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Abstract

Dynamic inflow theory is used to develop an analytical formulation for the general performance of the lifting
rotor in axial flow with finite blade number and improved swirl correction. The theory incorporates conventional
blade-element theory for blade lift and provides the integrated loads and the induced power of the rotor in
terms of an arbitrary number of blades. A finite-state model of the rotor provides the basis for a classical
quadratic optimization with realistic constraints that is applied to determine the minimum induced power for a
variety of available control combinations, rotor trim constraints, number of blades, and operating conditions. The
findings show relative agreement to the classical propeller solutions predicted by Golstein at moderate to high
inflow ratios. Swirl vortices—due to finite number of blades—significantly reduce the non-ideal induced power
increment. New insights are given for some of the factors that prevent practical rotors from achieving Golstein’s
predicted efficiency. Improvements to the swirl correction give greater understanding to the nature of this puzzling
phenomenon. Limited comparisons with previous research corroborate the earlier results and demonstrate the
versatility of the present formulation.

Notation

a slope of the lift curve, (rad−1)
amn induced flow states (Peters-He model)
aoa angle of attack
[A] transformation matrix
c chord length
cl roll moment per thrust, CL/CT
cm pitch moment per thrust, CM/CT
CL roll moment coefficient
CL lift coefficient
CM pitch moment coefficient
CT thrust coefficient
{C} rotor loads and loading constraints
[C] temporal transformation matrix
[D] loads matrix
[E] orthogonality matrix
[G] matrix of loading constraints
[I] identity matrix
k integer multiple of number of blades

K number of control radial functions
L blade lift per unit length
[L̃] influence coefficient matrix (Peters-He model)
[L̄] influence coefficient matrix
[ ¯̄L] coupled mass and influence coefficient matrix
M number of control harmonics
[M ] apparent mass matrix (Peters-He model)
[M ]swirl modified apparent mass matrix
[N ] decoupling transformation matrix
P̄mn () normalized associated Legendre function
∆P pressure drop across the disk
Q total number of blades
[Q] symmetric optimizing matrix
r̄ non-dimensional radial position
R rotor radius
[R] harmonic expansion of coupling matrix
t time, (s)
t̄ non-dimensional reduced time, (Ωt)
[T ] harmonic transformation matrix
UP perpendicular component of velocity
UT tangential component of velocity



V non-dimensional mass flow parameter
w non-dimensional induced flow distribution

αmn ,βmn induced flow states
γmn lift expansion coefficients
δn,n′ Kronecker delta function
εIP induced-power efficiency
{ζ} vector of scaled loads
κ empirical swirl factor
λ inflow ratio
(ν, η, ξ) ellipsoidal coordinates
% fluid density
τmn pressure expansion coefficients
χ inflow skew angle
ψ azimuth angle of blade from rotor aft
Ω rotor rotational speed, (rad/s)
Subscript
c, s cosine or sine expansion in time
k blade harmonic number
n, j polynomial number
q qth blade
Superscript
c, s cosine or sine expansion in space
m, r harmonic number

1. INTRODUCTION

The classical solutions by Goldstein give the effect of
a finite number of blades on the optimum circulation
distribution for a rotor in axial flow [1]. However, due
to the complexity of the solution, results are given only
for a 2-bladed rotor at several inflow ratios and a 4-
bladed rotor at a single inflow ratio. Recently, finite-
state inflow methods have shown that they have the
capability to find the optimum circulation distribution
for rotors by classical, quadratic optimization in closed
form [2,3].

These methods can be applied to a helicopter in hover
or in forward flight. For this, the closed-form results of
Goldstein offer the perfect data set against which to
check the convergence of the finite-state method; but
the scarcity of cases by Goldstein has made this diffi-
cult. In recent work, we have been able to extend the
Goldstein solutions to a wider variety of cases, and this
now allows a complete verification of the finite-state
convergence in axial flow [4].

In this paper, we study the convergence of the finite-
state method—including the effect of wake swirl—to
demonstrate the most efficient form of the swirl correc-
tion and to show that convergence is excellent with this
method. New results are given that not only demon-
strate the convergence but also illustrate the nature
of the effect of blade number on the optimum perfor-
mance. All of this is done under the framework of classi-
cal, quadratic optimization with the finite-state model.

