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Abstract 

This paper describes a numerical study of the aeroelas­
tic stability of a hingeless rotor helicopter in a steady 
coordinated turn. A quasi-steady aerodynamic model 
is used, which includes airfoil stall and compressibility 
effects. The finite element model of the rotor blades 
includes kinematic nonlinearities due to moderately 
large elastic deflections. The results show that the 
lag modes are stabilized in level turns. In descend­
ing flight, the first lag mode is unstable at low turn 
rates, and the damping of the second lag mode de­
creases sharply at medium turn rates. Strong aerody­
namic nonlinearities introduce multiple trim solutions 
and make the predicted stability levels very sensitive 
to changes in pitch control settings. 

Nomenclature 

a Lift curve slope 
b Blade semichord 
Cd Airfoil drag coefficient 
Cm Airfoil pitching moment coefficient 
Cn Airfoil normal force coefficient 
f Chord wise position of the separation point, 

as a fraction of the blade chord 
g Acceleration due to gravity 
k Goldstein's circulation correction factor 
ny Load factor 
R Main rotor radius 
V Flight speed of the helicopter 
v, w Blade elastic deformation in lag and flap 
x Blade spanwise coordinate, as a fraction of 

the rotor radius 
x A Chord wise offset of aerodynamic center from 

the elastic axis divided by blade semichord, 
positive for a.c. ahead of e.a. 

(3 Sideslip angle 
1 Flight path angle, positive for climbing flight 
( Real part of characteristic exponent 
Oa Total geometric blade pitch angle 
Oo Blade collective pitch angle 
J.l Advance ratio 
PA Air density 
¢ Torsional elastic deformation of the blade 
1/! Blade azimuth angle 

• Assistant Professor, Center for Rotorcraft Educa­
tion and Research 

1/! Aircraft turn rate, positive for right turns 
n Rotor angular velocity 
Subscripts 

{) 
(),. 

EJx 
Introduction and Problem Statement 

Steep turns represent important flight conditions for 
military and civil helicopters alike. They may be re­
quired to seek cover and avoid detection, to engage 
or escape from enemy threats, or to prevent collisions 
with suddenly appearing obstacles or other aircraft. 
Substantial rotor loads develop in these flight condi­
tions, together with relatively high roll, pitch, and yaw 
rates. Large portions of the rotor disk are stalled or 
near stall. 

Limited information on the effects of steep turns 
on the aeroelastic stability of a helicopter rotor exists 
in the published literature, as shown by recent com­
prehensive survey papers [1,2]. With the exception 
of flight in turbulent atmosphere, most research work 
on rotary-wing aeroelasticity has focused on steady, 
straight, 1-g flight conditions. A series of detailed 
studies of the trim conditions and the flight dynamics 
of several rotorcraft types, including hingeless rotor 
helicopters, in steep, high-g turns has been conducted 
by Chen [3]-[5]. Although the mathematical model of 
the rotor was relatively simple because the focus was 
on flight mechanics, rather than aeroelasticity, these 
studies are particularly valuable because they define 
a complete set of exact kinematic relations for a heli­
copter in a steady, coordinated, helical turn. 

In Ref. [6], a set of equations for trim based on those 
of Refs. [3] and [4] was coupled with an aeroelastic 
model of hingeless rotor blades undergoing moderate 
elastic deflections in coupled flap-lag-torsional motion. 
The resulting mathematical model was used to inves­
tigate the trim state and the aeroelastic stability of a 
hingeless rotor helicopter in steady turning flight con­
ditions. The effect of several turn parameters such 
as advance ratio, turn rate, flight path angle, and 
turn direction was studied. In Ref. [6] a very sim­
ple aerodynamic model was used in the analysis: stall, 
compressibility, and three-dimensional (3D) tip effects 
were neglected. In the study described in this paper, 
a number of improvements to the aerodynamic model 
are implemented, namely the modeling of quasi-steady 
stall and Mach number effects on the lift, drag, and 
pitching moment characteristics of the airfoil, and the 
introduction of simple corrections for 3D tip effects. 

The main objective of this paper is to study the 
effects of airfoil stall and compressibility on the trim 
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state and the aeroelastic stability of a trimmed hinge­
less rotor in a steady, coordinated turn. Of particular 
interest are the degradations in stability observed in 
Ref. [6] for the first lag mode in straight, descending 
flight, for the second lag mode in tight, descending left 
turns, and for some of the flap modes in tight, level 
turns. The effects of modeling assumptions are studied 
systemtttically by obtaining results with mathematical 
models of increasing complexity, in which the effects 
of angle of attack and Mach number are added one at 
the time. 

