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ABSTRACT 

At present, a simplified approach to the prediction of rotor blade 

airloads is urged to be developed in the engineering application. 

In this paper, firstly, relations of first two harmonic induced 

velocities to the lower and same-order harmonic circulations are obtained 

from the generalized classical vortex theory of the rotor. Then, based 

on the blade element theory, a closed form of equations for circulation 

is established and, by taking the flapping condition into account, 

simplified formulae for predicting rotor blade airloads are set up, In 

particular, expressions of flapping coefficients are derived, including 

the effect of variable induced velocity distribution but in terms of blade 

parameters and flight parameters only. 

Finally, a calculation of a typical example is made and compa'risions 

of airloads with those from the more accurate numerical solution are 

shown that the present method is fairly suitable for aerodynamic 

analysis and preliminary design of helicopters. 
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NOTATION 

Q rotational speed of the rotor 

R -- radius of the rotor 

v -- induced velocity 

1i=v/QR -- nondimensional 

r -- circulation 

J' = r jQR2 -- nondimensional 

(r, 8) -- polar coordinates in the disk plane 

(p, 1/J) -- dummy polar coordinates 

r=r/R -- nondimensional 

p=p/R -- nondimensional 

Pn -- air density 

k -- number of blades 

V 0 -- forward velocity of the rotor 

f' o=Y,jQR -- nondimensional 

V 1 -- resultant velocity of the air-stream, constant over the disk 

plane 

V 1=V 1jQR -- nondimensional 

ao angle of attack of the rotor with respect to Vo 

a 1 angle of attack of the rotor with respect to V 1 

b -- blade chord 

f> =b/R -- nondimensional 

c, -- blade section lift coefficient 

a .. -- two dimensional lift curve slope 

T 1 thrust of one blade 

T=kT, --.. thrust of the rotor 

~ -- blade section pitch angle 

U -- relative velocity of blarJe sec~ion 
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[J=U jQR -- nondimensional 

~o -- blade pitch at the root 

Ll~ -- blade twist 

~~ -- cosine term of blade feathering 

~2 -- sine term of blade feathering 

u:t - velocity- component in the disk plane 

uy ---velocity component normal to the disk plane 

p,=Vo cos a,jQR -- advance ratio 

Ao=V0 sin a0jQR --inflow ratio 

K -- factor of coupling between flapping and feathering 

/3,-- flapping angle with origin at pin 

fJ -- flapping angle with origin at center 

Go,-- coning angle 

a, cosine term of blade flapping 

b, sine term of blade flapping 

e -- flapping pin offset 

i=e/R -- nondimensional 

m 1 -- blade mass 

lni1=m1/pHR3 -- nond'imensional 

CT=T j; p,. rrR2 Q 2 R2 --·thrust coefficient 

1 e inertia moment of one blade about the pin 

Se mass moment of one blade about the pin 

(MA),- thrust moment of one blade about the pin 

(M c), -- gravity moment of one blade about the pin 

g -- gravity acceleration 

"-- root and tip losses factor after integration 

1 INTRODUCTION 

The prediction of rotor blade airloads in flapping plane is one of the 
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fundamental problems in helicopter aerodynamics and dynamics, This is 

because not only helicopter flight performance, handling quality, but 

also rotor fa,tigue life, aeroelastic instability all depend on the 

understanding of the rotor blade airloads, particularly of the blade 

thrust loads. 

Since 1960s, various investigators have done much work in the area 

and got great success. In 1973, AGARD organized a speciallsts meeting 

on "Helicopter Rotor Loads Predicion Methods" in lta>y ~ref. 1). It was 

a survey of the situation of the analytical meth·o<ls used by different 

airframe manufacturers. However, as stated by sotne reviews arrd later in 

many papers (ref. 2, 3 ), the improvement in recent years is ·rrot so 

significant even with the high speed, large sca·le digital compute-r owing 

to the complexity of the rotor behavior. Rather, it is requi·red ·to have a 

simplified method for predicting rotor M"'de airloads available to the 

engineer and the designer at a worki"ng level. 

