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Abstract

Preliminary results are presented of a new method that uses NURBS primitives to model vorticity-carrying

elements of a helicopter rotor wake in a simplified form. One of the main objectives of this research is the

development of a wake model that can run in real-time to aid in the area of helicopter-ship qualification

testing at the NLR. The first steps towards this goal are reported in this paper. After a short introduction

of the underlying geometry, a mathematical model of a NURBS-based vortex ring model is presented. This

includes a derivation of the equations of motion, a validation of induced velocity calculations including core

model corrections and time simulations of a single vortex ring and one of two leapfrogging rings. The paper is

concluded with a presentation of preliminary results of a simplified model of the rotor wake of a helicopter in

hover, including a single-step trim procedure.

Nomenclature

Bi,n ith Bernstein polynomial of degree n
CT rotor thrust coefficient
m number of knots −1
N number of rotor blades
n number of control points −1
Ni,p ith B-spline basis function of degree p
p degree of curve
Pi ith control point
r (relative) position vector
R vortex ring radius, helicopter rotor radius
rc vortex core size
Ri,n ith rational basis function of degree n
T rotor thrust
U knot vector
u NURBS curve parameter
ui ith knot
v speed vector
vh induced velocity in hover
Vz vortex ring self-induced velocity
Vθ swirl velocity
wi weight of ith control point, weight of ith

quadrature point
Γ circulation strength
λh inflow ratio in hover
ρ air density
Ω helicopter rotor angular velocity
ω vorticity vector

1 Introduction

The NLR has been involved in helicopter-ship quali-
fication testing for over 40 years [2]. In recent years,

research efforts have been directed towards improving
the efficiency of the established procedure with pilot-
in-the-loop simulations [1]. This capability enables
safe exploration of candidate flight envelopes in an
early stage without depending on the availability of
personnel and materiel. Also, environmental condi-
tions can be set that may not occur during flight
testing. The research reported here is part of this
effort and focuses on the development of a free wake
model with real-time capabilities. Based on a litera-
ture review [3], it was decided to focus research on the
development of a simplified free wake model where all
vorticity is located on a continuous, truncated cylin-
der that can deform freely under its own influence.

The paper will start with a short introduction of
Bézier curves and Non-Uniform Rational B-Spline
(NURBS) curves [9]. NURBS primitives are used in
the two sections thereafter to model the geometry
of vorticity-carrying elements. In the second sec-
tion, a NURBS-based vortex ring model is presented.
The equations of motion of the vortex ring are de-
rived starting from the vorticity-velocity form of the
Navier-Stokes equations. Then, the right-hand side of
the resulting equation (velocity calculation using the
Biot-Savart law) is elaborated on. This is followed by
a verification that the numerically calculated induced
velocities converge to analytical results, both in the
far field and on the vortex ring itself. Finally, results
of time simulations are shown. In the third section,
the vorticity-carrying geometry is extended to a cir-
cular cylinder to represents the geometry of a rotor
wake in hover in a simplified manner. Preliminary
results of a simple trim procedure are presented. In
the last section of the paper, the current status and
the road ahead of the research is discussed.



2 Bézier and NURBS Curves

2.1 Implicit and Parametric Functions

The most common methods to represent curves and
surfaces mathematically are the implicit and the
parametric methods.

In the implicit method, a function is used that
describes the relation between the independent vari-
ables (x and y) of points on the curve. As an example,
the unit circle in the xy-plane can be defined by

f(x, y) = x2 + y2 − 1 = 0 (1)

The parametric method on the other hand uses
separate (parametric) functions for each axis variable.
In two dimensions, the generic form is

C(u) = (x(u), y(u)) a ≤ u ≤ b (2)

The first quadrant of the unit circle of Eq. 1 can be
written in parametric form as

C(u) = (cos(u), sin(u)) 0 ≤ u ≤
π

2
(3)

or alternatively, using t = tan(u
2 ),

C(u) =

(
1 − t2

1 + t2
,

2t

1 + t2

)

0 ≤ t ≤ 1 (4)

Bézier , B-spline and NURBS curves and surfaces
are all defined as polynomials of one or two parame-
ters. In the following paragraphs, Bézier and NURBS
curves will be discussed shortly. The extension to sur-
faces using a twodimensional array of control points
is not discussed here.