Another objective of this paper is to observe the ef­
fects of increasing the nonlinearity of the overall acroe­
lastic rotor model. When linear incompressible aero­
dynarnics is used, the nonlinearities in the rnathemati·­
cal model arc due to the kinematics of moderate elastic 
deflections. These nonlinearitics are relatively weak. 
On the other hand, the modeling of airfoil stall may 
introduce much stronger nonlinearities, which can in­
crease the sensitivity of the aeroelast.ic stability levels 
to changes or inaccuracies in the equilibrium position 
about which the equations of motion are linearized. 

Mathexnatical rnodel 

Coupled Trim and Aeroelastic Analysis 
The aeroelastic analysis and the coupled trim pro­

cedure used to obtain the results of this paper are 
described in detail in Ref. [6], and only a brief outline 
is provided here. 

The rotor blades are modeled as Bernoulli-Euler 
beams undergoing coupled flap-lag-torsional motion. 
The nonlinear 1 partial differential equations of motion 
of the blade are discretized using a finite element for­
mulation based on Galer kin method of weighted resid­
uals. The blades are attached to a hub of infinite mass, 
that is moving with prescribed angular velocities in 
pitch, roll, and yaw. The values of these velocities are 
provided by the solution of the coordinated turn trim 
problem, and are maintained fixed in the aeroelastic 
stability analysis. 

The helicopter is assumed to be executing a steady, 
coordinated, helical turn. The coupled trim problem 
consists of the simultaneous solution of two sets of 
nonlinear algebraic equations. 

The first set describes the trim state of the entire 
helicopter 1 and is based on the trim equations derived 
by Chen [3]. The set is composed of 13 equations: 
six enforcing force and moment equilibrium along and 
about the aircraft body axes, three relationships be­
tween roll, pitch and yaw rates and the Euler rates, 
two momentum theory equations for main and tail ro­
tor inflow, and two additional kinematic relationships. 
The 13 unknowns are the collective pitch of the main 
rotor 80 and of the tail rotor O,, the longitudinal and 
lateral cyclic pitch settings 01, and 01" the steady 
state roll, pitch, and yaw rates p, q, and r, the pitch 
attitude angle 0, the roll attitude angle </>, the aero­
dynamic angle of attack of the fuselage a, the sideslip 
angle (3, and the constant portion of the inflow for the 
main rotor ,\ and the tail rotor -'•. The turn rate 1j; 
(> 0 for a right turn), the magnitude V of the aircraft 
velocity vector, and the flight path angle 1 (> 0 for 
an ascending turn) define the turning flight condition, 
and are provided as input. 

The second set of equations represents the blade 
aeroelastic response problem, which is coupled to the 
aircraft trim problem because the rotor forces and 
moments acting on the aircraft depend on the elas­
tic deflections of the blades. The nonlinear ordinary 
differential equations (ODE) of motion of the blade 
are transformed into a set of nonlinear algebraic equa­
tions through a modal coordinate transformation fol­
lowed by the application of a classical Galer kin method 
around the azimuth. The modal coefficients of the m 
modes used in the coordinate transformation are time 
(or azimuth) dependent 1 and are expanded in Taylor 
series truncated at the n-th harmonic. The (2n + l)m 
Fourier coefficients are the unknowns of this portion 
of the trim problem. For all the results presented in 
this paper it is m = 4 and n = 2 for a total of 20 
unknowns. 

The system of nonlinear ODE that defines the aeroe­
la..stic stability and response problem is solved itera­
tively using quasilinearization. The solution of the set 
of ODE yields the steady-state, periodic equilibrium 
position of the rotor blades. The linearized stability 
of the system is evaluated, according to Floquet the­
ory, by calculating the characteristic exponents of the 
state transition matrix at the end of one period, or ro­
tor revolution. The small perturbation motion of the 
blade is stable if all the real parts of the characteristic 
exponent are negative. The required transition matrix 
is generated as part of the quasilinearization solution 
process. 