In this paper, firstly, relations of first two harmonic induced 

velocities to the lower and same-order harmonic circulations a-re obtained 

from the generalized classical vortex theory of the rotor, Tben·, based 

on the blade element theory, a closed form of equ·aHOfl·S for circul:ation 

is established. And finally, by taking the flapping condition into 

account, simplified formulae for calculating rotor blade airloads are 

st't up. 

2 lNDtJCED VELOCITIES· 

According to the generalized vortex theory of rigid wake of the 

rotor (ref. 4), the axial induced velocity at any point (r, 8) on the 

rotor disk is a function of the bound vortex circulation r('p, 1/J), 

v=v(F) (2-1) 

If the circulation [' is expanded into Fourier series: 
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T=T0(p)+2; [J'.,(p) cos mB+J'.,(p) sin mB] (2-2) 
m•l 

the induced velocity 1j could be written into Fourier series also: 

v='iio(r)+ 2:: ['ii",(r) cos n¢+ii",(r) sin n¢] (2-3) 
""I 

Here, every harmonic component of V, in general, is induced by all 

harmonic components of circulation. In this work, as a simplification, 

only the lower and same-order harmonics of circulation to the induced 

velocity are taken into account by considering the major contribution of 

vortices, i.e. 

1 

J 
where the superscripts denote the harmonic orders of circulation, 

Based on Wang's vortex theory (ref. 5 ) and limited to second 

harmonics, we find (induced velocity is positive as downward): 

- k -vo=-~(-T0) 4rrV 1 

+JI dr, _!__ 1._ • 
' dp p 2 

+(1-c2 ) (-?~,)} 

1 
2' 

1 
2' 

v,.=---- (c+c) --- r,+(1+c2) (-rl,) k { (-VI)- - l 
4rrV 1 ?' 

(2-4) 

[J '-dTI,P'1 (3 + (c'-c) ---- · F -
0 dp "' 2 2 ' 

1 o') 
2 , 2,ji2 dp-
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-J' d[',, _l · F(l_ _l 2, 'i'P_2
2 
)dr ]+ 

' df' 2 2. 2. 

+ (c3+c)(V')J'dr_,, ~ d"P+ 'i' 0 dp ~ 

k { (-V•)[J;dfo 'ilz,=--~ (c2+c2) -=:-- ---
4n:]T, ~ 0 dp ( 3 -1 P2

) -. F 2 . 2 . 1.~,- dp-

-J' dr, r'_ 1_. F(l_ 32. 3. :,P: )dr]+ ' dp p3 8 . 2 • 

+ (c'-c)(iT •)J' dT:_,_ ~ dil+ 
'i' ' dp ~ 

[r'dr, il' 1 (3 + (c'+c) 'dp' ?'' 2. F Z' 1 P2 
) 

2 . 2. ,,- dr+ 

+J' <£.[,,1_. F(l_ 1 2,-pz"-'-)rP]+ 
, d75 2 2 • z· 

+(1-c') (-T2,)} (2-5) 

where the hypergeometric functions are defined as follows: 

in which 

and the symbol c is 

F( I d z)=l+"' _(a), ·_(b), ___ ,, 
a. '· ' .~, (d), ·In 

[z[<L 

·(a),= a( a+ 1) (a+ 2) ... (a+h-1) 

d"<'-L -2, ...... 

1-[sin a.! cos a, c = -- -- ·---- = -- ----,;:: 1 
cos a1 1+ I sin at I __, 

The expressions of induced velocity harmonics above are the key to 

the settlement of our problem. The hypergeometric functions involved, 

accordip.g to reference 8 .. might be cut down to the first several terms 

in the series. 
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3 EQUATIONS OF CIRCULATION 

Based on the blade element theory (ref. 6) and the famous Joukowsky 

formula, the rotor blade airloads can be expressed as 

dT, ur 1 U' dr=pll =2pn be:; (3-1) 

here, the conventional assumptions are adopted: 

U""'U, 

cy""'a,(~.- ~"-) 
y 

Thus, the circulation relation (nondimensional) is 

- li -r =z:a ,([], ~.-f],) (3-2) 

For articulated rotor, the blades are considered as rigid with hinge 

offset e and coupling factor between flapping and feathering K, and for 

hingless rotor, the blades could be considered as deflected to first 

elastic mode and treated as an equivalent model, Therefore, 

and 

~.=~o+r.d~+~t cos 1/J+~2 sin 1/J-K(J" 

f],=r+l' sin 1/J 

Vy=-).o+'ll'+l' cos 1/J · flo+ ('i'-e)1~'-

fl, = 1~ -= 1 ~ -[a,- 2:: (a, cos n'IJ+b, sin n'/J)] 
e e n .. \ . 