2. AERODYNAMIC THEORY

2.1. Finite-State Inflow Model

The Finite-State Inflow Theory of Peters & He [5,6] has
become an established foundation to model the dy-
namic inflow of the lifting rotor. In this theory, both
the induced velocity and the pressure distribution is

expanded in harmonics of Legendre functions. This ex-
pansion permits the fundamental laws of fluid flow to
be restructered in matrix form. This has the advan-
tage of greater computability and allows for the use of
extensive numerical techniques.

In this model, the non-dimensional induced flow dis-
tribution is represented as the following.

(1) w =
∑
m,n

[αmn cos(mψ) + βmn sin(mψ)]
P̄mn
ν

where P̄mn = P̄mn (ν) are normalized associated Legen-
dre functions of the first kind.

(2) P̄mn ≡
(−1)m

ρmn
Pmn

where the parameters ρmn are the normalization func-
tions defined by the following:

(3)

1∫
0

Pmn (x)Pmn′ (x)dx =
(n+m)!

(n−m)!

δn,n′

2n+ 1
≡ (ρmn )2

The parameter ν is the ellipsoidal coordinate which,
on the rotor disk (η ≡ 0), is given by

(4) ν =
√

1− r̄2

The subscripts and superscripts follow the notation pre-
sented in the Peters-He model where the superscript m
is the harmonic number and the subscript n is a ra-
dial expansion number for a given harmonic. Note that
Legendre functions are only defined for n ≥ m.

Due to the definition of the ellipsoidal coordinate ν,
which represents hyperbolas of revolution, any solution
to Laplace’s equation that are odd in ν represent a
differential pressure across the disk. Therefore, as was
the induced flow, the non-dimensional pressure across
the rotor disk is also expanded in Legendre functions.

(5) ∆P = 2

[∑
m,n

[τmcn cos(mψ) + τmsn sin(mψ)] P̄mn

]

where the superscripts c and s represent cosine and sine
expansions about the azimuth ψ.

Both the inflow states, α and β, and the pressure ex-
pansion coefficients, τ c and τs, are expanded in tempo-
ral harmonics and, thus, time dependent. For example,

(6) αmn = αmn0c+
∑
k=Qi

(αmnkc · cos(kt) + αmnks · sin(kt))

where k takes on integer multiples of the number of
blades (i.e., k = Qi = Q, 2Q, 3Q, ...). Here the sub-
scripts c and s represent cosine and sine expansions in
time. Also, the zero harmonic terms (α0

n(t)) are defined
in the following manner.

(7) α0
n(t) ≡ 2a0n(t)|He

where a0n(t)|He are the inflow states from the Peters-
He model [6]. Defining the inflow states with this fac-
tor of 2 will become more apparent in the coming sec-
tions. Based on the Peters-He theory, the relationship



between induced inflow states (αmn , β
m
n ) and rotor pres-

sure loading coefficients (τmn ) for an infinite number of
blades is given by the following [5]:

(8) V

 L̃c
−1

0

0 L̃s
−1

 amn

bmn

 =
1

2

 τrc

τrs


Where r is used as a harmonic number to distinguish
row harmonics and column harmonics. Solving for the
inflow states yields the following:

(9)

 amn

bmn

 =
1

2V

 L̃c 0

0 L̃s

 τrc

τrs


However, for a rotor with a finite number of blades,

the momentum equations are unsteady with blade pas-
sage and, hence, the inflow solutions are also unsteady.
The momentum equations can be written in matrix
form as follows:

[Mc] ˙{α}+ V
[
L̄c
]−1 {α} = 1

2
{τ c}

[Ms] ˙{β}+ V
[
L̄s
]−1 {β} = 1

2
{τs}

(10)

where the mass matrices [M ] and the influence coeffi-
cient matrices [L̄] are closed form expressions from the
Galerkin procedure. Also, note that the influence co-
efficient matrices are a modified form of the matrices
found in the Peters-He model.

(11) [L̄c] =


2[I]

[I]

[I]

. . .