Am.>odynamic n1odel 
The aerodynamic loads acting on the rotor blades 

are treated using the implicit formulation extensively 
described in Ref. [7]. The expressions for the veloc­
ity components of the airflow at the cross-sections of 
an elastic blade undergoing coupled flap-lag-torsional 
motion 1 and attached to a moving hub 1 are presented 
in Ref. [8]. The incorporation of the effects of angle 
of attack a and Mach number M in the aerodynamic 
operator of the equations of motion is presented below. 

The coordinate systems used in this study are the 
same as those of Ref. [9], and are shown in Figure I. 
The Cx, Cy, Cz system is the undeformed blade coordi­
nate system. The equations of motion of the blade are 
written in this coordinate system. The C~, e~, e~ sys­
tem is the deformed blade coordinate system. A rota­
tion about thee~ axis of an angle equal to the torsional 
deformation <P transform this coordinate system into 
the" double primed" coordinate system of unit vectors 
All ~fl ~II 
ex,ey 1 ez. 

The aerodynamic lift and moment per unit span can 
then be written in the following way: 

L = apAU;1bR [u~1 (Oa + </>)- u:' 
- (1.5- xA) &R (ea + J>) o] (1) 

M apAU~1 (bR) 2 { XA [u~' (Oa + </>)- u:'] 
+ (0.5- xA) bR (oa + J>) o + 2k,.:cm u~' }2) 
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and: 

P~A = Lcos[tan- 1 (~D]'"L (3) 

P~A = -Lsin [tan-
1 (~D] 

-pAbRcd, [ ( u~')' + ( u;')'] 

'" - ~i:L- PAbRcdl [ (u~')' + (u;')'] (4) 

q~A = M (5) 
(6) 

The aerodynamic loads in the undeformed coordi­
nate system of unit vectors ex' €y' ez' are given by [9]: 

PyA = II II 
PyA - V,x W,x PzA (7) 

p,A = II 
P,A (8) 

9xA = II 
9xA (9) 

The lift curve slope a and the drag coefficient cd1 
are given by: 

ken cos a - cd sin a 

" 
(10) 

with a= Oa + ¢. The normal force coefficient Cn, the 
pitching moment coefficient Cm, and the drag coeffi­
cient cd are calculated at each blade radial station x 
and azimuth angle 1/J using the following equations due 
to Beddoes [10]: 

Cn = c 1 )' CLaa 2 + 2Vl (12) 

Cm = Cn (ko + k,f + k,J4
) (13) 

Cd = cdo + 0.035cn sin a 

+KDcn sin (a- "DD) (14) 

where f is the chordwise position of the separation 
point, given by: 

!=! 
(" - "') 1-0.3 exp -:s;- a< a1 

(15) 

( "' - ") a 2: a1 0.66 exp -s:;- + 0.04 

and 

{ 

0 

J{D = 
2.7e-d!f 

(16) 

The values of the parameters C£a, 0'1' sl' s2' ko, kt) k2, 
Cdo,ann,and d1 are provided in tabular form in 
Ref. [10], as a function of the Mach number M, for 
values of M ranging from 0.3 to 0.8. Curves of Cn,Cm, 

and cd for the N ACA 0012 airfoil are presented in Fig­
ures 2, 3, and 4 respectively, as a function of angle of 

attack a, for several values of the Mach number M. 
Throughout this study, the coefficients corresponding 
to M = 0.3 and M = 0.8 were used for all the val­
ues of M :S 0.3 and M ?: 0.8 respectively. The ef­
fects of a and M are taken into account in both the 
coupled trim calculations and the aeroelastic stability 
and response calculations. For example, in the solu­
tion of the aeroelastic stability and response problem, 
the derivative of the aerodynamic load vector A with 
respect to the vector of generalized coordinates y is 
required. This derivative is a matrix, the i-th column 
of which is given, at the generic blade azimuth angle 
1/J = 1/Jo, and at the k-th iteration of quasilinearization, 
by [7]: 

1 
h {A [y'(,Po) +h;!/Jo]-

A [y'(!/Jo);,Po]} (17) 

where h is a vector with all its components equal to 
zero, except for the i-th, which is equal to a small num­
ber h. The matrix is square, and has size equal to the 
number of modes used in the modal coordinate trans­
formation. In Eq. (17), the first and the second term 
inside square brackets are the aerodynamic load vec­
tors corresponding to the perturbed and to the equi­
librium motion of the blade respectively. Therefore 
these vectors are calculated with the values of c1, cd, 
and Cm corresponding to the appropriate blade distri­
butions of a and M, that is, those associated with the 
perturbed and the equilibrium motion respectively. 

