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    Cebeci [2] highlighted the basic ingredients required 
to incorporate transition within Reynolds averaged 
Navier-Stokes simulations. These are the 
determination of transition onset, the length of 
transition and modifications to the turbulence model to 
accommodate the presence of the laminar and 
transitional flow regimes. The latter has commonly 
been achieved by direct manipulation of the turbulent 
viscosity while two alternate strategies, empiricism or 
stability analysis, for the prediction of transition onset 
and extent can be identified. 

Abstract 
 
    A method for computing low Reynolds number flows 
containing laminar-turbulent transition is described. 
The model employs empirical relationships to describe 
the onset and extent of transition and is coupled with a 
two equation turbulence model. The model is applied 
to study laminar-turbulent transition problems related 
to helicopter aerodynamics. Results are presented for 
steady two-dimensional low Reynolds number aerofoil 
flows, two-dimensional dynamic stall of pitching 
aerofoils and the three-dimensional flow around a two 
bladed rotor in hovering flight.  

    Ekaterinaris and his co-workers [3] employed 
empirical models for transition onset, namely, Michel’s 
criterion [4], and solutions of the thin-layer Navier-
Stokes equations to study the development of laminar 
separation bubbles on a NACA 0012 aerofoil. 
Comparisons of the computed data with pressure 
distributions derived from optical measurements show 
that inclusion of a representation of the transition 
physics is crucial to the improving predictive capability.  

    
1. Introduction 

 
    The behaviour of the boundary layer on rotating 
wings has been an area of great interest for rotor and 
propeller aerodynamicists for many years.  Boundary 
layers have a profound effect on the performance and 
capabilities of the rotor, strongly influencing the drag 
generated and the maximum attainable lift.  In the 
 case of the helicopter rotor, boundary layer transition 
is of particular importance since the accurate 
prediction of rotor torque and hence power is essential 
in the design of new rotorcraft.  In addition, one of the 
principle limitations of the maximum attainable forward 
flight speed and high speed manoeuvrability of 
helicopters is the onset of dynamic stall.  Dynamic stall 
in which separation is initiated at the leading edge is 
known to be particularly sensitive to transitional flow.   
    Inclusion of transition within simulations based upon 
solution of the Reynolds averaged Navier-Stokes 
equations is challenging. Transition physics, 
mathematical tools for boundary layer stability analysis 
and progress made in transition prediction were 
reviewed by Malik [1] who identified four instability 
modes, Tollmien-Schlichting, Gortler, cross-flow and 
Mack. The relative importance of the individual 
instability modes in the flow around helicopter rotors is 
poorly understood. However, in the context of the 
present paper we believe that the Tollmien-Schlichting 
instability is predominant and focus our effort on the 
modelling of this mode. 

    Bertagnolio et al. [5] evaluated Michel’s model for a 
wide range of low Reynolds number aerofoils. 
Comparisons of predicted and measured transition 
locations were generally favourable. However, the 
data suggest that Michel’s criterion performs poorly for 
aerofoils with sharp leading edges, such as the NACA 
63-430. Bertagnolio relates this poor performance to 
the insensitivity of Michel’s criterion at the leading 
edge suction peak. Failure of the model to predict 
transition at the suction peak is compounded by a 
relatively benign pressure gradient that further delays 
transition. This spurious behaviour is resolved by 
adjusting the model coefficients so that transition is 
predicted at the measured locations.  
    Methods based on stability analysis are generally 
based on the en method proposed independently by 
Smith [6] and Van Ingen [7,8]. In the en method the 
laminar boundary layer equations are solved for a 
given pressure distribution and the velocity 
distributions calculated. The stability properties of the 
velocity distributions are then examined through 
solution of the Orr-Sommerfeld equation.  
    Stock [9] successfully coupled an en method with 
two-dimensional solutions of the Navier-Stokes 
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equations. The coupling procedure is indirect involving 
three-stages; an evaluation of the pressure distribution 
by solution of the Reynolds averaged Navier-Stokes 
equations, an evaluation of the boundary layer 
properties by solution of laminar boundary layer 
equations and finally evaluation of the transition 
location using the Orr-Sommerfeld equation. 
    Johansen and Sorenson [10] compared transition 
predictions obtained using an empirical model with 
those obtained using a simplified en method. The 
predicted transition location obtained from the en 
method was generally further downstream than that 
obtained using the empirical model although both 
methods compare favourably with measured two-
dimensional data. Based upon such comparisons the 
additional expense and complexity of the en method 
appear unwarranted. 
    The application of transition modelling to problems 
in helicopter aerodynamics has been limited. 
Ekaterinaris and his co-workers [11,12] employed 
empirical models for transition onset, namely, Michel’s 
criterion [4], and solutions of the thin-layer Navier-
Stokes equations to study the development and 
progression of dynamic stall on a  on a NACA 0012 
aerofoil. Subsequently Hill, Shaw and Qin [13] 
examined the role of transition modelling in dynamic 
stall computations while Geissler [14] employed a 
transition model in his study of leading edge flow 
control for low-speed dynamic stall. In these studies 
comparisons of the computed data of with 
measurements show that inclusion of a representation 
of the transition physics is crucial to improving 
predictive capability.  
    More recently Hill, Shaw and Qin [15] have explored 
the use of empirical models in the prediction of 
transition for isolated rotors in hovering flight. In their 
study it was assumed that the influence of spanwise 
instabilities could be neglected and a two-dimensional 
model was applied at each spanwise station. 
Comparison of the computed data with corresponding 
two-dimensional calculations appeared to confirm 
experimental observations regarding the two 
dimensional nature of transition for isolated hovering 
rotors. 
    In this paper we review the development and 
application of an empirical approach to the prediction 
of transitional flows of interest in helicopter 
aerodynamics. Empirical models have been employed 
to predict the location and extent of transition due to 
Tollmien-Schlicting instability and separation. The 
model provides an intermittency distribution that is 
used to attenuate the terms governing the production 
and destruction of turbulent kinetic energy and 
turbulent dissipation in the two-equation turbulence 
model employed. The model is used to compute low 
Reynolds number flow around the NACA 0012 and 