 [L̃c]

which states that the zeroeth harmonic terms are dou-
bled, all other terms remain unaffected. This will be-
come more apparent in the following sections. However,
[L̄s] = [L̃s] as in the Peters-He model.

Since the inflow distribution is considered unsteady
with blade passage, a solution for the inflow includes
a summation of harmonics. Also, due to the time
derivative of the inflow states—which are comprised of
sines and cosines—the solutions to the above differen-
tial equations are coupled and include terms of both
[M ] and [L̄]. The general solution is the sum of the
steady and unsteady solutions. For the steady-state
solution, the inflow states are Eq.(9) and the unsteady
inflow solutions are

(12)

 {α
m
n }c

{αmn }s


k

=
1

2V

[
¯̄Lck

] {τ
m
n }c

{τmn }s


k

where, again, k takes on integer multiples of the number
of blades. The matrices [ ¯̄L]k are defined below from the
coupled momentum equations,

[
¯̄Lc
]
k

=

 [L̄c]−1 k
V

[Mc]

− k
V

[Mc] [L̄c]−1

−1

=

 [Nc]k − k
V

[Nc]k[Mc][L̄c]

k
V

[L̄c][Mc][Nc]k [Nc]k

(13)

where

(14) [Nc]k ≡
[
[L̄c]−1 + (

k

V
)2[Mc][L̄c][Mc]

]−1

Similar expressions exists for [ ¯̄Ls]k and likewise [Ns]k.
Therefore, general solutions to the momentum equa-

tions (10) are the sum of all solutions—steady and un-
steady—and are defined below.

(15)

{αmn (t)} =
1

2V
[L̄c]{τmcn }0c

+
∑
k=Qi

(
1

2V
[C]k[ ¯̄Lc]k {τmcn } k

)
where [C] is the temporal tranformation matrix defined
by the following:

(16) [C]k ≡

 cos(kt) 0

0 sin(kt)


A similar expression exists for {βmn (t)}.

2.2. Swirl Correction

The matrix [M ] in Eq.(10) was originally derived from
potential flow theory for an actuator disk. This im-
plies that there is no angular momentum added to the
flow through the disk and, consequently, no energy loss
due to swirl. Makinen [2] showed that the effect of swirl
could be accounted for in a rigorous manner in the con-
text of a finite-state actuator disk by two adjustments:
1.) the induced flow at the rotor disk is taken to be
parallel to the local rotor lift vector, 2.) the mass ma-
trix is augmented to include the extra kinetic energy
in the swirl velocity. The amount of added mass was
found to be

(17) [Mm]swirl = [Mm]

[
[I] +m

(
κλ

Q

)2 [
[I]– [Am]2

]–m]
where m is the harmonic number for a given term, λ
is the inflow ratio, Q is the number of blades, and κ
is an empirical factor to account for the swirl veloc-
ity. Although κ is theoretically equal to 2.0, the best
correlation with Goldstein was found for κ = 2.2. It
should be noted that the apparent mass matrix takes
the following form:

(18) [Mc] =


[M0]

[M1]

. . .

[Mm]


where, [M0] = 1

2
[M0]He is a modified form of the orig-

inal mass matrix from the Peters-He model. A simi-
lar matrix exists for the sine representation ([Ms]) but
with no zeroeth harmonic terms.

In the derivation of this swirl correction by Maki-
nen, it was assumed (in the context of a helicopter)
that λ is small such that λ2 � 1. However, in or-
der to correlate with Goldstein results, one must allow
for λ to be of the order unity or larger. Therefore, it
is necessary to extend the formula in Eq.(17) to large
λ. This implies replacing κ2λ2 in this equation with
a more general f(λ). In order to do this, we ran our



numerical Goldstein solution for rotors with 2, 4, and
6 blades over climb ratios from 0 to 3.0. We then opti-
mized the swirl correction function based on the most
rapid convergence of the finite-state model to the in-
duced power efficiency as found from the numerically
exact Goldstein results.

Figure 1: Function approximation to correct for swirl veloc-
ities in rotor wake.