Because the stall model is quasi-steady, cert;ain as­
pects of the aeroelastic behavior of the blade that are 
associated with dynamic stall cannot be described ac­
curately by the mathematical model used in this study. 
One such phenomenon is retreating blade stall flutter. 
The model, however, should be capable of capturing 
low frequency, stall-induced lag instabilities such as 
those predicted analytically and observed experimen­
tally by Ormiston and Bousman [11]. 

The three-dimensional tip effects were taken into ac­
count approximately, by using Goldstein's circulation 
correction factor k1;p [12] 

b 1- X 

fa= 2 x sin¢ 

where ¢ is the inflow angle defined by: 

ull 
tan- 1-' 

Ull 
y 

(18) 

(19) 

Finally, Drees wake model was used to describe ap­
proximately the nonuniform inflow distribution over 
the rotor disk [13]: 

A=Ao(1+Kxxcos,P+Kyxsin,P) (20) 

with: 

"• q(l- 1.8~2 ) VI+(;)'-;] 
"" = -2,.. 
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Results 

The blade configuration analyzed in this study is 
a uniform hingeless soft-in-plane blade configuration, 
with fundamental, rotating, coupled natural frequen­
cies of 0.73/rev, 1.12/rev, and 3.17 /rev in lag, flap, 
and torsion respectively. The elastic coupling factor 
is R = 1, that is the elastic deformation of the blade 
occurs entirely outboard of the pitch bearing. The 
weight coefficient of the helicopter is Cw = 0.005. 
The solidity is o- = 0.07. Blade droop, sweep, precone, 
built-in twist, and chordwise offsets of aerodynamic 
centers and centers of mass from the elastic axis are 
equal to zero. The rotor blade chord is c = 0.055R, 
and the Lock number is /L = 5.5. The angular veloc­
ity of the rotor is n = 310 RPM. The center of ma.ss 
of the aircraft is placed at a distance of 0.021? in front 
of the mast, and 0.25R below the rotor head. The ad­
vance ratio is p = 0.2 for all the results presented in 
this paper. 

The acroelastic stability calculations were con­
ducted using six coupled modes. In all cases these 
modes were the first three flap, the first two lag, and 
the first torsion coupled modes. Each generalized co­
ordinate was represented as a five harmonic Fourier se­
ries. The initial approximation to the blade response, 
for the quasilinearization iteration, was generated us­
ing the same procedure as in Ref. [6]. For a given 
value of the advance ratio 1', the aeroelastic stability 
and response problem was solved for increasing values 
of the turn rate ,f. The solution for a given value of 
the turn rate was used as the initial approximation 
for the next value of ,f; the initial approximation for 
the straight flight cases, ( ,j, = 0) was a rigid blade. 
Two iterations of quasilinearization were sufficient for 
most flight conditions below a turn rate of ,j, = 0.25 
rad/sec. For higher values of the turn rate up to five 
iterations were required. Each iteration required 180-
200 seconds of CPU time on an IBM 3081D computer 
for the cases in which the Mach number effects were 
not included in the model, and 240-320 seconds for the 
complete aerodynamic model. 

In all the results presented in this paper, the curves 
marked "linear" show the results obtained using a lin­
ear incompressible aerodynamic model. In this case 
the lift curve slope, the pitching moment coefficient, 
and the drag coefficient of the airfoil were those cor­
responding to <x = M = 0 regardless of the actual 
local values of angle of attack and Mach number. In 
comparing the results with those of Ref. [6] it should 
be remembered that in the latter the linear model was 
based on a Glauert, rather than a Drees, inflow model, 
and 3D tip effects were neglected. For the curves 
marked "<x effects only", the true angle of attack was 
used to calculate the airfoil coefficients, but the Mach 
number was arbitrarily set to zero. Thus cr, cd, and em 
were calculated using the curves for M = 0.3 in Fig­
ures 2, 3, and 4, regardless of the actual local value 
of M. These curves correspond to a nonlinear incom­
pressible aerodynamic model. Finally, for the curves 
marked "<x, M effects" both the true local values of <x 
and of M were used. Thus these curves refer to a non­
linear compressible aerodynamics model. The curves 
referring to the nonlinear models are plotted for the 

entire range of values of the turn rate ,j, for which it 
was possible to find a converged solution of the cou­
pled trim problem. Because no limitations were posed 
on the available engine power, the coupled trim calcu­
lations performed using the linear incompressible aero­
dynamic model converged for much higher turn rates 
than shown in the plots. 