Aerospatiale A aerofoils, for attached and separated 
flows around pitching aerofoils and for transitional flow 
around an isolated helicopter main rotor in hovering 
flight. 
 
2. Numerical Method 
 
    The governing equations are the Reynolds-
averaged Navier-Stokes equations together with the k-
ω turbulence models described by Wilcox [16] and 
Menter [17]. These equations can be written in the 
integral-conservation form, 
 
 ∫∫∫

ΩΩ

Ω=⋅+Ω dHdSnFQd
S

rrr
    (1) 

in which Q  is the vector of conserved variables,  F
v

 is 
the flux function, nr is the outward pointing unit vector 
normal to the volume surface and H

r
is a source term 

arising from the turbulence model. The fluid is 
assumed to be a Newtonian perfect gas and 
Sutherland’s law is employed to model the coefficients 
of viscosity and thermal conduction. 
    Spatial discretization of the governing equations is 
performed using a nominally third-order accurate 
Godunov scheme based upon the approximate 
Riemann solver described by Osher and Solomon 
[18]. The viscous fluxes are evaluated using a second-
order finite volume approach in which derivatives are 
evaluated using Gauss’s theorem. 
    The discretized equations are marched in time 
using a closely coupled implicit method in which the 
mean flow and the turbulent flow equations are solved 
simultaneously. Local time-stepping is utilized to 
accelerate convergence to the steady state for steady 
problems while a second order time accurate method 
based upon the pseudo-time approach is utilized for 
time-dependent calculations.  
    This method has proven to be accurate, efficient 
and robust for a wide class of problems, see for 
example [19],[20],[21] and [22]. 
 
3. Transition Model 
 
    In order to accommodate the presence of 
transitional flow in the current calculations a transition 
model is employed. The transition model consists of 
three key elements; prediction of transition onset, 
prediction of the transition length and a method for 
using this information to control the behaviour of the 
turbulence model. 
 
3.1 Transition Onset The empirical criteria reported 
by Michel [4] are used in the present work to describe 
the location of transition due to the growth of Tollmien-
Schlichting instabilities. In this model transition is 
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model the boundary layer development on moving 
surfaces. 

assumed to occur when the local Reynolds number 
based upon the momentum thickness exceeds a 
critical value determined by the equation, 
 

4.0
,, Re9.2Re trxtr =θ     (2) 

    In order to overcome these problems it is necessary 
to model the behaviour of an equivalent laminar 
boundary layer using information from the Navier-
Stokes solution. In the present work this is achieved 
using Thwaites method [23] in which the development 
of the local momentum thickness for an 
incompressible is related to an integration of the 
velocity distribution at the boundary layer edge, 

 
in which and are the local Reynolds numbers 
based on momentum thickness and distance from the 
aerofoil leading edge respectively. The model requires 
knowledge of both the velocity at the boundary layer 
edge and the boundary layer momentum thickness. 

θRe xRe

 

 
Calculation of Momentum Thickness The 
parameters employed in Michel’s empirical model are 
those corresponding to a laminar boundary layer. 
Unfortunately this data may not be readily available 
from the Navier-Stokes solution. The basic problems 
are illustrated in Figure (1), which shows calculated 
distributions of Reynolds number based on 
momentum thickness for two-boundary layers tripped 
at different chord-wise locations (12% and 20% 
chord).  