Results for the optimum f(λ) were found to be rela-
tively insensitive to blade number so that a single ex-
pression could be found, as shown in Fig.1. The re-
sulting curve was then fit with a rational polynomial in
λ, also shown in the figure. At small λ, the new swirl
correction behaves as 9.3λ2 (κ ≈ 3.0) whereas the re-
sult in Makinen gave κ = 2.2 for the optimum fit. In
revisiting the optimization results of Makinen, we dis-
covered that the lower value of κ found in that work
was due to the attempt of the optimizer to lower the
error at larger values of λ. The new factor improves
correlation at all inflow ratios. It should be noted that
the efficiencies become very low for λ > 1 such that the
“optimum” value is fitting a very small number. The
important part of f(λ) for practical considerations is
for λ < 0.5 where the new formula is a significant im-
provement over that of Makinen. This new formula is
used in all of the results to follow.

2.3. Induced Power

The starting point of this development is the compu-
tation of power based on finite-state variables. The
induced power (i.e., the work done on the flow) of a
rotor can be defined from fundamental physics. This is
the time-average of the integration over the disk of the
product of induced velocity, force per unit area, and
unit area.

(19) CP =
1

2π

2π∫
0

∫∫
A

(∆P · w) dA

 dt̄

where w = w(r, ψ, t) is the induced velocity (Eq.(1))
and P = P (r, ψ, t) is the force per unit area (Eq.(5)).
Due to the orthogonality of the basis functions, the

above equation can be reduced to a more compact form.

(20) CP =
1

2π

2π∫
0

{τ}T {α} dt̄

where, for the sake of brevity, {α} represents the to-
tal inflow solution and likewise {τ} the total pressure
expansion. From the inflow solutions in Eq.(15) and
the pressure coefficients expanded in temporal harmon-
ics—similar to Eq.(6)—the induced power coefficient is
expressed as a summation as well.

(21) CP = {τc} T0c {α} 0c+
1

2

∑
k

 τck

τsk

 T

 αk

βk




where, here, the sines and cosines have been averaged
over the time-domain and the factor of 2 in Eq.(7) can-
cels the 1

2
from the sinusoidal average, hence the reason

for defining our inflow states with this factor of 2 ear-
lier. Although a solution exists for the inflow states,
this solution is in terms of the pressure expansion coef-
ficients τ . Therefore, to determine the result to Eq.(21),
knowledge of τ must be sought.

2.4. Blade-Element Theory

In order to represent the loadings {τ} and, hence, rotor
power CP in terms of some meaningful controls, we now
apply blade-element theory. The lift per unit length per
blade Lq is written in terms of standard airfoil theory
with the lift coefficient CL proportional to the sine of
the angle of attack.

(22) CL = a sin(aoa)

which is the exact result of 2-D potential flow theory.
The velocity may then be written in terms of the tan-
gential and perpendicular components of flow at the
blade (as in standard rotorcraft notation),

(23) V 2 = U2
T + U2

P

and the angle of attack is the pitch angle θ minus the
inflow angle.

(24) aoa = θ − tan−1

(
UP
UT

)
The lift per unit length per blade then takes on the
classic form in terms of UT and UP ,

(25) Lq(θ) =
1

2
%ac

(
U2
T θq − UTUP

)
where θq represents the pitch angle for each blade.

One may then express the pitch angle per blade as
an expansion in harmonics of blade azimuthal pitch and
blade radial twist.

(26) θq ≡
∑
k,m

[
r̄k [θmck cos(mψq) + θmsk sin(mψq)]

]
One may now determine the loadings on the rotor as

an expression of the lift, which are given in terms of tip
speed ΩR and nondimensional radial position r̄.

(27)


τ0cn

τmcn

τmsn

 = 2

Q∑
q=1

1∫
0

L̄qφ
m
n (ν)dr̄


1
2

cos(mψq)

sin(mψq)





where

(28) L̄q =
Lq

2π%Ω2R3

is the non-dimensional form of the lift per unit length
per blade, Q is the total number of blades, and φmn is
defined as the following polynomial.

(29) φmn (ν) ≡ 1

ν
P̄mn (ν)

If one defines the lift as an expansion in harmonics of
Legendre functions, as was done with the pitch angle:

(30) L̄q ≡
r̄

Q

∑
m,n

(γmcn cos(mψq) + γmsn sin(mψq)) P̄
m
n

then the blade loadings may be expressed in a very
simplified form.

