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ABSTRACT 

The paper describes the technique used for analysis of the 
helicopter main and tail rotor stability. The technique provides 
for determination of the required flutter and divergence margns 
for a helicopter in level flight, as well the ground resonance 
margin for a helicopter with an anisotropic rotor. Small 
oscillations of the rotor mounted on a flexible support are 
described by a homogeneous system of linear differential 
equations with periodic coefficients. The stability of the 
system solutions is investigated with the use of the Floquet 
theory. 

The effect of the reduced damping ability or a complete 
failure of the drag hinge damper of one of the blades on the 
stability of the rotor as a whole is considered when analyzing a 
single-rotor helicopter for ground resonance. 

The boundaries of the area of instability experienced by 
the two-bladed tail rotor of the Mi-34 helicopter are 
established. The effect of various parameters on the position 
and extension of the instability area has been analyzed. 
Experimental data confirming the analysis results are given. 

Some results obtained from the stability analysis of a tilt 
rotor designed for the tilt-rotor aircraft are cited. 

INTRODUCTION 

The advent of a new generation of helicopters, such as the 
Mi-28 and Mi-34, has been feasible owing to application of 
composite materials and new blade and hub designs of the main 
and tail rotors (Figs, 1 and 2). These helicopters made loops 
and rolls: the Mi-34 in 1988, and the Mi-28 in 1993. 

When designing the main rotor of the Mi-28, a high-speed 
maneuverable combat helicopter, the glass-fibre plastic blades 
and the hub incorporating elastomeric bearings were used for the 
main blades. The flapping, drag and feathering hinges were 
replaced by a common spherical elastomeric hinge ensuring all 
required motions of the blade. New airfoil types providing 
improved performance were used for the main rotor blades. 

The process of obtaining the Mi-28 high performance was 
accompanied by problems which had to be solved at once. For 
instance, a peculiar feature of the new main rotor blades was an 
intensive growth of the cosine component of the first harmonic 
of the hinge moment with the increase of the airspeed leading to 
a higher level of moments acting on the swashplate. This 
resulted in a considerable increase (with the airspeed) of the 
total constant moments on the swashplate in contrast to the 
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blades of the Mi-24 helicopter whereon these moments changed but 
slightly with the increase of the airspeed and showed a general 
tendency towards their decrease. 

A development programme carried 
tests and including the selection of 
blade tip, root and trailing edge has 
loads. 

out in the course of the 
the ration a 1 shape of the 
allowed to reduce control 

Oscillatory instability of the main rotor occurred in the 
flying test bed (the Mi-24) was another complicated problem, the 
blade airfoil chordwise oscillations with a frequency close to 
that of the first overtone of the blade natural oscillations 
being the highest. The occurrence of this kind of instability is 
explained both by general factors typical of the Mi-28 main 
rotor blades and hub, as well as by specific features associated 
with the adaptation of the new rotor system to the Mi-24 
helicopter used as a flying laboratory. 

The general factors include development of re1atively 
light-weight blades, as compared with those of the Mi-24 
helicopter, due to application of composite materials. The 
specific features include unfavourable pitch-lag coupling and a 
sharp decrease of the damping ability of the drag hinge damper 
of one of the blades because of seal leakage. To define the 
appropriate margins till the onset of flutter and ground 
resonance, account shou 1 d be taken of the reduced damping 
ability of individual dampers due to their partial or complete 
failure as well as to a wide spread in springy and damping 
properties. 

Small oscillations 
support are described 
differential equations 
periodicity of the 

of the rotor mounted on a flexible 
by a homogeneous system of linear 
with periodic coefficients. The 

system coefficients involves some 
difficulties in the 
stability. 

determination of the system solution 

However, it is not possible to obviate the periodic 
coefficients in the above-mentioned cases and in the analysis of 
stability of a two-bladed rotor mounted on the anisotropic 
flexible support when the elastic or damping parameters of the 
support are different in two mutually perpendicular directions. 
The need for such an analysis was felt when the two-bladed tail 
rotor of the Mi-34 helicopter showed instability. It should be 
noted that any kind of flutter of the rotating rotor encountered 
in helicopter level flight is also described by a system of 
differential equations containing periodic coefficients. 

The present paper describes a method which can be used for 
calculating flutter margins for helicopters in level flight, as 
well as divergence and ground resonance margins. The method is 
based on investigations into stability of systems of 
differential equations containing periodic equations. 

METHOD USED FOR ANALYSIS 

Equations describing rotor oscillations can be written in 
the following form: 

A(t)q + B(t)q + C(t)q = 0 (1) 
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where: q(t) is column matrix of the generalized coordinates; 
q(t) and q(t) are the first and second time derivatives 
of q; 
A(t), B(t) and C(t) are square matrices whose 
coefficients are periodic time functions in the general 
case. 