( ) ∫≈
x

dxu
u

x
0

5
6

2 45.0 υθ     (3) 

 
In order to predict transition using Michel’s method we 
now require only the velocity distribution along the 
edge of the boundary layer from the CFD solution. 
 
Determination of velocity distribution Although the 
complete velocity field is known at every iteration of 
the time marching procedure the edge of the boundary 
layer is generally ill-defined. This problem is evident 
from the irregularity of the predicted momentum 
thickness distributions shown in Figure (2).  

   As expected, Figure (1) shows a rapid growth in 
momentum thickness immediately following the onset 
of transition, reflected in a near instantaneous change 
in gradient of the curve. This behaviour has the effect 
of inhibiting the movement of the transition point aft of 
the initial transition location into the transitional region 
as the solution converges towards a steady state. In 
addition, there is evidence of upstream influence of 
the transitional and fully turbulent flow regimes, which 
may produce non-trivial changes in the computed 
boundary layer upstream of the transition location. 
These problems may lead to erroneous predictions of 
transition location when the method is used 
interactively for steady flow computations or when 
used to   

    For incompressible potential flows the relationship 
between the external pressure distribution and the 
velocity along the boundary layer edge can be 
expressed through, 
 

pCUu −= ∞ 1      (4) 
 
If we further assume that the boundary layer is thin 
then from boundary layer theory we have, 
 

0=
∂
∂
y
P        (5) 
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which in conjunction with (4) allows the velocity 
distribution along the boundary layer edge to be 
related directly to the surface pressure distribution. 
    Adoption of this procedure provides significant 
advantages over direct computation of the boundary 
layer edge that greatly improve the reliability and 
robustness of the method. In contrast to the boundary 
layer profiles the pressure distribution converges 
rapidly to the final solution. Furthermore, the surface 
pressure distribution, in contrast to the boundary layer 
velocity distribution, is relatively insensitive to the 
choice of grid. 
  
Separation Model Michel’s criterion applies to 
attached laminar boundary layers with and without 
pressure gradient. The model fails for flows involving 
laminar separation. The current method is extended to 

Figure (1): Computed behaviour of Reynolds 
number based on momentum thickness following 

transition to turbulent flow 
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deal with the possibility of a laminar separation region 
through the use of a separation model. Krumbien [24] 
proposes fixing transition at the computed transition 
location. While this procedure is generally straight 
forward to implement it typically predicts transition 
ahead of the expected location. Several empirical 
models for transition within separation bubbles have 
been reported in the literature. In the present work we 
employ the model described by Schmidt [25], 
 

5150.02175
s

s
tr u
x θ=     (6) 

 
in which the location of transition is related to the 
momentum thickness based on distance from the 
separation point. 
 
3.2 Extent of the Transition Region The extent of 
the transition region and the corresponding 
intermittency are evaluated using the empirical model 
presented by Walker [26]. In this model the length of 
the transition regime is determined from the solution 
of, 
 






= 4

3

Re2.5Re
trtr xl     (7) 

 
and the intermittency is determined from, 
 

( ) 






 −
−

−= tr

tr

l
xx

ex
65.4

1χ      (8) 
 
Forward of the predicted transition location the 
intermittency is set to, 
 
     (9) ( ) trxxx <= 0χ
 
while aft of the transition region intermittency is given 
by, 
 
( ) turnxxx >= 1χ     (10) 

 
3.3 Modifications to the Turbulence Model Wilcox 
[27] has shown that low Reynolds number 
formulations of the k-ω turbulence model are capable 
of predicting transition like phenomena in the absence 
of an explicit transition model, see for example Figure 
(2) which shows computed contours of the turbulent 
Reynolds number ReT obtained using the low 
Reynolds number without transition model. This 
capability is achieved through attenuation of the 
production of turbulent kinetic energy and specific 
dissipation by the low Reynolds number model terms. 
The predicted location of transition is generally far aft 

of the measured location. Manipulation of the 
freestream boundary conditions can improve predicted 
transition location dramatically but this is at the 
expense of incorrect boundary layer development at 
the lifting surface. 
    In order to accommodate the presence of the 
laminar and transitional regions in the current 
computations we adopt a similar, if less rigorous, 
approach in which the production terms appearing on 
the right-hand side of Equation (1) are attenuated by 
the calculated intermittency. Thus the production 
terms are calculated from, 
 

ωω χ
χ
PP
PP kk

′=

′=
     (11) 

 
where the use of  ′  indicates the unmodified term and 
the intermittency is provided by Equations (8)-(10). 
 