(31)


τ0cn

τmcn

τmsn

 = 2

Q∑
q=1

1∫
0

L̄qP̄
m
n
dr̄

ν


1
2

cos(mψq)

sin(mψq)


The above integral can be evaluated by substitution of
the following matrix:

(32)
[
Emrnj

]
≡

1∫
0

P̄mn (r̄)P̄ rj (r̄)dr̄

where

(33)
[
Emmnj

]
= [δnj ] = [I]

This gives a closed form expression for the blade load-
ings.

(34)
{τmcn }k = [T c]k

{
γrcj
}

{τmsn }k = [T s]k
{
γrsj
}

where the matrices [T c] and [T s] are defined from the
orthogonality matrix Eq.(32)1.

(35) [T c]k ≡

[T cc]k [0]

[0] [T cs]k


and

(36) [T s]k ≡

 [0] [T ss]k

[T sc]k [0]


Here, the superscripts (i.e., cs) indicate if a zero har-
monic term is included and the subscript k defines the
allowed harmonics.

1See Appendix for more detailed explaination of [Tx].

2.5. Rotor Loadings

General rotor performance theory encompasses rotor
loads as well as induced power. Rotor loads in turn
are also utilized as the constraints that define optimum
induced power. The dynamic inflow formulation may
be used to compute any desired rotor loads. Here we
consider “rotor loads” to be integrals over the disk of
the pressure including appropriate weighting functions.
We will now express rotor loads in terms of the pres-
sure loading coefficients {τ}. Consider, for example, ro-
tor thrust, roll moment, and pitching moment—three
common rotor loads. These loads are defined by the
following integrals of the pressure loading:

CT =
1

π

2π∫
0

1∫
0

∆P r̄dr̄dψ

CM = − 1

π

2π∫
0

1∫
0

r̄∆P r̄dr̄ cos(ψ)dψ(37)

CL = − 1

π

2π∫
0

1∫
0

r̄∆P r̄dr̄ sin(ψ)dψ

After substituting the pressure loading of the Peters-He
theory from Eq.(5) and integrating, the rotor loads are
readily expressible in closed-form. In terms of the pres-
sure loadings—and written in matrix form—the rotor
loads are:

(38)


CT

CM

CL

 =


2√
3

0 0

0 −
√

2
15

0

0 0 −
√

2
15




τ0c1

τ1c2

τ1s2


This example may be extended to formulate any de-

sired rotor loads. One may therefore write the general
loading vector {C} in the form:

(39) {C} = [D]{τ}

where [D] is a closed-form matrix based on integrals of
the inflow shape functions.

3. OPTIMIZATION

3.1. Optimum Power

With the solutions to the inflow states (Eq.(15)), and
the expression for the loadings (Eq.(34)) substituted
into Eq.(21), the result is the following:

(40) CP =
1

2V
{γ}T [R]{γ}

where a definition has been made to simplify the ex-
pression. The matrix [R] contains the influence coeffi-
cients which, for the case of finite number of blades, is
a summation of harmonics of influence coefficients.

(41) [R] ≡ [L̄] +
∑
k

(
[T c]Tk [ ¯̄Lc]k[T c]k + [T s]Tk [ ¯̄Ls]k[T s]k

)
where,

(42) [L̄] =

[L̄c] [0]

[0]
[
L̄s
]




Also, the loading vector has, for the sake of brevity,
been simplified.

(43) {γ} =

 {γ
mc
n }

{γmsn }


The result in Eq.(40) can then be optimized under

given constraints on {τ}. One may scale the general
loading vector from Eq.(39) against the thrust CT .

(44) {C} = CT


1

cm

cl

 ≡ [G]T {γ}

where, here, we’ve defined a scaled pitch moment coef-
ficient cm and roll moment coefficient cl. The matrix
[G] is comprised of the constraints on the loads which
contains the previously defined matrices [D] and [T ]
from Eqs.(39) and (34), respectively.

Following the method used by Peters & File [7], one
may now minimize the induced-power CP subject to
the constraints {γ}T [G]. The result is a very compact
formulation for the induced power.