Thus, expression (1) is 
differential equations of 

a system 
the second 

of homogeneous linear 
order with periodic 

coefficients. 
Let us transform the system of 

form by reducing its order. To this 
matrix containing new variables: 

equations (1) to its normal 
end, we introduce a column 

T - ( • • ) Y - q1 ,qa, q~,qi ,·q2, · · · Qm' 

where: ( )T is the transposition operation. 
After this transformation, the system of equations (1) can 

be written in the following form: 
. 
Y=G(t)y. (2) 

Here, 

G('l " ( _;,c -~'a) ( 3) 

is a periodic matrix, Eisa unit matrix. 
Let us consider the fundamental matrix of Kochi solutions 

Y(t) for the initial conditions: 

Y(O) = E. ( 4) 

The value of Y(t) at the end of the first period is called 
the monodromy matrix. The solution stability of equation (2) and 
hence of equation (1) fully depends on the properties of 
multipliers ~K which are the roots of the following equation: 

de t ( Y ( T ) -9 E ] = 0 . ( 5) 

Solutions of equation (1) are asymptotically stable if all 
multipliers are within a circle whose radius is a unity and are 
unstable if there are multipliers whose modulus is greater than 
a u n i t y or t here are I 9" I > 1. 

The monodromy matrix can be calculated by various methods. 
The most frequently used technique consists in integrating 
the system of equations (2) by using one of the numerical 
methods (2]. In this case, the Kochi problem is solved 2m times 
over the interval [0, T] for initial conditions (4). Each 
solution forms a column of the monodromy matrix. The success of 
this method depends on the selection of the numerical algorithm 
for solving differential equations. When solving the problems 
associated with investigations into stability of the main and 
tail rotor blade oscillations, it often happens that it is 
difficult to select the appropriate integration method since the 
required accuracy of calculations cannot be attained at any 
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integration step. 
Another frequently used 

successive approximations [3, 4] 
of equations (2) with periodic 
the form of an integral: 

technique is the method of 
when the solution of the system 
coefficients is represented in 

T 

+ lG(t)ydt, ( 6 ) 

where: Yo means the initial conditions. 
Assuming a certain appoximation as an initial condition 

and repeating calculations from formula (6) m times, we can find 
the expression determining Y(t): 

... + 

T 

Yo [ E + 5 G ( t ) d t + 
T T 0 T 1 G(t) tG(t) ~0 G(t) 

T T 

)o G ( t ) ~o G ( t ) d t d t + ... 
T 

~ G(t)dtdtdt ... dt] 
0 

( 7 ) 

y(O,T) = 

Using Y for denoting the expression given in the square 
brackets, we have: T T T 

y = E + ~ G(t )dt + I G(t) t G(t )dtdt + ... 
T 0 T (T T 

.. · + I G(t) I G(t) J
0
G(t) .. . t G(t )dtdtdt ... dt 

( 8) 

Here: Y is a constant matrix, or a monodromy matrix. 
For most of the problems related to rotor dynamics, it is 

unrealizable to calculate the monodromy matrix from formula (8) 
owing to the complexity of the integrals contained in the right
hand part of the formula. Therefore, the interval [ 0, T J is 
divided into 2m number of equal smaller intervals t, and in each 
smaller interval periodic matrix G(t) is replaced by constant 
matrix G": 

G(t) = Go<= const. 

Using solution 
the division points, 
matrix in the form 
functions is obtained: 

continuity of the system of equations at 
the formula for calculating the monodromy 
of the product of exponential matrix 

Y(O,T) = exp[( T- t.,_, )Gm-d exp[( t,_,- tm-2 lGm-2l ... 

exp[( t, - t 0 )Go ]. 

This method was used by V.M. Pchelkin to analyze pitch-lag 
instability. Replacement of time variable matrix G(t) with 
constant matrix GKwill cause an error which can spoil the result 
of the monodromy matrix calculations. 

To improve the accuracy of our calculations, the following 
technique is used in the given paper. The interval solutions are 
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presented by the periodic matrices G(t): 

Y(O,T) = e 

T 

5 G(t)dt 
ton-'\ . e 

tm-i 

J G(t)dt 
tm-2 e 

The matrix exponential is determined by using expansion 
into e power series. 

The G(t) matrix integral is calculated by the Simpson 
method through the parabola approximation. 

This presentation of the periodic matr1x makes it possible 
to improve the accuracy of the calculation which is extremely 
important for the subsequent operation made in calculating the 
mu l t i p 1 i e r s . 