 
 

Figure (2): Contours of turbulent Reynolds number 
obtained using Wilcox Low Reynolds Number 

turbulence model  
 
4. Steady Results 
 
    Results are first presented for steady two-
dimensional flows over the NACA 0012 and 
Aerospatiale A- aerofoils at low Reynolds numbers. 
These computations provide an opportunity to assess 
the performance of the model for flows involving 
transition due to the growth of Tollmien-Schlichting 
instabilities and laminar separation. 
    The calculations were performed on structured grids 
which were adapted to the computation of boundary 
layer flows. Numerical experiments demonstrate that 
the present computations are grid converged. 
 
4.1 NACA 0012 Aerofoil (High-Reynolds Number) 
Calculations were initially performed for a NACA 0012 
aerofoil at a Reynolds number of Rec = 2,900,000 and 
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a freestream Mach number of M = 0.15, this 
corresponds to the experiment of Gregory [28]. The 
transition model was used in an interactive fashion, 
i.e. the transition location was updated every iteration 
of the time marching procedure. Computed and 
measured transition locations are compared in Figure 
(3). 

4.2 NACA 0012 Aerofoil (Low-Reynolds Number) 
More recently detailed measurements of the low 
Reynolds flow over a NACA 0012 aerofoil have been 
performed by Favier and his co-workers at LABM; see 
for example references [29] and [30]. Detailed 
boundary layer measurements were taken for both 
steady and unsteady (oscillating in pitch) flows which 
included records of the onset and completion of 
transition. 
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    Here we consider the steady flow at a Reynolds 
number of Rec = 100,000 and a Mach number of M = 
0.15 over the incidence range studied experimentally. 
Figure (4) compares the computed location of 
transition onset and completion with the measured 
data. 
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(a) Standard k-ω Model  
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(a) Standard k-ω Model 
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(b) k-ω SST Model 
 

Figure (3) Comparison of computed and measured 
transition locations for NACA 0012 aerofoil M = 

0.15 and Rec = 2,900,000 
 

    For the incidence range considered transition on 
both the upper and lower surfaces is initiated by 
Michel’s criterion (TS mode). Agreement between the 
computed and measured data is considered good at 
lower incidence. At higher incidence the computed 
transition location is generally aft of that measured in 
the experiment but the predictions remain acceptable. 
No significant differences are observed between the 
computations employing the standard k-ω model and 
Menter’s k-ω SST turbulence model.  

(b) k-ω SST Model 
 

Figure (4) Comparison of computed and measured 
upper surface transition locations for NACA 0012 

aerofoil M = 0.15 and Rec = 100,000 
 

    Comparison of the computed and measured data is 
considered fair. In general the standard k-ω model 
appears to perform better at predicting transition onset 
at lower incidences while there is significant 
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improvement for the separated flows at higher 
incidence using the k-ω SST model. The predicted 
transition length appears shorter in the SST model 
predictions compared to the standard model 
predictions. The computations indicate the presence 
of laminar separation and turbulent re-attachment over 
much of the incidence range. At low incidences the 
separation is towards the mid-chord but moves 
forward as incidence is increased. For a narrow  range 
of  incidences  (4° to 8°) the flow remains fully 
attached and transition is initiated through the 
Tollmien-Schlichting instability mode. Beyond 8° of 
incidence, separation (and consequently transition) 
occurs close to the leading edge. 
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(a) Variation of lift coefficient with incidence 
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(b) Lift – Drag Polar 

 
Figure (5) Comparison of fully turbulent and 
transition free computations Aerospatiale A-

aerofoil M = 0.15 and Rec = 3,130,000 
 
    Results from fully turbulent calculations at this 
Reynolds number and Mach number indicate that the 
flow remains fully attached below 8° of incidence. 
Above this angle separation occurs, but in contrast to 
the free transition simulations separation is initiated at 
the aerofoil trailing edge and moves forwards as 
incidence is increased further. This contrast in 

physical behaviour between results obtained from the 
fully turbulent and free-transition simulations illustrates 
the importance of modelling transition physics at lower 
Reynolds numbers. 
 
