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Abstract 
An approximative method using Green's func
tions has been developed to analyse the free 
vibration characteristics of clamped-free com
posite rotating or non-rotating beams with 
structural bending-torsion coupling. In this 
formulation the coupling terms are considered 
as external applied distributed loads. N umeri
cal examples concerning natural frequency cal
culation of several uniform composite beams 
are also presented and compared with the re
sults of other studies. 

Notation 

E!y(Kss) =flap stiffness 
EI,(Koo) =lag stiffness 
e1 = root blade offset 
GJ( K44) = torsional stiffness 
K, K4s = bending-torsion 
(pitch-flap) coupling stiffness 
K46 = bending-torsion(pitch-lag) 
coupling stiffness 
kA = effective polar radius of gyration 
of blade cross section 
km = polar radius of gyration of cross 
sectional n1ass about elastic axis 
k' - k' + k' m - »tl 1n2 

L = beam length 
m = bhtde mass per unit length 
v, w = elastic displacements in y, 
z directions, respectively 

X, e = coordinates along the blade 
¢ = elastic twist of cross section of blade 
about shear center 
n = angular velocity of rotation, rad/s 
w = frequency of vibration, rad/ s 
(.)'=differentiation w.r.t. x 
(.)"=double differentiation w.r.t. x 
(.)"' =triple differentiation w.r.t. x 
(. f = transpose of a matrix 

Introduction 

The study of static and dynamic character
istics of composite beams has attracted con
siderable interest in recent years, especially 
because of their increasing applications in 
aerospace. Many papers deal with this sub
ject, references [1]-[10] being some selected ex
am pies. Several different methods may be 
used to solve the free vibration problem: the 
influence coefficient method [5], a mixed for
mulation developed by Hodges [8], a. mixed fi
nite element method [7], a Galerkin method 
[9], the dynamic stiffness matrix method [10]. 
The approach presented here provides a. sim
ple matrix method for obtaining the natural 
frequencies and mode shapes of a clamped
free uniform composite beam with structural 
bending-torsion coupling. The static stiffness 
properties of the beam are considered knowns 
using a formulation as in [3] .. [6]. This ap
proach is valid for small linear deflections. The 
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Figure 1: Configuration of the rotating beam 

effects such as shear, rotatory inertia or warp
ing are also neglected. The numerical exam
ples presented concern natural frequencies and 
mode shapes calculation of non-rotating and 
rotating beams. All these calculations are per
formed in the MATLAB environment. 

Problem Formulation 

As many results of the present study are com
pared with those of [9] the notation used in 
this reference will also be employed here. The 
analysed configuration is shown in Fig. 1. We 
start with the linearized governing equations 
of motion for flap-lag-torsion vibration anal
ysis of a uniform composite rotating beam in 
the case e1 = 0, [9] written in the form: 

2 r>2 831 mw v + m" v - K 46 8 3 X 

1 ,..,2(L2 2) " + '2m" - x v 
2 I 2 II mn XV - mn K66Lnv (2) 

If we consider only the flap-torsion equations 
of free vibration of a non-rotating uniform 
beam, these relations take the form used in 
[10]: 

84w 831 
EI - = mw2w- K- (4) 

"8x4 8x3 

821 83w 
GJ 

8
x 2 + K 8x 3 + mk?,.w21 = 0 (5) 

According to [11], [12] a differential equation 
of the type: 

can be written in the following integral form: 

u(x) { Gu(x,~)p(e)d~ 

+ t Gu(x,e)p(e)d~ (7) 

where Gu( x, 0 is the Green's function, which 
has a discontinuity at x = ( Also according 
to [11] .. [13], the equation: 

8 81 
8

,[GJ(x) 
8

x] + m,(x) = 0 (8) 

can be written in the following integral form: 

1(x) { G,(x,~)m,(e)d~ 

+ t G,(x,e)m,(Od~ (9) 

Gu and G, are the appropriate Green's func
tions which include boundary conditions. The 
idea is to consider equations (1), (2), (3) or 
(4), (5) of the form (6), (8) including the 
coupling terms as external applied loading. 
For performing the integrals required by the 
forms (7), (9), n collocation points are choosen 
in order to evaluate the Gw, Gv, G, matri
ces, while a weighting matrix [P] is also used. 
This corresponds to the Simpson integration 
scheme. [D1] and [D2] are matrices for differ
entiation, and are used to obtain the vectors 
{ w'}, { w"}, { v'}, { v"}, { 1'}, { 1"}. They corre
spond to a differentiation layout with central 
differences. For handling the coupling bend
ing torsion terms which require the vectors 
{ w"'}, { v"'}, { 1"'} an integration by parts is 
first performed. Triple differentiation is thus 
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avoided, while the [G~J, [G~], [G;] (difFerenti
ation w.r.t. x of [GwJ, [G.], [G,]) are also re
quired. Equations (1), (2), (3) take the forms: 

{w} w2m[Gw][P]{w} 
+ K45 [G~][P][D2]{ ¢} 
+ [Gw][P][M;n][D2]{w} 
+ [Gw][PJ[Mx][D,]{w} (10) 

{v} w2m[G.][P]{v}+n2m[G.][P]{v} 
+ K4e[G~][PJ[D2]{¢} + [Gv][P][[M;n] 
+ [ M1]][ D2]{ v} 
+ [Gv][P][Mx][D,]{ v} (11) 

{ ¢} w2mk~,[ G,][ P]{ ¢} 
K4s [G;J[ P][D2]{ w} 
K.6[G;][ P][D2]{ v} 
mn2(k!2 - k!1 )[G,][P]{¢} 