2.2 Bézier Curves

2.2.1 Nonrational Bézier Curves

An nth-degree Bézier curve is defined by a set of
control points {Pi} and basis functions {Bi,n(u)},

C(u) =

n∑

i=0

Bi,n(u)Pi 0 ≤ u ≤ 1 (5)

The basis functions are the nth-degree Bernstein poly-
nomials defined as

Bi,n(u) =
n!

i!(n − i)!
ui(1 − u)n−i (6)

An example cubic curve and its basis functions are
displayed in Fig. 1 and Fig. 2, respectively.

2.2.2 Rational Bézier Curves

It is impossible to represent conics (circles, parabolas,
hyperbolas and ellipses) and their three-dimensional
extensions (spheres, cylinders, . . . ) using non-
rational polynomials [9], but as was shown with Eq. 4,
this can be achieved using a ratio of two polynomials
where each of the coordinate functions has the same
denominator.
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Figure 1: Cubic (n = 3) Bézier curve
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Figure 2: The Bernstein basis functions for n = 3.

An nth-degree rational Bézier curve C(u) is defined
as

C(u) =

n∑

i=0

Bi,n(u)wiPi

n∑

i=0

Bi,n(u)wi

0 ≤ u ≤ 1 (7)

Again, {Pi} and {Bi,n(u)} are the control points
and basis functions of the curve, and the scalars
{wi} are the weights. It is assumed that all weights
have a value greater than zero, which ensures that
the denominator cannot become zero. In terms of
rational basis functions Ri,n,

Ri,n(u) =
Bi,n(u)wi

n∑

j=0

Bj,n(u)wj

(8)

Eq. 7 can be written in the following compact form

C(u) =

n∑

i=0

Ri,n(u)Pi 0 ≤ u ≤ 1 (9)

If all weights wi are equal, the rational curves reduce
to the non-rational ones. The addition of non-unity
weights to some control points of a curve has the effect
of pulling the curve towards those control points.

As an example, the curve in Fig. 1 is modified by
assigning a weight of 5 to the third control point P2

and the resulting rational cubic Bézier curve is shown
in Fig. 3. The rational basis functions of this curve
are displayed in Fig. 4.

2.3 B-Spline Basis Functions

In principle, one could use the curves defined in
section 2.2 to construct geometry from, but they have



P0

P1

P2

P3

Figure 3: Rational cubic Bézier curve, P2 has a
weight of 5.
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Figure 4: The rational basis functions of the curve
displayed in Fig. 3

the disadvantage that modification of a single control
point affects the whole curve, i.e. shape control is
global. Another drawback is that in order to fit a
large number of points with a single curve, a high
degree curve is necessary which makes algorithms
inefficient. By using piecewise polynomial curves of
desired degree and continuity, both drawbacks dis-
appear. The breakpoints in parametric space along
the curve where the polynomials are joined are called
the knots, these are discussed in section 2.3.1. The
basis functions themselves are introduced afterwards,
in section 2.3.2.

2.3.1 The Knot Vector

The array of non-decreasing parameters that sepa-
rates the segments is called the knot vector U and
has the form

U = [u0, u1, . . . , um]

with ui ≤ ui+1, i = 0, . . . ,m − 1 (10)

where ui are called the knots of the knot vector.

A knot vector with equally-spaced knots is said to
be uniform. In normalised form, the first knot u0 has
value 0 and the last knot equals 1, um = 1. A clamped

(or open) knot vector has a multiplicity of p + 1 of
the first and last values in the knot vector,

U = [a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

] (11)

where p is the degree of the curve. This ensures that
the curve interpolates the end points of the control
polygon on which it is defined.