4.3 A-Aerofoil The final steady two-dimensional test 
case relates to the flow around the Aerospatiale A 
Aerofoil. This aerofoil has been the focus of an 
extensive European CFD validation effort [31]. 
Measurements include surface pressure coefficients, 
skin friction distributions and detailed boundary layer 
measurements. 
    Computations were performed for two Reynolds 
numbers, Rec = 3,130,000 (F1) and Rec = 2,000,000 
(F2) and a Mach number of 0.15 on the common fine 
grid provided in [31]. This grid contains 513 points 
around the aerofoil and 129 in the direction normal to 
the surface. 
    The variations of lift with incidence from fully 
turbulent calculations and free transition calculations 
are compared with experimental measurements at a 
Reynolds number of 3,130,00 in Figure (5). Also 
shown are the corresponding lift-drag polars. Use of 
the transition model improves agreement between the 
experimental and calculated lift coefficient significantly 
with excellent agreement observed between the 
computed and measured data over much of the 
incidence range. Use of the model also improves 
agreement between the computed and measured drag 
coefficients although the comparison remains poor 
when using the standard k-ω turbulence model. 
Further significant improvements are obtained using 
Menter’s k-ω SST model. 
   Figure (6) is typical of the improvements between 
calculated and measured pressure and skin friction 
distributions that can be achieved using the present 
approach to transition together with the standard k-ω 
model. Improvements in computed pressure 
coefficient are generally confined to the leading edge 
region where significant improvements in the 
prediction of the leading edge suction are evident. 
This observation is the principal reason for 
improvements in computed lift coefficient. 
Comparisons of computed and measured skin friction 
distribution suggest that the transition location is well 
predicted (transition location was not measured in the 
experiment). The resulting reduction in skin friction in 
the leading edge region provide an explanation for the 
reduction in drag coefficient observed between fully 
turbulent and transition free calculations. 
    Finally computed boundary layer profiles obtained 
using the standard k-ω model are compared with data 
from the F2 experimental data set at incidences of 
7.2° and 13.3° in Figure (7) and (8) respectively. The 
agreement is considered good with significant 
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improvements obtained as a result of the transition 
modelling. 
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(a) Pressure distribution 
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(b) Skin friction distribution 
 

Figure (6) Comparison of fully turbulent and 
transition free computations Aerospatiale A-

aerofoil M = 0.15 and Rec = 3,130,000 
 

5. Unsteady Results 
 

    Dynamic stall phenomena are important in many 
fields of aerospace science including turbo-machinery, 
wind turbines and manoeuvring fixed wing aircraft. In 
rotorcraft engineering a detailed understanding of the 
unsteady air-loads acting on the moving blades is 
essential for the prediction of rotor performance, rotor 
dynamics (including blade aero-elastics) and noise 
generation in forward flight.  
    Much of our understanding of dynamic stall has 
come through careful experimentation on single 
element aerofoil configurations using pitching 

oscillations to generate the required unsteadiness. 
Reviews of progress in the experimental 
understanding of dynamic stall phenomena have been 
presented by Carr [32] and Carr and Chandrasekhara 
[33], The phenomenology of dynamic stall is illustrated 
using results from the present computations in Figure 
(9).  
    The complex nature of the phenomena has led to a 
range of predictive models ranging in fidelity from 
simple empirical models to large eddy simulations. 
Semi-empirical models, such as those used by 
Westland Helicopters [34] provide robust practical 
tools that can be used within the design environment. 
More recently rapid progress has been made in the 
application of numerical simulation tools to the 
problem of dynamic stall, see for example the reviews 
by Ekaterinaris [11] and [12]. 
    The occurrence and progression of dynamic stall is 
sensitive to a number of parameters such as pitch 
rate, geometry, Mach number, amplitude and 
Reynolds number. Numerical methods based upon the 
solution of the Navier-Stokes equations generally 
reproduce the qualitative behaviour of the flow with 
respect to such parameters. For dynamic stall initiated 
as a result of trailing edge acceptable quantitative 
agreement can generally be obtained with the 
experimental data for all but the most severe 
separations using modern one- and two-equation 
turbulence models.  
    Quantitative agreement for stall initiated at the 
leading edge is less favourable. There is good 
experimental and numerical evidence, see for 
example the discussions of References [11] and [12] 
that in this case the flow is sensitive to the state of the 
boundary layer (laminar, transitional or fully turbulent) 
immediately ahead of the separation point. In order to 
demonstrate this we consider the transitional flow 
around two pitching aerofoils. In the first case the flow 
is attached during the pitching oscillation while in the 
second case dynamic stall occurs. 
 