The load factor n1' (defined according to Ref. [3]) 
is plotted in Figure 5, as a function of turn rate, for 
flight path angles of 1 = 0' and 1 = ±20'. The results 
presented in this paper are obtained for turn rates of 
up to ,j, = 25 deg/sec, corresponding to a load factor 
of about 2. 

Trhn and aeroelastic stability in level tu:~:·ns 
Figure 6 shows the values of collective pitch 00 re-­

quired to sustain a steady coordinated turn, as a func­
tion of the turn rate. As expected, the most noticeable 
consequence of introducing nonlinear airfoil aerody­
namics is a considerable reduction of the maximum 
possible turn rate. If the effects of Mach number are 
neglected, the trim values of collective pitch are essen­
tially unaffected by the nonlinear airfoil aerodynam­
ics. This mathematical model thus indicates that, as 
significant stall regions begin to appear on the rotor 
disk, a steady coordinated turn can no longer be main­
tained. When f\..1ach number effects are included in 
the model, the trim value of the collective pitch in­
creases sharply for turn rates greater than 15 deg/sec. 
This increase can be explained by observing the dis­
tribution of pitching moment coefficient over the rotor 
disk. In straight flight, the prevalent flow conditions 
encountered by the blade are such that the airfoils 
mostly operate at Mach numbers less than about 0.6 
and angles of attack below 10 degrees. For this range 
of M and a the pitching moment coefficient em is pos­
itive, as indicated in Figure 3. Figure 7 confirms that 
over most of the rotor disk Cm is positive for this level 
flight condition. Therefore nose-up torsional deforma­
tions of the blade occur, and this reduces the value 
of Oo required for trim. As the turn rate increases, 
stall regions appear on the front of the rotor, and in 
portions of the third quadrant, as shown in Figure 8. 
In these regions1 the value of em decreases, and nose­
down pitching moments develop over small areas of the 
disk. The development of stall areas may explain the 
substantial increase of Bo for turn rates greater than 
12-13 deg/sec shown in Figure 6. 

Figure 9 shows the values of longitudinal and lat­
eral cyclic pitch required to maintain the turn. The 
longitudinal cyclic B,, is largely unaffected by stall 
and compressibility for the range of turn rates for 
which a coordinated steady turn is possible. The lin­
ear and the nonlinear incompressible model produce 
essentially the same results for the lateral cyclic pitch 
01c. However, when Mach number effects are included, 
substantially larger values of Ole, or more "left stick", 
are required. 

Figure 10 shows the real part of the characteristic 
exponent of the first lag mode as a function of turn 
rate, for a level, right-handed turn. The figure shows 
that the results obtained with a linear and a nonlin­
ear incompressible model are quite close. The small 
influence that stall has on the stability of the first lag 
mode is due to the fact that most of the rotor is oper-

Ill.S.l-4 



ating below stall for all the flight conditions covered by 
the figure. On the other hand, the inclusion of Mach 
number effects increases considerably the stability of 
this mode. This stabilizing effect can be related to the 
fact that, over most of the rotor disk, the blade expe­
riences nose-up pitching moments. Thus the effect of 
Mach number is to make the blade behave qualita­
tively like a blade with zero pitching moment coeffi­
cient, but with the aerodynamic center placed ahead 
of the elastic axis, XA > 0. The aeroelastic stability 
of blades with noncoincident elastic axis and aerody­
namic centers has been studied in Ref. [7], where it 
was observed that positive values of XA increase the 
damping of the first lag mode. This argument is also 
consistent with the large increase in damping that oc­
curs with increasing turn rate. In fact, by comparing 
Figures 7 and 8 it can be seen that, as the turn rate 
increases, the portion of the disk over which em is pos­
itive decreases only slightly. On the other hand, the 
magnitude of the nose-up pitching moments increases 
considerably. Therefore, as the turn rate increases, the 
behavior of the blade becomes qualitatively similar to 
that of a blade with increasing, positive chord wise off­
set between aerodynamic center and elastic axis. The 
increasing positive offset increases the stability of the 
first lag mode. 