If introduce following notations 

.<;=.<o+~;l' 

and neglect smaller terms which contained l~e and the flapping 
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coefficients higher than third order a3, b3"", we have 

r,= a,:l [&:r +J&f2 -vo+.l: + ~!La; J 

T1o=azb [ -'l!,o-l'ao+b; 9' + ~l'az+ ~ !'Kb~J 

Fzo=a"! [ -vzo + ~l'a;+Ka,9'+2b,9'] 

T,,=a·; [-;;,,+~I' b;-za, r+Kb, r] (3-6) 

It should be noted that, under the premise of the simplified treatment 

(i.e. only the lower and same-order harmonics of circulation to the 

induced velocity are taken into account), the relationship between 

circulation and the induced velocity is obtained as a closed form. 

From (2-5) and (3-6), the harmonic components of the induced 

velocity might be written as follows 

Jv,o= 1 ~~g[(,;a ~ l'a:)(~H; r')+ 

+&·(-!Lr+~Qr'+l_,., + 
'

0 9 7 10 

+J&(-i•- ~ r'+? r')] 
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+ ~ • (2.,. _1._ ,.,__!_ -s) + L1~(2,. + 16 r' _11 r')] + 
' 10 9 3 r 15 39 16 

+ two(_.l._l_ r') +b' (.l.r+2.r2+l.r')}+ 
2 3 ' 16 8 4 

+ A~; - [-_!_(1 Af,jcos a,) . Ll~+l_ ,_ 
1+A::l7• 2 1+Ag fl 2°' 

A1./cosa 1 ("+_!_ ·)_!_(1+ 1 r)J 1+A: fl Ao 2 fl a, r' n 

,..,,= 1 :~:r:[ + fl b;-2ad+Kb,r ]+ l+~l: LJ;;,, 

Llw,,= 1 :~rv•[{-la+fla:)(; +i-r'+; ••)+ 

H'(i.+2.. r'+l_ r' )+ Ll~(l.;; +l..r'+l_ r• )] + 0 7 32 7 8 8 3 

+ ____&_:_[(-l'+_!_ •)Af,/cos a, (-37_!_ _ _!_.,_ 3 ,.;) + 
1+A!: ' 2fla, t+Ag fl 401' 15" 10 

+a•(_l..,_l_,.,_l. f 1 )] 
' . 16 8 4 

(3-7) 

where At A~ 0 A: ~"····are defined as follows 

A' =a~/i __ k_ 
0 2 4JTj7 t 
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A ''-Ao 2cosa1 
,,- '(1+. ),-, Sin Gt 

Here must be mentioned that, in doing the integration for the induced 

velocity, the lower limit of the integrals should be changed to r0 

instead of o, where if0 is the nondimensional radial distance at blade root 

cutout, if the infinite occures. 

Since circulation r is expanded into Fourier series, the blade 

airload could be also written as Fourier series: 

dCTI =_J_ur=(dCTI) +2J [(dCn) cosm¢+(dCTI) sinm¢] 
d7i' Jr dii' 0 m:::q dif me dif rru 

(3-8) 

From expressions (2-2), (3-1) and (3-3), we have 

( dCTI) 2 (- - I r- ) ----:::- =- r ,,r+-1' ,, 
dr tc Jr 2 

(dCrt) 2 c- I - I - ) -dr 
2

c =-;- T2cT-zfi.Th+"2p,T3, 

(3-9) 

Then, the relations between harmonics of the blade airloads and 

harmonics of circulation are established. 

As for the thrust coefficient of the whole rotor, it is easily given as 

(3-10) 

where ro is the nondimensional radial distance at blade root cutout and 
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ri is the tip loss factor, if it is desired to be considered, 

4 FLAPPING CONDITION 

Since there are flapping coefficients in the expressions of circulation 

and the induced velocuty, it is necessary to study the flapping motion. 