ANALYTICAL RESULTS FOR MULTIBLADED ROTORS 

For ground resonance analysis, a single-rotor helicopter 
can be represented by a mechanical system called "the rotor on a 
flexible support" (Fig. 3) [1]. Absolutely rigid blades are 
attached to the hub by the drag hinges comprising damping 
devices and springs simulating the elastic properties of the 
blades. 

The hub is connected to the shaft rotating in the bearing 
supports of the casing having mass M. The casing has two degrees 
of freedom, X and Z, corresponding to its in-plane displacement, 
and is attached by the dampers and springs to a fixed support. 
The elastic and damping characteristics of the support and the 
blades are considered to be linear and proportional to the 
support and blade displacement and speeds, respectively. Spring 
rates of the blades in the drag hinges of the hub are not equal. 
Likewise, the dampers can differ from one another. The 
frequencies of the support natural oscillations in directions OX 
and OZ are not equal, and the damping coefficients for these 
directions are different as well. This is the way the 
anisotropic rotor mounted on the anisotropic flexible support is 
considered. 

Stability of the anisotropic rotor was investigated in 
accordance with the procedure described above. The ground 
resonance analysis was made for a single-rotor helicopter having 
a five-bladed main rotor. Figure 4 illustrates the effect of 
reduced damping ability of the drag hinge damper of one of the 
rotor blades by 50 % and 90 %, as compared to the initial 
damping ability, on the critical damping value and on the width 
of the oscillatory instability area which is characteristic of 
multibladed rotors. One of the curves in the figure corresponds 
to a complete failure of the damper of one of the blades. The 
relative speed of the rotorW =W/P" is plotted on the X-axis, 
and the blade relative damping n = n /~, on the Y-axis. 

The charts are given for the support relative damping 
when the oscillations in direction ox equal n~ = n, /~ = 0.2 
and those in direction OZ, n;; = n;; /P,. = 0.25. It is clear 
from the charts that a deterioration of the characteristics of 
at least one blade damper considerably reduces stability of the 
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whole system. If one of the 
instability area cannot be 
coefficients of the other blade 

dampers fails completely, the 
limited even if the damping 

dampers have very great values. 

ANALYTICAL RESULTS FOR TWO-BLADED ROTORS 

During the Mi-34 flight tests high alternating stresses 
in the two-bladed tail rotor shaft were registered. The 
amplitude of the alternating stresses measyred in various 
flights was unstable and reached +105 MPa. In this connection, 
the areas of instability of the tail rotor mounted on~ flexible 
support were calculated (with allowance for the flexibility of 
the shaft, tail rotor gearbox and tail boom). 

For calculations, it was assumed that the in-plane natural 
frequency of the non-rotating blade was P~ = 1.6 uJ . The 
flexible support frequencies determined experimentally were 
equal to Px = 320 rad/sec and Pz = 307 rad/sec. Thus, it was 
the case of the anisotropic support wherein the system of 
equations (1) could not be transformed into an equivalent one 
containing coefficient constant matrices. 

From the calculations the area of aperiodic instability 
(Fig. 5) was obtained, wherein a pair of the complex-conjugate 
roots extended over the real axis and subsequently moved along 
this axis in opposite directions with one of the roots going 
beyond the limits of the circumference whose radius is equal to 
unity. The imaginary part of the multiplier turned to be equal 
to zero (Fig. 6). 

In this case, critical oscillations of the rotating shaft 
occur, when the centre of gravity of the oscillating blades is 
offset, and the resulting out-of-balance makes the hub oscillate 
at a frequency equal to the rotor speed in the non-rotating 
coordinate system. Here combination frequencies with higher 
harmonics are likely to occur. Parametric calculations have been 
made to determine the effect of the main parameters of the tail 
rotor-shaft-tail boom system on the position and extension of 
the instability area. It is clear from the charts shown in 
Fig. 7 that the increased mass moment of blade inertia and 
higher in-plane natural frequency of the blade result in 
improved stability. In accordance with the calculations, the 
increased damping ability of the support improves rotor 
stability too. 

The results of the calculations for various support 
frequencies are shown in Fig. 8. It is evident from the figure 
that this kind of instability occurs when the rotor angular 
speed is close to one of the natural frequencies of the support. 

The analysis of the results obtained has shown that various 
approaches can be used to remove the area of aperiodic 
instability from the rotor operational speed range. But the 
maximum efficiency is gained by changing the frequency 
characteristics of the support which make the instability area 
shift within the range of the rotor operational speeds. 

The shifting of the instability area towards higher rotor 
speeds calls for the increased stiffness of the tail rotor-shaft-
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tail boom system which, in its turn, results in a considerable 
increase of the mass of these units. The instability area can be 
shifted into the range of low rotor speeds by reducing the 
system stiffness which can be achieved by changing only one 
parameter, i.e. by increasing the length of the tail rotor shaft. 
The calculations have shown that, to shift the instability area 
to the tail rotor speed w = 185 rad/sec, the shaft should be 
made 0.125 m longer. The new position of the aperiodic 
instability area for a longer tail rotor shaft is shown in 
Fig. 9. 