The stability of the first torsion mode increases 
slightly when stall and compressibility effects are taken 
into account, as indicated by Figure 11. At high turn 
rates, however, the damping decreases considerably 
when a nonlinear compressible model is used. The 
nose-up pitching moments may be responsible for this 
destabilization, which is qualitatively similar to that 
caused by XA > 0, and observed in Ref. [7]. Finally, 
the real parts of the characteristic exponents for the 
first three flap modes are grouped in Figure 12. The 
behavior of the three modes with increasing turn rate 
is qualitatively similar. The damping remains essen­
tially unchanged when a linear incompressible aerody­
namic model is used. When angle of attack effects are 
included, the stability of these modes decreases at turn 
rates above 15-17 deg/sec. When the full nonlinear 
compressible aerodynamic model is used, the damp­
ing of the first and third lag modes starts decreasing 
at much lower turn rates, and the loss of damping 
is greater. However, these modes are highly damped 
and remain stable for the complete range of turn rates 
considered. 

Trim and aeroe1astic stability in descending 
left turns 

Results were obtained for a descending flight condi­
tion, with 'Y = -20'. The turns were to the left, ,P < 0, 
or counterclockwise as viewed from above. The reason 
for focusing on descending left turns is that in Ref. [G] 
it was found that the stability of the second lag mode 
decreases substantially in a descending turn, with a 
left turn being slightly more destabilizing than a right 
turn. Based on the criteria of Refs. [14] and [15], the 
descending flight conditions considered in this study 
are not expected to result in a vortex-ring state, there­
fore the use of momentum theory in the calculation of 
rotor inflow is legitimate. 

Figures 13, 14, and 15, show respectively the trim 
values of sideslip angle j3, collective pitch Oo, and !at-

era! cyclic pitch e,, as a function of the turn rate. 
These figures show that, when nonlinear airfoil char­
acteristics are used, the solution of the coupled trim 
problem is not unique. For turn rates between 15 and 
20 degrees per second approximately, at least one ad­
ditional trim state can be defined. In particular, Fig­
ure 13 indicates that this additional trim state cor­
responds to a flight condition in which the helicopter 
exhibits large angles of sideslip with the nose pointing 
to starboard, that is away from the turn. The "ba­
sic'' trim condition, on the other hand, corresponds to 
a relatively small sideslip angle, with the nose point­
ing slightly into the turn at low turn rates, and slightly 
away from the turn at higher turn rates. The predicted 
values of j3 are essentially insensitive to the modeling 
assumption, except at the highest turn rates. Fig­
ure 14 indicates that the values of Oo predicted using 
linear and nonlinear incompressible aerodynamics are 
almost identical. When Mach number effects are also 
taken into account, the large regions of nose-up pitch­
ing moments that appear over the rotor disk cause 
the collective pitch required for trim to decrease by 
about one degree for most values of turn rate. Much 
higher values of collective pitch are required for the 
high sideslip additional trim condition. The lateral 
cyclic pitch e,, is largely insensitive to the aerody­
namic modeling assumptions, as shown in Figure 15, 
except for the highest values of turn rates where the 
nonlinear compressible model predicts about one more 
degree of left stick than the simpler models. Large 
values of left stick are required to sustain the high 
sideslip turn. In fact high values of j3 generates large 
aerodynamic side forces on the fuselage, directed away 
from the center of the turn, which must be balanced 
through large positive values of e,, coupled with the 
substantially increased values of collective pitch men­
tioned earlier. Based on a limited amount of numerical 
experimentation, it appears that no multiple solutions 
appear when a linear aerodynamic model is used, and 
that no more than two solutions exist when nonlin­
ear aerodynamics is used. Although the high sideslip 
turning flight condition that corresponds to the sec­
ond trim solution is unlikely in practice to be entered 
intentionally, it remains an interesting flight condition 
to study because it represents an unusual attitude sit­
uation that might be reached accidentally or in emer­
gency conditions. 