For articulated rotor, the flapping motion of one blade, according to 

reference 6, is given as 

d'(J 
dt''--J • + (J,Q'(J' +eS,) = (M A),- (M u), (4-1) 

where 

--inertia moment of one blade about the flapping pin 

--mass moment of one blade about the flapping pin 

--thrust moment of one blade about the flapping pin 

--gravity moment of one blade about the flapping pin 

or in nondimensional form: 

And it can be written as 

(4-2) 

where 

J=J,/(1-e)' 
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S,=S,jm 1R, S=S,/(1-e) 

(JJ A),= (M A),jm,Q2R2, lfA= (Jl'A),/(1-e) 

(Me),= (M c),jm,Q2R2, 

g=g/Q'R 

If we express MA into a Fourier series 

then~ we find 

and 

( ' _,)- c- ) On n -v J= MA nc 

( - ) p.R' f'' r-e :rr (dCTI) dMA o=-- ------- r 
m1 '• 1-e 2 dr o 

(-) _ p.R' f'l r-ii "(dCr') d-MA /IJ___ --- - -d- T 
m, r0 1-e 2 if ns 

thus, in order to calculate flapping coefficients a0, ······ar.c• 

(4-3) 

(4-4) 

(4-5) 

G1151 we must 

solve (MA)o, ...... (MA),, (MA), before. These are long integrals. In a 

simple case, put b=constant, i=D, ii2 =1, and denote 

we get 
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where 

a,= (q,p,+q,p,)/(qi +qi) 

b,= (q,p,- q,p,)/(qi +ql) 

f' 1 - - d- f'- -2 d- 1 2 + I b" pz=-
0
_zf11ltc'T 'r- 0 -t~zs'r '1' -4p. arJ ·3f1 1 

I I qz=---p,2 
2 8 

(4-6) 

Here, wh.en, we determine a,.,. b,, only a,-2, bn-2• a,._t, b,;...J, are taken 

into account, but au'~"t. .b,.+ 11 Gn+z, bn+ 2 are not, as we noticed that the 

magnitude of higher order harmonics of flapping coefficients is smaller 

than lower ones. 

And also we have 

(4-7) 

In the formulae of flapping coefficients ao, a;, b~, ······and thrust 

coefficient Cr. by contrast to classical formulae, there are additional 

terms of induced velocity integrals, Using equations (3-7), we can 

integrate them out and further obtain: 
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[~( 1 + 1 2 A?,/cosa, ')+ 
ao= "'" 0 4(1+Ag) 4(1+ A\ ;)il 4(1+Ag)(HA1 :) " 

+ .<•( 1 A1,/cos a1 ')] gS 
0 3(1+Ag) 2(1+Ag)(HA1 :) iJ - J (4-9) 

·-[J•( 1 + 1 a,- oil 3(l+Ag) 3(l+A\ :) 
A?,fcos a, )+ 

3(HAg)(HA1 :) 

~ ( 1 · 1 A?,fcosa, ) 
+4 

il 4(1+Aff+ 4(1+ Aj :) 4(1+Ag)(HA1 :) + 

+ ,l• ( 1 A?,/cos a 1 )lj 
oil, Z(HAg) Z(HAg) (l+A\ !) 1 

/[ 
1 A?.jcos a, 2 

4(1+ A\:)+ 4(1+Ag) (HA\ :) il 

(4-10) 

b~=[3 (l JA\ :)ilao+ (l+Ag~[;+Al :) (0.08~:+0.0440+ 

+o.z(.<;+; 1w~)J ![4 (1+~: :l +1-J (4-11) 

in which, V2c and ifl'2s are neglected. 

It can be seen from equations (4-8), (4-9) and (4-11) that, under 

the same flight condition (A 0, iJ, dO), the values of Cr and a0 , in which 

the variable induced velocity distribution is taken into consideration, 

are smaller than that of considering constant induced velocity 

distribution, while the value of b; is much larger. As already discussed 

in references .7 and 9, the lon,gitudinal induced velocity distribution has 

a pronounced influence on the sine flapping coefficient b~ and it is very 

important to the lateral control. In this paper, we first bring up the 

analytical expressions for Cr and flapping coefficients with the effect of 

variable induced velocity distribution but in terms of blade parameters 

and flight parameters only. 