2.3.2 B-Spline Basis Function Definition

The ith B-spline basis function of degree p (order p+
1), denoted by Ni,p(u) is defined recursively by

Ni,0(u) =

{

1 if ui ≤ u < ui+1

0 otherwise

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u)

+
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

(12)

As an example, the zeroth, first and second de-
gree basis functions for the knot vector U =
[0, 0, 0, 1, 1, 2, 3, 4, 5, 5, 5] are shown below in Figs. 5, 6
and 7, respectively.
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Figure 5: Zero-degree basis functions for the knot
vector U = [0, 0, 0, 1, 1, 2, 3, 4, 5, 5, 5]
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Figure 6: First degree basis functions of the knot
vector U = [0, 0, 0, 1, 1, 2, 3, 4, 5, 5, 5]
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Figure 7: Second degree basis functions of the knot
vector U = [0, 0, 0, 1, 1, 2, 3, 4, 5, 5, 5]

Some properties of B-spline basis functions are
listed below:

• local support: Ni,p is non-zero on the interval
[ui, ui+p+1);

• partition of unity: for an arbitrary knot span
[ui, ui+1), the following equality holds:

i∑

j=i−p

Nj,p(u) = 1; (13)



• non-negativity: Ni,p(u) ≥ 0 ∀i, p, u.

2.4 NURBS Curves

2.4.1 Definition

A pth degree NURBS1 curve is defined by

C(u) =

n∑

i=0

Ni,p(u)wiPi

n∑

i=0

Ni,p(u)wi

a ≤ u ≤ b (14)

where, as for Bézier curves (Eq. 7), the {Pi} are
the control points and the {wi} are the weights.
The array {Ni,p(u)} contains the pth-degree B-spline
basis functions defined on the non-periodic and non-
uniform knot vector

U = [a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

] (15)

Just as in the case of rational Bézier curves, Eq. 14
can be written as a non-rational, piecewise polyno-
mial curve using rational basis functions,

C(u) =

n∑

i=0

Ri,p(u)Pi (16)

where

Ri,p(u) =
Ni,p(u)wi

n∑

j=0

Nj,p(u)wj

(17)

2.4.2 Construction of NURBS Circles

There are multiple methods that can be used to
construct circles using NURBS curves [8]. One of the
most straighforward methods uses a set of rational
quadratic Bézier arcs pieced together by a knot vector
with double internal knots.

As an example, a circle constructed from four ra-
tional Bézier segments is shown in Fig. 8 and the
rational basis functions are displayed in Fig. 9.
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Figure 8: NURBS circle using four rational quadratic
Bézier segments.

1A NURBS curve reduces to a B-spline curve for the case
where all the weights {wi} are equal. B-spline curves will not
be discussed separately.

The weights for the even-numbered control points
equal one, and the weights for the odd-numbered
control points can be calculated using

wi = cos θ (18)

where θ is the angle formed by the triplets
∠PiPi−1Pi+1 with Pi one of the odd-numbered con-
trol points. In case of a four-segment (9-point) circle
(Fig. 8), the angle is 45◦, so that the weights of

the odd-numbered control points equal
√

2
2 ≈ 0.7071.

As the number of Bézier segments is increased, the
weights of the odd-numbered converge to one, since
the angle that is spanned per segment (Eq. 18) ap-
proaches zero.
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Figure 9: Rational basis functions of the circle shown
in Fig. 8.

3 NURBS-based Vortex Ring

Model

In this section, a vortex ring model will be derived
using the four-segment NURBS ring shown in Fig. 8.
First, the equations of motion for a NURBS curve
will be derived. After that, some aspects of induced
velocity calculation using the Biot-Savart law will
be discussed, including core models to correct the
unrealistic values of the Biot-Savart law close to the
vortex center line. This will be followed by results of
a time simulation with multiple NURBS-based vortex
rings.

3.1 Equations of Motion

The Navier-Stokes equation for an incompressible
flow expressed in velocity-vorticity form governs the
evolution of the vorticity field [14],

∂ω

∂t
= −(v · ∇)ω + (ω · ∇)v + ν∆ω (19)

The right-hand side terms account for convection,
strain (stretching) and vorticity diffusion, respec-
tively. It is assumed that the complete fluid region
is inviscid except for regions close to vortex filaments
from which follows that they move as a material line
at the local velocity (Helmholtz’s second law). For a
vortex ring in unbounded space, this means that it
will propel itself along its centreline. The solution to
this problem is described by the convection equation,

dr

dt
= v r(t = 0) = r0 (20)



where v is the local velocity at a point on a filament
and r0 is the initial position of the filament.