Figure 16 shows the damping of the first lag mode 
as a function of turn rate. When stall and compress­
ibility effects are taken into account, this mode is un­
stable in straight descending flight and wide turns. 
The more simplified aerodynamic models still capture 
the loss of stability, and predict the mode to be neu­
trally stable. The stability levels increase with increas­
ing turn rate. The mechanism identified in Ref. [6], 
namely the increase in aerodynamic damping in lag 
due to the increased aerodynamic loads developed by 
the rotor in the turn, explains the behavior of the re­
sults obtained with the linear and the nonlinear in­
compressible model. The additional increase in sta­
bility predicted when Mach number effects are also 
taken into account can be explained with the same ar­
gument used for the straight flight case, namely the 
effect of the nose-up pitching moments acting on the 
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blade. When angle of attack effects only are consid­
ered, the stability of the first lag mode in the high 
sideslip trim condition increases substantially. On the 
other hand, when the nonlinear compressible model 
was used, the quasilinearization algorithm failed to 
converge for all but one of the combinations of param­
eters used in this study to describe the high sideslip 
flight conditions. For the case in which convergence 
occurred all the modes were weakly stable, however it 
was impossible to identify the mode corresponding to 
each characteristic exponent. Because of these conver­
gence difficulties, no results are shown in the figures 
for the high sideslip calculations using nonlinear com­
pressible aerodynamics. The convergence difficulties 
also suggest that in this unusual flight condition se­
vere aeroelastic instabilities may occur. 

Moderately high turn rates in descending turns were 
observed to be destabilizing for the second lag mode 
in Ref. [6], with critical turn rates between 20 and 30 
deg/sec. The loss of damping remains when stall and 
compressibility effects are included in the model, as 
shown in Figure 17 except that the critical turn rates 
are now reduced to about 10 deg/sec. The stability 
level increases with higher turn rates. This increase, 
however, is not captured if the Mach number effects 
are not modeled. In this case, the second lag mode is 
predicted to become unstable for a turn rate of about 
15 deg/sec, with the instability increasing with in­
creasing turn rate, and with the high sideslip condition 
being more unstable that the basic, or low sideslip, 
trim condition. The behavior of the first torsion mode 
appears from Figure 18 to be qualitatively similar to 
that in level turns. Thus the stability of this mode de­
creases for high turn rates, but the mode remains very 
well damped. The loss of stability is not captured by 
the linear incompressible aerodynamic model. Finally, 
the real parts of the characteristic exponents for the 
first three flap modes are grouped in Figure 19. The 
behavior of the three modes with increasing turn rate 
is qualitatively similar. They remain very well damped 
throughout the range of turn rates, with some loss of 
stability predicted at high turn rates. A severe desta­
bilization occurs in the high sideslip trim condition, 
but even in this case no flap mode becomes unstable. 

Assessment of problem nonlinearity 
When linear incompressible aerodynamics is used, 

the nonlinearity of the aeroelastic stability and re­
sponse problem is due to the kinematics of moderate 
elastic deflections. These kinematic nonlinearities are 
relatively weak. On the other hand, the modeling of 
stall and Mach number effects may introduce strong 
nonlinearities. Whether or not the aeroelastic problem 
as a whole becomes strongly nonlinear depends on the 
size and the strength of the stall, or near stall, regions 
over the rotor disk. An assessment of the nonlinear­
ity of the aeroelastic problem is required to determine 
the reliability of linearized stability analyses, such as 
those based on Floquet theory. 

A quantitative evaluation of the nonlinearity of the 
problem is a very complex task, not attempted in this 
study. However, a qualitative evaluation was carried 
out by observing the changes in the characteristic ex­
ponents, when the trim values of the collective pitch Oo 
were perturbed by ~Oo = ±5%. (The perturbed con-

figurations were not retrimmed.) The stability of a lin­
ear system remains unchanged when the equilibrium 
position is changed. On the other hand, the linearized 
stability of a nonlinear system generally depends on 
the equilibrium position about which the linearization 
is carried out. Therefore, the size of the variations of 
the characteristic exponents due to the perturbations 
~00 was taken as indicative of the overall nonlinearity 
of the aeroelastic problem. 

Figures 20 and 21 show the real parts of the char­
acteristic exponents of the first lag mode (L! and of 
the first torsion mode (r1 respectively. Each figure 
contains the results obtained with the trim value of 
the collective pitch 00 and with the perturbed values 
Oo ± ~00 , for both the linear incompressible and the 
nonlinear compressible aerodynamic models. 