Furthermore, we haye 



(4-12) 

where 

+ I , [ I + I J + 16Al ~ b' 
6~'a, HAl: HAj; 125(HAl ~)(HAj;) '' 

-~· [ 3Af, sAg,jcos a 1 
p,- oil 79(HAg)(HAl ;) 19(HAg)('-71-7+'-A"l-,:)-

20Al: ( A f./cos a 1 )] 

-87(HAl :)(HAi:) 1 HAg + 

1 : 2 + 16A~: • 
4(HAi ~) I' ao 125(HAl :)(HAj:)a, + 

+! !lb;( H~l: + H~l: ). 

qn = }1' - [4(H~f:) +sU )A; :) I'']K. 

in P11 and P22. some smaller terms are neglected, 

5 BLADE AIRLOADS 

Substituting the expressions of the induced velocity harmonics (3-7) 

into the equations of the circulation harmonics (3-6), we obtain the 

latter in a matrix form: 
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(5-1) 

where all elements in matrix [Q] are given in Appendix 1 . 

Next, substituting the expressions of the circulation harmonics (S-1) 

into the equations of 

where matrix [P] is, 

the blade airloa.ds (3-9), 

(dC_:1) 
~; 

dr .o 
Lf~. 

(dC_: 1) 
dr 1.-

,<; 

(dC! 1) =a.[j [P] . 
a, 

dr 1s 1< 

(de:,) 
dr 2c 

(dC_:1 ) 
dr 2~ 

'i' 0 

0 f o. 

0 

0 

a' 1 

b~ 

0 

I' 
2 

a, 

b, 

we obtain finally, 

[P] = I' 0 'i' _J!: 0 . [QJ 
2 

0 

0 

0 _f!_ if 
2 

0 0 
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6 AN EXAMPLE 

ln illustration of the present method, we take the rotor blades of 

Y-2 Helicopter as an example and compute the flapping coefficients for 

iL=O. 05, 0. 075, 0 .10, 0. 125, 0 .15, 0. 20, 0. 24 and the thrust loads for 

!'=0.20 with a calculator. The initial data are given as follows, 

R=5 rn b =0.0486 

.d~= -0.1396 rad. e=0.014 

K=0.3 k=3 

tnt=2. 755 kg-sec2/m .0=37 .48 rad/sec 

p,.=0.108 kg-sec2 /rn' a~=5. 73 

and the flight parameters are taken from trim calculation. For instance, 

at 1'=0.20, we find, 

Vt=0.2053 

8;=0.2409 

cos at=0.9741 

A;=-0.02494 

Then, according to the formulae of calculating the flapping coefficients 

(4-9), (4-10), (4-11), (4-12) and (4-13), the results of a 0 , a:, b:, a2• 

and b2 versus advance ratio fl. are obtained and plotted in Figures 1. 2, 

3, 4 and 5 respectively . 

In those figures, the results of the flapping coefficients for consbant 

induced velocity distribution are also plotted in comparision. It can be 

seen that, as stated before, the curve of .a0 for variable induced velocity 

distribution is lower than that of a0 for constant distribution. The 

curves of a~ for two distributions are nearly the same, However, the 

curves of bi for two distributions are quite different. The former is 

larger than the latter, particularly, there is a peak at low speeds. This 

phenomenon was observed in many tests (ref. 9). The curves of a2 and 

of (-b2) are slightly similar to that of b:, hut the magnitnde of a2 and of 

(-b 2) are one-tenth smaller than that of b:. And it is resonable in fact that 
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we might neglect the higher order flapping coefficients when calculating 

the lower ones. 

Finally,' from formulae of the i'nduced velocity harmonics (3-7) and 

from formulae of the blade airloads harmonics (5-2), the values of 

d f ( dT1 ) ( dT1 ) ( dT1 ) ( dT1 ) V(l 1 VIc 1 Vtt, Vzc, Vzs an 0 -d- , -d- ' -d- ' -d-- ' 
' r 0 r te r 1: r 2c 

( dT 1 ) ---err 2$ 

are calculated along radius for ,u=0.20. And the results are shown in 

Figs. 6-10 and in Figs. 11-15. In order to verify the accuracy of the 

simplified method, the results of the blade airloads harmonics from the 

numerical integration method (ref. 10) are also plotted in Figs. 11-15. 