Based 
shaft was 
comprising 
(Fig. 10). 

TEST RESULTS 

on the calculations performed, a 
designed and manufactured, and 
the new shaft was installed in the 

longer tail rotor 
the tail rotor 

Mi-34 helicopter 

Since the longer shaft had a longer arm and a reduced 
cross-sectional moment of inertia as compared to the initial 
version, the amplitude of the alternating normal stresses 
imposed by the rotor external loads should have become twice as 
large (for a stable operation of the rotor). But the test 
results showed that the elongation of the shaft had caused the 
reduction of the alternating stresses within the rotor 
operational speeds. The stresses had become greater at the rotor 
transient speed uJ = 185 rad/sec whereto the instability area 
had shifted. At the same time, the tail unit vibration became 
noticeably lower. 

Fig.11 illustrates the results of the Mi-34 
tail rotor with both a short shaft and a long 
charts, it is clear that the alternating stress 
reduced from 59 MPa to 13 MPa, i.e. it has become 
times smaller. 

tests for the 
one. From the 
amplitude has 
more than four 

ANALYSIS OF TILT ROTOR STABILITY FOR A TILT-ROTOR AIRCRAFT 

The tilt rotor mounted on a flexible wing has been analyzed 
for stability in the course of R&D work on the tilt-rotor 
aircraft. The model which has been used for the analysis is 
shown in Figs. 12-14. 

In this model, the blade is considered as a rigid body 
capable of flapping and lead-lag motions as well as torsional 
oscillations about its longitudinal axis. Spring rates Cj>; and 
c~, are selected so as to ensure the required frequency of the 
blade flapwise and chordwise natural oscillations. The hub 
design is shown in Fig. 14. The hub can execute angular 
displacements lp" and t.p;?, about the centre of the sphere (point 
0 in Fig.14). The blade pitch control system comprises the 
cyclic and collective pitch control channels:lflx 4 , '-PM' and 'Po. 

To describe linear displacements of the engine nacelle 
mounted on a flexible wing, designations X1 , Y1 and Z1 are 
introduced. Thus, the vector of the generalized coordinates 
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comprises seventeen components: 

-r 
q = (X 1 , Y, , Z 1 , 'fa , 1Px 1 ' lj),,. ' 'Px ' 'Pz: ' j\ ' \f'i ' \.· ) ' 

where: i is determined by the blade number. For a three-bladed 
rotor, its value varies from 1 to 3. 

This paper presents the results of the first stage of the 
parametric calculations which have been made for the tilt rotor 
operating in the helicopter mode of flight. The system of the 
equations comprises two additional generalized coordinates shown 
in Fig. 15a (Fig. 15b illustrates another version of the control 
system). 

The charts shown in Fig. 16 present the maximum modulus 
multiplier of the system of the equations versus the control 
linkage and swashplate stiffness. It is clear from the charts 
that any decrease in the control linkage and swashplate 
stiffness considerably reduces stability of the system. 

There exist limit values of each of the parameters when the 
structure becomes unstable. 

The charts shown in Fig. 17 illustrate the multiplier 
modulus versus the control linkage stiffness for various 
airspeeds. It follows from the analysis that, in level flight, 
instability of the system occurs at a greater value of the 
control linkage stiffness, i.e. the instability area is 
expanded. 

The e.g. position also affects stability which is proved by 
the charts given in Fig. 18. 

Thus, from the calculations,the 
main parameters on stability of the 

effect of the tilt rotor 
tilt-rotor aircraft in 

the helicopter mode of flight has been obtained. 

CONCLUSION 

The suggested algorithm for the investigation of stability 
differential 

efficiency 
helicopter 

in solving linear systems containing second-order 
equations with periodic coefficients has proved its 
in the analysis of self-sustained oscillations of the 
main and t a i l rotors. 

The ground resonance analysis of a single-rotor helicopter 
equipped with a five-bladed main rotor has shown that the 
decreased damping ability of the damper of one blade 
substantially reduces stability of the whole rotor. 

The boundaries of the aperiodic instability area have been 
determined for the Mi-34 two-bladed tail rotor. The 
recommendations to redesign the tail rotor have been given on 
the basis of the calculations. These recommendations provide for 
the shifting of the instability area from the rotor operational 
speeds into the range of rotor transient speeds. In the 
resulting modification, the alternating stresses in the tail 
rotor components have been reduced to the values ensuring the 
required service life of the tail rotor. 

Some data have been obtained on stability of a tilt 
designed for the tilt-rotor aircraft. 
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