Figure 20 shows that the stability of the first lag 
mode changes by about 10% for 5% changes in col­
lective pitch, for all the turn rates considered. The 
stability level increases for increasing Oo. Introducing 
nonlinear aerodynamics increases the changes in (Ll, 
by amounts that vary rather widely in magnitude and 
sign depending on turn rate and sign of the collective 
pitch perturbation. The increased nonlinearity of the 
problem with refined aerodynamics is particularly ev­
ident in Figure 21. This figure shows that when linear 
aerodynamics is used, the stability of the first torsion 
mode remains essentially unaffected by ~0 for all the 
flight conditions considered. When nonlinear aerody­
namics is used, the stability of the mode becomes in­
creasingly sensitive to changes in 00 as the turn rate 
increases. For a turn rate of 16 deg/sec, the loss of sta­
bility for ~00 = +5% is almost of 40%. In both Fig­
ure 20 and 21 the largest differences, compared with 
the linear aerodynamics case, occur for perturbations 
~Oo = +5% that increase the size of the regions of 
the rotor disk at or near stall. Results not presented 
here show that, of the remaining modes, the second 
lag mode exhibits variations that are fairly similar to 
those of the first mode, and the first flap mode behaves 
similarly to the first torsion mode. The variations for 
the second and third flap mode are relatively small. 

Figures 20 and 21 also suggest that particular care 
should be exercised in correlating the results of aeroe­
lastic stability analyses and wind tunnel or flight tests, 
especially when stall or Mach number effects may be 
prevalent. In fact, the ±5% perturbations in collective 
pitch used in the figures correspond to actual varia­
tions of 0.6 degrees at most. Therefore it is possible 
that relatively large discrepancies between analytical 
and experimental results may result due to inaccura­
cies in defining test conditions, such as the rotor pitch 
control settings. 

Conclusions 

An aeroelastic stability and response analysis, which 
includes quasi-steady stall and compressibility effects 
on the lift, drag, and pitching moment characteristics 
of the airfoil, for hingeless rotor helicopters performing 
steady coordinated turns has been presented in this 
paper. Several limitations of previous analyses are re­
moved. However, a number of assumptions made in 
the derivation of the mathematical model remain, and 
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are necessary in order to simplify the treatment of this 
very complex aeromechanical problem. The validity of 
these assumptions should be taken carefully into ac­
count in evaluating and extending the results of this 
study. 

The results presented in this paper refer to soft-in­
plane hingeless rotor blades, and indicate the following 
trends: 

1. The aeroelastic stability of the lag modes in­
creases in a level turn. The damping of these 
modes increases with increasing turn rate. Ne­
glecting Mach number effects on the airfoil char­
acteristics may lead to underestimating the lag 
damping. 

2. In descending flight conditions, the first lag mode 
is unstable in straight flight and wide turns, and 
is stabilized by increasing turn rates. The sta­
bility of the second lag mode decreases substan­
tially in descending left turns, but the mode re­
mains stable. The minimum damping, predicted 
to occur at turn rates of 20-25 degjsec when us­
ing a linear aerodynamic model, moves to about 
10 deg/sec when nonlinear compressible aerody­
namics is used. 

3. The first torsion mode and the first three flap 
modes experience a decrease in stability at high 
turn rates in both level and descending turns. 
This modes, however, are well damped, and re­
main stable despite the loss of damping. 

4. One of the key factors in determining the aeroe­
lastic behavior of the rotor blade is the presence 
of nose-up pitching moments over large portions 
of the rotor disk. These in turn are due to the spe­
cific shape of the cm(O!, M) curves of the airfoil, 
namely the nose-up pitching moments at angles 
of attack below stall. Therefore the conclusions 
of this study are limited to blades with airfoils 
that have this Cm behavior. 

5. The increased nonlinearity of the problem, caused 
by the aerodynamic model, can manifest itself in 
multiple solutions to the coupled trim problem. 
The additional solution identified in this study 
corresponded to a high-sideslip flight configura­
tion, with substantial degradation of the aeroe­
lastic stability of the rotor. 

6. The nonlinearity of the problem also causes the 
results to be very sensitive to changes in the equi­
librium position about which the equations are 
linearized. Therefore great care has to be exer­
cised in theory-experiment correlation exercises. 
In fact relatively large discrepancies may be erro­
neously attributed to inadequate theories or de­
ficiencies in the test, when they may be actually 
due to inaccuracies in defining the test conditions. 
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Figure 1: Deformed and undeformed blade coordinate 
systems (adapted from Ref.[9]) 
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Figure 2: Airfoil normal force coefficient (adapted 
from Ref.[10]). 
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Figure 3: Airfoil pitching moment coefficient about 
quarter chord (adapted from Ref.[10]). 
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Figure 4: Airfoil drag coefficient (adapted from 
Ref.[lO]). 
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