The position of a fixed point on a NURBS curve can
be calculated using Eq. 16, which is repeated here in
a slightly modified (time-dependent) version,

C(u, t) =
n∑

i=0

Ri,p(u)Pi(t) (21)

Taking the derivative of this equation with respect to
time gives

dC

dt
(u, t) =

n∑

i=0

Ri,p(u)
dPi

dt
(t) (22)

or

Ċ(u, t) =
n∑

i=0

Ri,p(u)Ṗi(t) = R(u)Ṗ(t) (23)

where the rational basis functions are written in ma-
trix form. Combining Eq. 23 with Eq. 20 results in
the following system of equations

R(u)Ṗ(t) = V(u, t) (24)

For a set of n+1 control points, the induced velocity
must be calculated at an equal amount of points on
the vortex ring itself. For the nine-point NURBS
circle shown in Fig. 8, the following array of nine
parametric points is used,

U =

[

0,
1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1

]

(25)

which gives nine points uniformly distributed on the
circle. Assuming that the induced velocity due to the
whole vortex ring at the parametric points is known
(see section 3.2), the equivalent induced velocity at
the control points can be found to be

Ṗ(t) = R−1(u)V(u, t) (26)

As every control point has three coordinates, the
above matrix multiplication must be performed three
times, once for each coordinate x, y and z.

3.2 Induced Velocity Calculation

3.2.1 Biot-Savart Law for a Parametric

Curve

The velocity increment ∆v induced at a point P by
an infinitesimal segment of a curved vortex filament
can be calculated using the Biot-Savart law [5],

∆v =
Γ

4π

dl × (rP − rl)

|rP − rl|3
=

Γ

4π

dl × r

|r|3
(27)

where r = rP − rl, the position of the target point
P relative to the point on the vortex line and dl is
the tangent direction on the vortex filament. The
induced velocity of the complete curved vortex line

at a target point P is the integral of Eq. 27 over the
vortex filament C,

v =
Γ

4π

∫

C

dl × r

|r|3
(28)

For a parametric curve C(u), Eq. 27 can be written
as

∆v(u) =
Γ

4π

dl(u) × r(u)

|r(u)|3
(29)

where dl(u) = dC(u)/du, the derivative of the curve
at the parametric point u. Then, for m quadrature
points ui on the vortex line the induced velocity
increment ∆vi is calculated and using an m-point
quadrature rule, the Biot-Savart integral is converted
into a finite sum,

v =

m∑

i=1

wi∆vi (30)

with wi the weights of the quadrature rule.
The accuracy of the induced velocity calculations

using the method described here is quantified below.
Starting at the centre of the vortex ring, the in-

duced velocity at a set of points on a radial of the ring
is calculated using the method described in the pre-
vious paragraphs and the classical straight-segment

approach as described in literature [5;6]. Results in
terms of the L2-norm of the relative error of induced
velocity for the segmentation method are shown in
Fig. 10a for various discretisation levels (between 12
and 36000 segments). For the NURBS-based method,
the relative error is shown in Fig. 10b for different
quadrature orders. From these figures, it is clear
that the segmentation method (Fig. 10a) shows a
second-order trend: a ten-fold increase in the number
of segments reduces the relative error by a factor
of 100. Still, millions of segments would be needed
to get results accurate to machine precision. The
quadrature method (Fig. 10b) is clearly superior for
points that are not too close to the vortex ring.
Results calculated using a 32nd-order rule (for a total
of 128 Biot-Savart law evaluations) are accurate to
machine precision everywhere in the field except for
a region close to the vortex ring itself. The slow
convergence near the vortex ring is due to the use
of fixed-order rules. The efficiency of the NURBS-
based quadrature method can be greatly increased
by employing adaptive quadrature rules where the
required accuracy is set instead of the method order.