It can be seen that the curves of the airloads from different methods 

are in good coincidence, Besides, in Fig, 16, the curves of the blade 

airloads along azimuth for different radial distances are plotted for 

illustration, The tendency of these curves are very similar to those, 

which were found in reference 1. 

7 CONCLUSIONS 

The major conclusions obtained form the present study can be 

summarized below. 

( I) Based on the generalized classical rotor vortex theory and the 

blade element theory, a closed form of relations between the induced 

velocity and ci'rculation is established, 

( 2) It might be the first time to set up the analytical expressions 

of flapping coefficients and blade airloads, including the effect of 

variable induced velocity distribution but in terms of blade parameters 

and flight parameters only. 

( 3) The method developed here for predicting rotor blade airloads 

is simplified for calculation and it is believed to be suitable for engineering 

application. 
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APPENDIX I 

The elements in matrix [Q] of the equation (5-1) are given as 

follows, 

Q 1 -
u= l+A8 '1', 

1 
Q,,=l+A8' 

Q,.=o, 

1 
Q,s=z(HAD J.L, 

Q,,=Q,,=Q"=O, 

Q,, Afc 
(1+A8)(HA) ;) 

Q, A~ c 

(HA8f(HA\ :) 

Q, A~c 
(1+A8>(1+A) ;) 

Q,. 1 
l+A); (-J.L), 

Q, A~c 
(HA:)(HAl:) 

Q" 
1 

l+A~: 7', 

1 
Q, 2(1+Al ;) J.L, 
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Q, H~:; (1 
A:,/cosa) r 

HAg I' ' 

Q, H~:: ( A:,/cos a 1) 1 
. HA8 W"if'• 

Q 1 ( AfJcosa, I 2 1 -) 
,- 1+A:; 1+Ag zl' ---;r-r' 

036=0, 

I -( I ) 
Q, 1+A:; .--zi'K ' 

Q I [ Ag, A~,Al ~ (-1..¥+ 
41 = HAlT 3(1+Ag) r+ (HA8)(HA: ~) 10 

+ ~ r' + ~ r' ) ]. 

Q I [ Age -2+ A?cA~~ ( 2 
42 = l+Al ~ 2(HAg/ (HAg)(HA::) -1Sr-

_l§r1+11i'5 )+Al;/cosal(t Af,jcos"-'-) 2 J 
39 16 2(l+A: ;) l+Ag I' ' 

Q.,= l+~fl-[ -(H.JlJ-tlL: ~f({sr+ 1~~'' + Jo r') + 

+ Af,Al;/cos2 a, 2 1 (+I -)] 
(l+Ag)(HA: ;)~' -;y,- 1 n r , 

Q,.=(HA: ;j~~-+Anfl'(~ +; f
2 

), 

+A1,jcos a 1 1 2 _l_(l+l -))] 
1+A8 2 I' r 2 nr ' 
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o" 1 -f-~ 1 :, z;-; 

O _ ' I ·[A g, /cos a, ( .4 S _2 2 _4 ) 
51 - l+Al: l+A8 I' -7-32r -7r + 

+ A:,Al:/cosa1 (4 2_2 9_4 I 1 ) 
(1+A8)(HA]:) I' 21+9• +so" +4 nr + 

+ Al :_(1 A1,/cos a,) (-1__1_ _2 )] 
l+A]: l+A& I' 2 3 r ' 

+A: ,Al_:/cos a, , (-_l+j_r+_?_f2+_2_ f·l )+ 
(J+Ag)(J+A]:) r 4 10 S 7 

+___:i_l_:_( 1 A:Jcos a,) (-1_-_1_ _2_1_ _4 )] 
l+At: l+A8 I' 16" 8 r 4 r ' 

+ Al: A1,/cosa, (37 1 +I _2 3 -•)] 
HAfT l+A8 I' 40 'T 1Sr + 10 r ' 

+ 
A1,Al :/cos a, (I I _2+ I _4 ) 

(1+A8)(1+At:) I' S+18r 10" + 

0 _ I I ( A l :/cos a 1) 
56

- l+A~: 2 fl. l- l+Af~ ' 

I 
0"= l+Al: ( -2<'), 

0 . I K-
5s=l+A~! r. 
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