(45)
(CP )opt =

C2
T

2V


1

cm

cl

 T
[
GTR−1G

]−1


1

cm

cl


≡
C2
T

2V
{ζ}T [Q]−1{ζ}

where {ζ} is a vector of scaled constraints on the loads
(e.g., thrust, roll moment, etc.) from Eq.(39) and the
symmetric matrix [Q] contains the effects due to con-
trols (e.g., pitch angle θ, inflow skew angle χ, etc.)
among other parameters as number of blades and swirl
correction.

3.2. Induced Power Efficiency

It is known from Glauert [8] that the minimum possible
power is given by

(46) (CP )ideal =
C2
T

2V

One can normalize the above relation by dividing both
sides by C2

T .

(47)

(
CP
C2
T

)
ideal

=
1

2V

This is the classic Glauert minimum.
We may define the Induced Power Efficiency (εIP )

as the ratio of the minimum Glauert induced power
divided by the optimum power (for a constrained case
above). The optimum power can then be divided by
C2
T to obtain a formula for computing this power with

the scaled constraints.

(48)

(
CP
C2
T

)
opt

=
1

2V
{ζ}T [Q]−1{ζ}

One may then take a ratio of the Glauert minimum to
the optimum power (with constraints on the available
controls and loads) to get the εIP .

(49) εIP =

(
CP /C

2
T

)
ideal

(CP /C2
T )
opt

= ({ζ}T [Q]−1{ζ})−1

The induced power efficiency εIP is always a num-
ber between 0 and 1. The vector {ζ} and each of the
matrices in [Q] represents the effect of a given physi-
cal variable on the induced power efficiency. It may be
noted that the εIP is analogous to the Figure of Merit
used as a measure of efficiency of a rotor in the hover
condition.

4. RESULTS

Figure 2 shows results with and without the effect of
lift tilt (i.e., swirl velocities). This is possible because
the effect of blade number is distinct from the effect of
swirl. Cases are run for 2, 4, and 6 blades. Note that,
at larger values of V∞, the effect of swirl dominates,
whereas at lower climb rates the effect of blade number
becomes dominate.

Figure 2: The effects of swirl due to inclination of the lift
vector.

Figure 3: Increasing the number of blades increases the rotor
induced-power efficiency.

Figure 3 gives induced power efficiency as a function
of V∞ which—for axial flow—is identical to the non-
dimensional climb rate λ and the mass-flow parameter
V . Curves are shown for an infinite number of blades
(which is the Glauert momentum optimum) and also for
Q = 2, 3, 4, and 6. The limit to this finite blade number



efficiency—provided by Betz [9]—states that the mini-
mum power is achieved when the trailing vortex sheet
is contained along a helical path behind the rotor. One
can see the clear effect of blade number on efficiency.
For this optimization, M = 12 is virtually full control
authority on available blade twist.

Figure 4 shows that increasing the available harmon-
ics drives the convergence towards that of Goldstein.
The data in Fig.4(b) was plotted on a logarithmic scale
to accentuate the high order of agreement. From these
graphs one can see that the finite-state method con-
verges to the Goldstein results at all blade numbers.

(a) Plot for Q = 2, 4, 6.

(b) Logarithmic plot for Q = 2, 4, 6.

Figure 4: Rapid convergence to the solutions of Goldstein
by the Finite-State method.

Figure 5 shows that a reduction in the degrees of
freedom for blade twist does not have a large effect on
efficiency as long as there is enough freedom to change
the linear twist. One can see also the rapid convergence
towards that of Goldstein by increasing the number of
allowed harmonics. Here a solution that includes only
12 harmonics is quite sufficient to agree with the results
from Goldstein.

(a) Harmonic comparisons with 3 blades.

(b) Harmonic comparisons with 4 blades.

(c) Harmonic comparisons with 6 blades.

Figure 5: Finite-state iteration—as number of harmonics
is increased—indicates that 12 harmonics is sufficient for
convergence.