3.2.2 Core Model

For a target point that approaches the vortex ring,
the induced velocity calculated with Eq. 29 increases
unbounded. On the vortex ring itself, the induced
velocity is infinite. In literature, this unrealistic be-
haviour is corrected by regularising the Biot-Savart
law with a model that represents the viscous effects
inside the vortex core. One of the first researchers to
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Figure 10: Convergence induced velocity calculations
of segmentation method (a) and quadrature-based
method (b) to the potential values in the plane of
a vortex ring.

use such a model was Scully [13] who introduced the
following swirl velocity profile

Vθ(r̄) =
Γ

2πrc

r̄

1 + r̄2
(31)

Other profiles have been defined by Rankine [12],
Lamb and Oseen [12] and Vatistas [15]. For these mod-
els, the velocity profile is shown in Fig. 11a as a
function of non-dimensional distance from the core
centre. The convergence to the potential reference
of the Scully, Vatistas (n = 2) and the Lamb-Oseen
model are displayed in Fig. 11b. For the Vatistas
core model (that reduces to other models for specific
values of its parameter n), Eq. 29 is modified as
follows

∆v =
Γ

4π

|r(u)|2

(r2n
c + |r(u)|2n)1/n

dl(u) × r(u)

|r(u)|3
(32)

where |r| is the radial distance. This is different from
the correction as found in literature [6]

∆v =
Γ

4π

h2

(r2n
c + h2n)1/n

dl(u) × r(u)

|r(u)|3
(33)
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Figure 11: Non-dimensional swirl velocity profiles of
various vortex core models (a) and their convergence
to the potential model (b).

where the perpendicular distance h is used uncon-
ditionally. The difference is illustrated in Fig. 12,
the gray area is the region where the core correction
model modifies the potential induced velocity value.
If the perpendicular distance is used unconditionally
(Fig. 12a), this area extends to infinity. The con-
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(a) Original core correction
model as found in literature.
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(b) Modified core model cor-
rection.

Figure 12: A curved vortex filament with the regu-
larisation region of the core model corrections shown
in gray.

sequence of this model is shown in Fig 13a , that
shows the logarithm of the relative error in induced
velocity in the plane of the vortex ring with a Lamb-
Oseen core (rc = 0.025R) for an eighth-order Gauss
quadrature rule (32 Biot-Savart law evaluations per
target point). The result with the core correction
model as given in Eq. 32 is shown in Fig. 13b. For the
original core correction model, an error remains along
the tangent lines of the quadrature points. When
increasing the quadrature order to get more accurate
results, one would notice that for a larger percentage



of points outside the vortex ring, the error would not
decrease.replacemen
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(a) Original core correction model, using the
perpendicular distance h.
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(b) Modified core correction model, using
the radial distance |r|.

Figure 13: Relative error in induced velocity in the
plane of the vortex ring for a vortex ring with a Lamb-
Oseen core (rc = 0.025R) for a quadrature order of 8
(32 Biot-Savart evaluations per target point).

When calculating the self-induced velocity of a
viscous vortex ring using the core correction models
of Eqs. 32 and 33, different results are found.

The theoretical self-induced velocity of a viscous
vortex ring with a Rankine core [12] is given as

Vz =
Γ

4πR

(

log
8R

rc
−

1

4

)

+ O(rc/R) (34)

With a relative core size of 0.01 (rc/R = 0.01), unit
vorticity strength and unit ring radius, this gives

Vz = 0.51205 ≈ 0.51 (35)

Using the original core correction model (Eq. 33),
the induced velocity is found to be Vz ≈ 0.284
whereas using Eq. 32 gives a value of Vz ≈ 0.516.
The trend as a function of relative core size is shown
for both models in Fig. 14, that shows results for both
the NURBS-based approach and the classical method
using straight line segments.

3.2.3 Time Simulations

Time simulations are performed for a period of 10
seconds using a step size of 0.1 seconds. The inte-
grator used is a standard fourth-order Runge-Kutta
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(a) Self-induced velocity prediction with original core cor-
rection model.
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(b) Self-induced velocity prediction with modified core cor-
rection model.