+ mn 2 K 46 L22[G,][PJ[D,]{ v} 
+ k~ [ G,][ PJ[[ M;n][ D2] 
+ [M,J[D1]]{¢} (12) 

where the (n,n) matrices [Min], [M,], [M1 ] 

have ~mn2(U - x 2
), -mn2x, -mn2 

K66L22 

respectively on the main diagonal. Equations 
(10), (11), (12) may be written in either the 
form: 

{z} = w2 [A1]{z} + [B1]{z} (13) 

or the form: 

[[A]- w 2 [I]]{z} = {0} (14) 

where: 
[A]= [A,r'[[I]- [B,]] (15) 

is a (3n,3n) matrix and the vector { z} = 
[[w][v][¢Jf has dimension 3n. This is an eigen
values and eigenvectors problem which gives 
the natural frequencies of the free vibrations 
and the corresponding mode shapes. 

N lll!!~rical l?~<t-'!!!!_l_~s_ 

The first example is to find the natural fre
quencies of a flap bending-torsion coupled uni
form non-rotating composite cantilever beam. 
The properties of this beam are given in [10] 
and are taken from [7]: Ely = 0.5317Nm2, 
GJ = 0.3586Nm2, K = 0.099Nm2, m = 

Figure 2: Composite rectangular box beam 

0.07383Kgjm, mk?,, = 5.56210-6 kgm. Ta
ble 1 compares the results of the present inte
gral formulation (I.F.) with the finite element 
calculated natural frequencies of reference [7] 
and with the natural frequencies obtained us
ing the exact dynamic stiffness matrix method 
given in [10]. 

Table 1 Nat ural frequencies of a coupled 
bending-torsion cantilever composite 

non-rotating beam 

Mode Natural frequencies (Hz) 
F.E.M [7] [10] I.F., n = 20 

1 4.66 4.66 4.68 
2 29.60 29.17 29.28 
3 84.89 81.63 82.37 
4 113.43 113.28 113.29 

The next examples deal with the free vibration 
characteristics analysis of a rotating compos
ite box beam(Fig. 2). All comparisons are 
made with the results published by Chandra 
and Chopra [9], who used Galerkin's method 
to solve of the same coupled equations. They 
also obtained experimental results. Four sym
metric graphite-epoxy, kevlar-epoxy and glass
epoxy box-beam configurations with bending
torsion coupling, presented in [9] were con
sidered. Beam length is L = 33.25in, while 
the inner dimensions of the cross-section are 
0.893in and 0.477in (Fig. 2). Other geometri
cal details of the beams are shown in Table 2. 
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Material characteristics are presented in Ta
ble 3. In this table the mass density is given 
in 10-3 Zbs 2 jin4

• 

Table 2 Details of the thin-walled composite 
box-beams 

Config., Ply thick. Mate- Flanges Webs 
Layers <in> rial 
S1, 6 0.005 graph. [30]6 [±30]a 

epoxy 
S2, 6 0.005 graph. [45)6 [±45)3 

epoxy 
S3, 2 0.01 kevlar [45]2 ±45 

epoxy 
S4, 2 0.016 glass [45]2 ±45 

epoxy 

Table 3 Material characteristics 

Mate- Den- EL ET GLT Jl.LT 
rial sity 106psi 106psi 106 psi 

graph. 0.135 20.59 1.42 0.89 0.42 
epoxy 
kevlar 0.104 11 0.8 0.34 0.34 
epoxy 
glass 0.167 7 2.1 0.8 0.26 
epoxy 

All coefficients Kij were calculated using the 
model developed in [ 6]. Figure 3 shows the 
influence of rotation on the first three natural 
frequencies for the [30] 6 symmetric graphite
epoxy beam with bending-torsion coupling 
(configuration Sl ). The theoretical and ex
perimental results of [9] are also presented for 
comparison. Figures 4, 5 and 6 show results 
for configurations S2, S3, S4. Correlation with 
the Galer kin method is very good, while corre
lation between the theoretical and experimen
tal results of [9] is within 10%. 

Conclusions 

Theoretical values for the free vibration char
acteristics of coupled bending-torsion compos
ite clamped-free uniform beams were obtained 
starting with an integral formulation of the 
corresponding equations of motion. The re
sult.s show good agreement with those of the 
classic Galerkin method. In this formulation, 
the boundary conditions are included by us
ing appropriate structural influence (Green's) 
functions, while the bending-torsion coupling 
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Figure 3: Natural frequencies for configuration 
Sl 
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Figure 6: Natural frequencies for configuration 
S4 

terms are considered as external applied dis
tributed loads. Integration along the length of 
the beam is performed by using a weighting 
matrix corresponding to the Simpson method. 
The differentiation matrices [D1], [D2] corre
spond to a differentiation layout with cen
tral differences. Another more general integral 
method, which also use integrating and dif
ferentiating matrices is the Integrating Matrix 
Method [14], [15]. The present method has 
been successfully used to determine the flap
lag-torsion dynamic characteristics of a non
uniform isotropic pretwisted rotating blade 
[16]. It may be concluded that this formu
lation based on Green's functions is another 
useful way of performing such an analysis. 
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Appendix 

The following Green's functions are used: 

~<X 

C-:x 

~<X 
c::::x 

These functions are differentiated as follows: 

The following relations are also used: 

t Gw<!;" d~ = - t G~<f," d~ 

f a.q,"' d~ = - f a~q," a~ 

t G,w"' d~ = - t a;w" d~ 

f G,v"' d~ = - f a;v" d~ 
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