5. CONCLUSION

Applying the finite-state model to the dynamic inflow
of the lifting rotor proves viable to a working solution
of the induced-power for rotors with finite blade num-
ber. This formulation applies blade-element theory to
account for the rotor loads on each blade. Combining
these two theories has rendered an improved correction



factor over the previous quadratic function to account
for the swirl velocities in the rotor wake.

The modified correction factor has provided greater
insight to the nature of the swirl velocities that had
previously remained obscure. The presence of swirl
vortices dramatically increases the induced-power de-
mand and, thus, decreases the performance of the ro-
tor for a given number of blades. However, the previ-
ous quadratic term drives the inflow solution to diverge
from the results of Goldstein at inflow ratios close to
unity. The improved swirl function compensates for the
unique behavior at these higher velocities.

Blade number has a direct effect on the induced-
power efficiency of the helicopter rotor. By introduc-
ing higher blade numbers, the rotor then redistributes
the load throughout the disk in a more efficient man-
ner—thus, increasing the number of blades increases
the efficiency of the induced-power of the rotor.

The results presented were found to be in close agree-
ment with previous investigations by Goldstein and
others of induced power of the lifting rotor operating at
moderate to high inflow ratios. Insights from this inves-
tigation should help to guide the design of future high-
speed rotorcraft with higher aerodynamic efficiency.

APPENDIX

[T xx
k ] Matrix

The orthogonality matrix [Emrnj ] defined in Eq.(32) fol-
lows the notation from the Peters-He inflow theory.
From the definition of the orthogonality matrix, the
pressure loading coefficients may be expressed in the
following manner:

(A-1) {τ0cn } =
∑
r,j

E0r
nj

(
γrcj cos(rt) + γrsj sin(rt)

)

{τmcn } =
∑
r,j

Emrnj
[
γrcj (cos ((m+ r)t) + cos ((m− r)t))

+ γrsj (sin ((m+ r)t)− sin ((m− r)t))
]

{τmsn } =
∑
r,j

Emrnj
[
γrcj (sin ((m+ r)t) + sin ((m− r)t))

− γrsj (cos ((m+ r)t)− cos ((m− r)t))
]

The above equations may be recast into a set of ma-
trices that map the lift coefficients γrj to the pressure
expansion coefficients τmn for a given blade harmonic k.
These matrices are partitioned by the sum/difference
of m and r based on the following:

(A-2) |m± r| = k

which comes about from the use of trigonometric rules
when carrying out the integrals in Eq.(31). The above
relation states the only values that are allowed in the
computation are the sum and/or difference of harmonic
numbers that are, in turn, equal to integer multiples
of blade number (i.e., k = 0, Q, 2Q, · · ·). This, along
with the orthogonality of the Legendre functions, allows
values from Eq.(32) into only partitions of m and r that
are equal to k, Eq.(A-2). All other harmonic partitions
are zero.

This defines a simple set of matrices that may be used
to transorm the influence coefficient matrices into the

appropriate harmonics for a rotor with a given number
of blades.

To demonstrate this assume a rotor with, say, 2
blades. Then, the only allowable blade harmonics are
k = 0, 2, 4, 6, · · · up to a maximum harmonic kmax. To
illustrate further, below are the matrix partitions for
the example of k = 2:

[T cc2 ]⇒

m�r 0 1 2 3 4

0

1

2

3

4

5



E02

E11 E13

2E20
. . .

E31

E42

. . .



[T cs2 ]⇒

m�r 1 2 3 4 5

0

1

2

3

4

5



E02

E11 E13

E24

−E31
. . .

−E42

. . .



[T sc2 ]⇒

m�r 0 1 2 3 4

1

2

3

4

5



E11 −E13

2E20
. . .

E31

E42

. . .



[T ss2 ]⇒

m�r 1 2 3 4 5

1

2

3

4

5



−E11 E13

E24

E31
. . .

E42

. . .


where the submatrix, say, E31 takes the following form:

(A-3) [E3,1
n,j ] =

1∫
0

P̄ 3
n(ν)P̄ 1

j (ν)dν

The partitions of the harmonic transformation matrix
[T xxk ] where |m± r| 6= k are zero matrices.

The above relations therefore reduce the pressure in-
tegrals of Eq.(31) to the compact matrix representation
found in Eq.(34)
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