Figure 14: Self-induced velocity of a viscous vortex
ring as a function of relative core size for the origi-
nal (a) and modified (b) core correction model.

method. Knowing that the theoretical self-induced
velocity of a vortex ring with a Rankine core model
(rc/R = 0.05) is approximately 0.384 [12], a single ring
should move a total distance of approximately 3.84
meter if viscous effects are neglected. The position
of the vortex ring as a function of time is shown in
Fig. 15 together with the reference values. At time
t = 10s, the z-coordinate of the centre of the ring is
located at z = 3.881003 which only differs 4 cm with
the reference value of 3.84 meter. This is well within
the bounds of the accuracy of the reference value.

When two identical vortex rings are placed adjacent
to one another in an inviscid fluid, they will leapfrog
indefinitely [11]. For vortices in an incompressible
fluid, a change in length (circumference) of a vortex
ring should be accompanied by a change in core size
to allow the circulation to remain constant. Using a
pair of the vortex rings similar to the one used in the
previous simulation, a new simulation is performed.
The second, identical ring is placed 0.5R in front of
the first ring (in Fig. 16, a side view is shown). In
this situation, the back ring will start moving to the
right and inward, while the second ring moves to the
right and outward. The speed of the front ring will be
reduced considerably which makes it possible for the
ring in the back to overtake it. At this point, the outer
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Figure 15: Comparison of the position of a single
vortex ring in time calculated analytically and nu-
merically.

ring changes direction rather abruptly and starts
moving inward again. The inner ring (which has a
higher velocity) starts moving outward and both rings
end up switching places (front ring becomes back ring
and vice versa). In a stable numerical scheme, this
leapfrogging motion continues indefinitely.
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Figure 16: Sideview of leapfrogging vortex rings dur-
ing a 10 second time simulation.

4 Rotor Wake in Hover

In this section, the vorticity-carrying geometry is
extended to a surface. The wake generated by a
helicopter rotor in hover is represented in a simplified
manner as a continuous cylindrical surface that only
carries the trailing vorticity of the tip vortices. First,
the amount of vorticity that is released into the wake
is determined analytically.

4.1 Vorticity Density in the Wake

Derive how much vorticity is released in the wake per
second and what this gives for its density on the wake
surface (also list all assumptions).

It is assumed that the thrust required for a heli-
copter to hover out of ground effect is equal to the
weight of the helicopter. Then, the induced velocity
vh can be found to be

vh =

√

T

2ρπR2
(36)

In dimensionless form, Eq. 36 becomes

λh =

√

CT

2
(37)

where the thrust coefficient CT is defined as

CT =
T

2πR2(ΩR)2
(38)

It is assumed that the bound circulation along
the span of a rotor blade is constant (i.e., a linear
variation in lift). Then, an N -bladed rotor releases N
vortices with strength Γ at the blade tips. In a single
revolution, these tip vortices can be replaced by N
vortex rings of strength Γ or a single vortex ring of
strength NΓ. Then, in a single second, a vortex ring
with strength NΓ

2π Ω is released in the wake. In hover,
the transport speed of this vortex is given by Eq. 36
from which follows that the vorticity density on the
wake is

γ =
NΓΩ

2πvh
(39)

The tip vortex strength is related to the thrust by

T =
1

2
ρNΓΩR2 (40)

Combining Eq. 40 with Eq. 39 gives

γ =
CT (ΩR)2

vh
(41)

4.2 Actuator Disk Vortex Wake

Model

A description of the complete actuator disc vortex
theory of the rotor in hover is given in Johnson [4].
Here, a simplified model will be used without the
axial root vortex and axial sheet vorticity. For a
four-bladed helicopter rotor similar to the Puma he-
licopter [7], a simplified wake model is constructed as
shown in Fig. 17a. The wake consists of the same
circle as shown before in Fig. 8 extruded in the Z-
direction. The control points in the z-direction are
distributed according to

z =
(1 − cos(πx))

2
(42)

where x is an array of uniformly distributed numbers
in the range [0 : 1]. In total, the cylindrical surface is
defined with 9 × 13 = 117 control points.

The horizontal plane halfway the wake tube de-
notes the division of the wake in a near and far wake
part.



(a) (b)

Figure 17: Initial (a) wake of a rotor in hover, wake
length = 2R and final (b) wake after a single iteration.