5.1 Attached Flow Initial calculations were performed 
to assess the ability of the numerical method to predict 
steady attached flows. Computations were performed 
for a NACA 0015 aerofoil performing pitching 
oscillations about the quarter-chord location at a Mach 
number of M = 0.30 and a Reynolds number Rec = 
2,000,000. The instantaneous incidence is determined 
from, 
 

( ) ( )ττα 1.0sin2.40.4 +=  
 
where τ is a non-dimensional measure of time. This 
motion corresponds to the experiment of Pizzali [35]. 
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(b) x/c = 0.5 
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(b) x/c = 0.5 
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Figure (7) Comparison of fully turbulent and 
transition free computations Aerospatiale A-
aerofoil M = 0.15, α = 7.2°and Rec = 2,000,000 

Figure (8) Comparison of fully turbulent and 
transition free computations Aerospatiale A-

aerofoil M = 0.15, α = 13.3° and Rec = 2,000,000 
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(i) Normal Force Hysterisis 

 
 

Incidence

C
m

 
(ii) Pitching Moment Hysterisis
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(e) Re-attachment during Down Stroke 
  

Figure (9): Dynamic Stall Events 
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    The computed flow is attached over the full cycle. 
Computed hysterisis loops for lift, drag and pitching 
moment coefficients obtained assuming fully 
turbulent flow are compared with the measurements 
of Pizzali in Figure (10). The computed data were 
obtained by integration of the instantaneous 
pressure distributions at each time step. Differences 
between the standard and SST variants of the k-ω 
show no significant differences for the computed lift 
and drag hysterisis. More significant differences are 
observed for the pitching moment during the down 
stroke. The agreement between the current 
calculations and the experimental data is generally 
favourable. (a) Lift Coefficient     In order to investigate the sensitivity of the 
computed flow to transition the attached flow 
calculation was repeated with transition fixed and 
with transition fixed at two locations on the aerofoil 
chord. Calculations performed with transition fixed at 
2.5% and 5.0% of the aerofoil chord and using the 
transition model and the standard k-ω model are 
shown in Figure (11). The inclusion of transition in 
the computations has a small influence on the 
predicted lift and drag hysterisis. The differences are 
small during the upstroke and more significant during 
the downstroke. The corresponding improvements in 
pitching moment, Figure (11b), are much larger. 
Using the transition model leads to non-trivial 
improvements during the upstroke. There is also a 
general improvement during the down stroke 
compared to the results obtained assuming fully 
turbulent flow.  It is believed that these differences 
occurs as a result of changes in the flow  behaviour 
on the  lower surface of the aerofoil, this leads to 
much better predictions of the shape of the 
instantaneous pressure distribution with obvious 
implications for the integrated forces and pitching 
moment. 
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(b) Drag Coefficient 
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    The predicted transition locations are presented in 
Figure (11c). There is significant hysterisis on both 
the upper and lower surfaces. Transition on the 
aerofoil upper surface ranges from around 12% of 
chord at the beginning of the up stroke to 40% of 
chord at the beginning of the down stroke. 
Comparing the upper surface transition location 
during the up stroke and down stroke it is observed 
that at constant instantaneous incidence transition 
occurs earlier during the up stroke than during the 
down stroke. This is attributed to the action of the 
aerofoil acceleration and induced effects of the shed 
wake on the local pressure gradients. 

(c) Pitching Moment Coefficient 
 

Figure (10) Comparison of computed and 
measured forces and moments for pitching 

aerofoil (fully attached turbulent flow) 
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5.2 Separated Flow The effect of laminar/turbulent 
transition on dynamic stall predictions was 
investigated for a NACA 0012 aerofoil performing 
pitching oscillations about the quarter-chord location 
at a Mach number of M = 0.30 and a Reynolds 
number Rec = 4,000,000. The instantaneous 
incidence was determined from, 
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This motion corresponds to the experiment of 
McCroskey [36]. Initial computations were performed 
with transition fixed at the leading edge (fully 
turbulent) and at 5% and 10% of the aerofoil chord.  
The computed forces and moments are compared 
with the experimental measurements in Figure (12).  (a) Lift Coefficient 
    Figures (12) and (13) show that fully turbulent 
computations using the standard k-ω and k-ω SST 
turbulence models are unable to reproduce all of the 
hysterisis effects observed in the experimentally 
measured forces and moments. This deficiency is 
particularly evident in the computed lift coefficient. 
This behaviour is attributed to the failure of the 
computation to resolve the flow break down at the 
leading edge correctly.  
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    For computations performed with fixed transition 
close to the leading edge the complexity of the 
experimental hysterisis is observed in the computed 
data although quantitative agreement remains poor. 
This is clearly evident in the computed lift coefficient 
data which indicate that movement of the transition 
location further aft results in increasingly heavy stall. 
Use of Menter’s variant of the k-ω model produces a 
deeper stall than is observed with the standard 
model. This behaviour is related to the improved 
sensitivity of the SST model to adverse pressure 
gradients.  Comparing the results of the fully 
turbulent and fixed transition computations it is 
evident that state of the boundary layer close to the 
leading edge plays an important role in the 
subsequent stall development. Examination of the 
computed pressure distributions supports this view. 
In the case of the fully turbulent calculation the 
leading edge pressure peak is maintained during the 
whole motion cycle, while in the fixed   transition 
calculations the leading  edge   pressure collapses 
during the down stroke indicating laminar separation. 
The extent and severity of this separation is 
determined by the transition location. 

