parameters of the system: the fly–
bar Lock number γfb = 2ρafbSfbR

3
fb/I1 that de-

creases the damping of the feathering mode, and the
elastic terms, k′1 = (K + 2KTKH)/(Ω2I1), that de-
creases its natural frequency, resulting in significant
variations for the feathering eigenvalue, as shown in
Fig. 10. Also in this case only minor variations are
observed on the flapping eigenvalue, but I1 plays a
significant role on TPP response to an angular veloc-
ity component. In Fig. 11 the response of rotor TPP
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Figure 10: Root locus as a function of I1; µ = 0,
K = 3, 610 Nm/rad.
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Figure 11: Response in terms of flapping coefficients to a
step input on q = 0.1 rad/s; µ = 0, K = 3, 610 Nm/rad.

to a variation on pitch angular velocity is reported,
where it is clear how a heavier fly–bar induces a more
severe tilt of the TPP, especially for K = 0. The
effect is reduced by the presence of an elastic gim-
bal, with a lower response at steady state and less
damping, that results in a considerable overshoot.

In forward flight the eigenvalues of the linear, time–
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Figure 12: Frequency and damping as a function of µ
from Floquet analysis for K = 3, 610 Nm/rad.

varying system (12)-(15) are determined using Flo-
quet theory [10]. As usual, the state–equation is in-
tegrated over one period for each independent ini-
tial condition to obtain the Floquet Transition Ma-
trix (FTM). Natural frequencies and damping ratios
of the system modes are then obtained by taking the
logarithm of the FTM eigenvalues, where use is made
of the eigenvalues computed in the hovering condition
to identify the origin of the curves. All the roots, re-
ported in Fig. 12, are stable in the considered range
of the advance ratio, µ, where the eigenvalues of the
feathering mode remain complex, their frequency ap-
proximately given by ω/Ω = 1.25, while those relative
to flapping become real for µ > 0.18..

Conclusions

In this paper the dynamic characteristics of a novel
two–bladed rotor for a lightweight helicopter have
been analyzed using a simplified model in order to
interpret the relevant physical mechanisms governing
its behavior, and, in particular, the sustained wobbling
motion. In this respect, one should note that thrust
vector direction is constant in spite of wobbling, as
blade TPP does not oscillates at steady–state. Use
of a fly–bar with aerodynamics paddles is necessary
to damp the feathering motion of the hub, while the
classical effect of the stability bar to improve rotor-
craft damping derivatives is limited when the hub is
restrained by elastomeric springs, adopted in order to
retain control power in zero-g flight. Hub stiffness
has a relevant effect on the amplitude of wobbling
and, in particular, on the steady–state response to
commands through the frequency of the feathering
motion and the related phase shift. The latter in-
duces a significant reduction of the longitudinal tilt

of the blade TPP together with a lateral in response
to a longitudinal pitch command.

As a final conclusion, it appears that the consid-
ered gimbaled rotor presents favorable stability char-
acteristics and a precession (wobbling) motion the
relevance of which is to be carefully assessed using
a more detailed model of the rotor where hub under-
sling, coning hinges and blade elasticity are taken into
consideration.
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