Due to the lack of a robust, adaptive quadrature
method in 2D at the time of writing, the current trim
procedure is somewhat different than what will be
used in the future. It uses Helmholtz’s law that states
that the wake geometry should be a streamline and
it is explained in the following paragraph.

For every control point that is used to construct
the wake geometry, a parametric point on the wake
surface is determined. The square rational basis func-
tion matrix R(u, v) is constructed for these points
and its inverse is calculated. Due to size constraints,
the actual matrices (117 × 117) are not shown here.
Instead, Fig. 18 shows the sparsity patterns of R(u, v)
and its inverse, where the black parts denote nonzero
matrix elements.

(a) (b)

Figure 18: Sparsity patterns of the rational basis
function matrix (a) and its inverse (b) for the cylin-
drical surface shown in Fig. 17, size: (117 × 117).

Starting near the tip path plane (upper side of the
cylinders in Fig. 17), streamlines are traced through
the wake downward until they pass the plane halfway
the wake. The lateral positions of the parametric
points on the wake surface are interpolated on these
streamlines and the control point positions are up-
dated using the inverse of the rational basis function
matrix. This is shown in Fig. 17b. The induced
velocity calculations used to trace the streamline use
a 2D (parametric surface) equivalent of the Biot-
Savart law on a parametric curve (Eq. 29) with the
vorticity strength Γ replaced by the vorticity density
γ (Eq. 41. A two-dimensional cross section of the
wake and its flow field is shown in Fig. 19. According
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Figure 19: Induced velocity near the rotor wake dis-
played in Fig. 17b

to actuator disk theory, the induced velocity in the
fully developed wake downstream of the rotor is twice
the induced velocity at the rotor itself [4]. Since the
flow is assumed to be incompressible, the wake cross
sectional area should decrease. As a result, the wake
radius downstream of the rotor is found to be

R∞ =

√

R2

2
=

√

1

2
R ≈ 0.707R (43)

The actual wake radius as shown in Figs. 17b and 19
is somewhat larger at 0.73R. It is expected that an
iterative trim procedure where the vorticity density
on the wake is kept compatible with the wake velocity
may give results closer to the theoretical value. The
induced velocity in the far field below the rotor (here
at two rotor radii below the tip path plane) should be
twice the value at the tip path plane. From inspection
of Fig. 19, one can conclude that this is indeed the
case.

5 Discussion

For one-dimensional cases, such as presented in sec-
tion 3, NURBS-based vortex simulations prove to be
more efficient and accurate than the classical seg-
mentation approach. The reason for this is twofold;
the use of NURBS primitives allows one to model
the (initial) vorticity-carrying wake structure exactly
and the use of numerical quadrature makes it possible
to get the most accurate induced velocity values for
a fixed number of Biot-Savart function evaluations.
Furthermore, the O(N2) nature of the problem is
reduced to an O(NM) problem (where M << N)
since for an accurate representation of the geometry,
only a limited number of Lagrangian markers are
needed.

Future research will focus on the following topics:

Adaptive quadrature methods If the required
accuracy of the induced velocity calculations is a
user-settable parameter instead of the order of the



quadrature rule, one can easily trade accuracy for
speed in a controlled way.

Rotor trim Before the start of a simulation, the
rotor wake should be trimmed to a steady condition.
Care must be taken to keep the vorticity density
on the vortex sheet consistent with the amount of
vorticity that is released from the rotor into the wake.

Interface with Flight Dynamics Models Infor-
mation must be passed between the flight dynamics
model (FDM) and the wake model. From the FDM
to the wake, newly created vorticity is passed. The
other way around, the influence of the wake at the
rotor blades (and other components) must be known.
Instead of directly calculating the induced velocity
at a rotor blade segment position, induced velocity
values will be calculated at a set of points in the
rotor tip path plane. These values are then used
to identify the coefficients of an inflow distribution
(such as the one from Pitt and Peters [10]). These
coefficients are then used to determine the actual
values of the induced velocity at the individual blade
segments.

Validation and Demonstration of Real-Time

Capabilities Once it is verified that results of the
wake (both static and dynamic) are consistent with
results as found in literature, real-time capabilities
should be demonstrated. I.e., a single update of the
wake should take less time than the integration time
step of the parent simulation.
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