(b) Pitching Moment Coefficient 
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(c) Transition Location     Subsequent computations were performed for this 

case using elements of the transition model 
described earlier. Results obtained using Michel’s 
transition criteria and Walker’s description of 
intermittency are presented in Figure (15). The 
corresponding transition locations are shown in 
Figure (14). 

 
Figure (11) Comparison of computed and 

measured forces and moments for pitching 
aerofoil (fully attached transitional flow) 
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Figure (13) Influence of fixed transition on 
computed forces and moments for pitching 

aerofoil (k-ω SST Model)

Figure (12) Influence of fixed transition on 
computed forces and moments for pitching 

aerofoil (k-ω Model) 
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Figure (14) Predicted transition location for 
pitching aerofoil  

(b) Drag Coefficient  
    The predicted upper surface transition location 
remains close to the leading edge during the up 
stroke. Following the formation and separation of the 
dynamic stall vortex the transition location moves 
towards the trailing edge. Indeed early in the down 
stroke the upper surface transition location moves to 
the aerofoil trailing edge. The importance of the 
aerofoil pressure distribution in determining the 
boundary layer profiles employed in the Michel 
criteria, Equation (4), is responsible for this 
erroneous behaviour which arise as a consequence 
of the collapse of the leading edge pressure 
following stall, see for example Figure (16).  
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    Use of the full model appears to lead to 
predictions that exhibit similar behaviour to the fully 
turbulent calculations, see for example Figure (17) 
which shows the comparisons of the computed lift 
force with the measured experimental data. The use 
of the separation model appears to inhibit the 
development of the separated flow. In an effort to 
understand this behaviour further calculations were  
repeated   with  the  transition  location following 
separation fixed at 5% and 10% behind the 
computed   separation   location.  Results  for   these 

 
 

(c) Pitching Moment Coefficient 
 

Figure (15) Influence of free transition on 
computed forces and moments for pitching 

aerofoil  
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Figure (17) Influence of full transition model on 

computed lift force for pitching aerofoil (b)  
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calculations are shown in Figure (18) for the 
standard k-ω model and Figure (19) for the k-ω SST 
model. 
   With transition fixed 5% and 10% of chord behind 
the computed separation point the k-ω SST 
turbulence model provides results that exhibit deep 
dynamic stall. The stall predicted by the standard k-ω 
is much milder, Figure (18) with good qualitative 
agreement found between the computed and 
measured lift forces with transition fixed 10% behind 
the separation point. As the distance between the 
transition location and separation is reduced the 
depth of the stall reduces in the standard model 
computations. Improvements in the k-ω SST model 
predictions can be obtained by reducing the distance 
between the separation point and transition location. 

(c)  (down stroke) ( ) 0.13=τα
 

    The sensitivity of the model to the separation 
length is believed to be numerical in nature. By fixing 
transition close to the separation location, as in the 
Schmitt model, the subsequent turbulent flow leads 
to re-attachment of the boundary layer for a time 
reducing    significantly   the    development   of    the  

Figure (16) Comparison of computed and 
measured pressure distributions for pitching 

aerofoil (separated flow) 
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Figure (18) Influence of separation length on 
computed forces and moments for pitching 

aerofoil (k-ω model) 

Figure (19) Influence of separation length on 
computed forces and moments for pitching 

aerofoil (k-ω SST model) 
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dynamic stall. Indeed with the Schmitt model the stall 
is almost eliminated. This behaviour is clearly non-
physical and is related to the quasi-steady nature of 
the current model. Further work is required to resolve 
this issue. 
 
6. Isolated Rotor in Hover 
 
    The final case considered is that of an isolated 
helicopter rotor in hovering flight. In order to 
demonstrate the ability of the numerical method to 
resolve the flow around a helicopter rotor in hovering 
flight, calculations were performed for an isolated 
two bladed rotor. The geometry consists of an 
untwisted rectangular blade of aspect ratio 6 with 
NACA 0012 cross section. The calculations were 
performed on structured-unstructured hybrid grids 
containing approximately four million cells. Although 
the problem is periodic both blades were modelled in 
the simulations. The generated grids were adapted 
to the expected location of the tip vortices and wake 
sheet, see Shaw and Hill [37] for further details. 
Calculations were performed at a tip Mach number 
of Mtip=0.439 and at 8° collective. This corresponds 
to the experiment performed by Caradonna [38]. 
     Figure (20) presents a cross section through the 
grid and solution 90° behind the blade. The basic 
structure of the wake can be clearly identified from 
the vorticity contours. Several general features of the 
classical hovering rotor wake are evident in the 
computed flow. In addition to the tip vortices, which 
indicate that at least 450° of wake age is resolved in 
the simulation. Figure (20) also shows clear 
evidence of the wake sheet. Beyond 450° wake age 
the grid is no longer adapted to the flow leading to a 
rapid dissipation of the wake structure. Comparisons 
of the blade surface pressure distribution are 
generally good as evinced by Figure (21) which 
compares the spanwise loading distribution  
obtained  from  integration  of  the  computed surface 
pressure coefficients with the corresponding 
experimental measurements. 
    The transition model was applied in a non-
interactive fashion to the computed blade surface 
pressure distributions at several spanwise locations 
to obtain the upper and lower surface transition 
locations shown in Figure (22).    For this rotor 
transition on the upper surface is predicted to occur 
well aft of the aerofoil leading edge suggesting that it 
may not be possible to justify the common 
assumption of fully turbulent flow used by the CFD 
community in Navier-Stokes simulations of helicopter 
rotors. As expected the upper surface transition point 
moves forward towards the blade leading edge as 
the tip is approached. This behaviour is a result of 
the increased local lift coefficient experienced by 

outboard blade sections due to increased dynamic 
head. There is evidence of a strong three 
dimensional influence close to  
 

 
 

Figure (20): Cross section through computed 
solution and grid (ψ = 90°) 
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Figure (21): Comparison of computed and 

measured spanwise lift distributions for the 
Caradonna and Tung hovering rotor 
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Figure (22): Computed transition locations for 

the Caradonna and Tung hovering rotor 
 

the blade tip associated with reductions in tip loading 
(tip relief) associated with the presence of the tip 
vortices. 
    The variation of lower surface transition location is 
less significant than that observed on the upper 
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surface. Lower surface transition occurs towards the 
blade trailing edge between 70% and 80% chord. 
    Also shown in Figure (22) are the results of two-
dimensional calculations performed at Mach 
numbers, Reynolds numbers and incidence 
corresponding to the local conditions experienced at 
50%, 68%, 80%, 89% and 96% span. These results 
provide a means of assessing the influence of the 
rotational flow on the predicted transition location. 
On the upper surface the three-dimensional hover 
calculations consistently predict transition aft of that 
predicted in the two-dimensional calculations while 
on the lower surface the contrary situation is 
observed. 
    The results suggest that there is a significant 
effect of the rotating flow on the transition 
development which potentially has consequences for 
the use of two-dimensional aerofoil performance 
data in rotor comprehensive codes.  
  
7. Conclusions 

 
    A method for computing low Reynolds number 
flows containing laminar-turbulent transition has 
been described. The model employs empirical 
relationships to describe the onset and extent of 
transition and is coupled with a two equation 
turbulence model.  
    Results were presented for two aerofoil 
configurations that demonstrate the ability of the 
model to compute steady attached transitional flows 
and flows involving leading edge separation. 
Comparisons of the model predictions with 
experimental data were generally good. The 
computed upper and lower surface transition 
locations were acceptable while computed surface 
pressure, skin friction and boundary layer profiles all 
showed significant improvement compared to fully 
turbulent calculations. For a fully attached unsteady 
flow the computed data showed only slight 
improvements over that obtained from fully turbulent 
calculations. Comparison of the computed forces 
and moments with experimental data was generally 
favourable.  
    For the cases considered in the present paper, the 
use of the transition model for unsteady separating 
flows provides qualitative representations of the 
complex force and moment hysterisis observed 
experimentally that could not be obtained with the 
assumption of fully turbulent flow. Quantitative 
agreement is generally poor during the down stroke 
with a much deeper stall predicted than was 
observed in the experiment. 
    The predicted force and moment hysterisis was 
shown to be sensitive to both fixed transition location 
and transition length. The depth of the computed 

stall increases as the fixed transition point moves aft 
or as the transitional flow region is lengthened. The 
movement of the upper surface transition location 
appears to be erroneous during the down stroke 
based upon quasi-steady considerations, This 
behaviour is attributed to deficiencies in the model 
relating the local velocity distribution to the computed 
pressure coefficients. Further work is required to 
improve this aspect of the model  
    Finally the model was applied in a non-iterative 
fashion to the computation of transition location on 
an isolated two-bladed rotor in hovering flight. The 
method was shown to predict transition behaviour 
similar to that expected from physical reasoning. 
Comparisons with corresponding two-dimensional 
predictions suggest that the influence of rotating flow 
is important when assessing transition location. For 
the three-dimensional calculations transition was 
generally predicted earlier on the lower surface and 
later on the lower surface than in the corresponding 
two-dimensional calculations. 
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