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Abstract

The method with computer code was developed for investigation of hub and blade
arrangements influence on rotor blade motion., The isolated rotor blade of he-
licopter in steady flight is considered. The hub can be hingeless or composed
with up o three hinges of arbitrary sequence. Stiffness and damping can be
present in each hinge. The blade can be rigid or deformable (can twist around
straight elastic axis and bend in iwo perpendicular directions). The structural
viscous damping of blade deformations can be included into amalysis.

The aerodynamic loading is calculated with strip theory using steady nonlinear
airfuil characteristics with unsteady effects described by dynamic inflow model.

The equations of motion have been derived from Hamiltonian principle. The blade
deformations were discretized at the very early stage of equations derivation
which h&lped to express equations in matrix form and to do most of algebraic
manipulations within the computer program,

The equations are included into the set of computer codes aimed to perform
comprehensive stability analysis of helicopter motion.

Notation

/\ - matrix of rotation, (7a),
/‘@%) - matrix of rotation in lagging hinge,
A - roter disc area,
A_. - blade section area,
Ap - effective (tension) cross section area,
EB(q) - inertia matrix,
B () - matrix of rotation in flapping hinge,
C (Q) - Coriolis loading matrix,
C (8) - matrix of rotation in feathering hinge,
¢(x) - blade section chord,

- . ici = 2
C_my rotor rolling moment coefficient, C ahix ZMaXAJARVT,
. , . o ) ST
GaMy - rotor pitching moment coefficient, CaMy = 2May/VARVT’

Cp - drag force coefficient,
o - 1ift force coefficient,

Cy ~ aeradynamic moment coefficient,
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C:Fa - vector of aerodynamic loading coefficients in dynamic inflow model,
C; - rotor thrust coefficient, Cr = ZTS/QAVZ,
dD - blade section drag force,
dl. - blade section 1lift force,
dM - blade section aerodynamic moment,
I)k(q) - gyroscopic loading matrix,
D @) - rotor shaft rotation matrix,
E - Young modulus,
El - blade bending stiffness,
@ - vector of first hub stiff element, @ =[ex,ey,ez]3
§ - vector of second hub stiff element, f x[fx,fy,fz]z
f@;) - vector in the expressions of inertia loading,
fA() - blade section aerodynamic force in () coordinate system,
F p - vector of damping moments,
g - vector of third hub stiff element, 9 =[gx,g
G - Kirchoff modulus,

]T

y?9z2Js

GJ - blade torsional stiffness,

h - vector of fourth hub stiff element, P)m[hx,hy,hz]I
KL - coefficient in dynamic inflow model,

Kp - stiffness of blade pitch angle control system,
Kw - stiffness of rotor shaft and drive system,
l_,}1~ matirices in dynamic inflow equations,
Max - rotor aerodynamic rolling moment,
M__ - rotor agrodynamic pitching moment,

"‘A() - blade section aerodynamic moment in () coordinate system,
Nd - number of generalized coordinates, Nd = N_ + Nr’
- number of "elastic" degrees of freedom, N_ = NV + Nw + Né’

05"33;

n o

N . - number of "rigid" degrees of freedom, Nr
N - number of in-plane bending deflection modes,
N - number of out-of-plane bending deflection modes,
N, - number of torsion deflection modes,
FD(ﬁl) - matrix of rotation in first hinge,
g, - vector of generalized coordinates,
(QQﬁZ) - matrix of rotation in second hinge,
C]A - vestor of aerodynamic loading in eguations of motion,
(lD - vector of damping forces in equations of motion,
QN - nonconservative forces 1n Hamiltonlan equations of motion,
Qg ; - hinge spring moments, (i=0,..,N ),
r,r, - vectors given in expressions (7b) and (7c) respectively,
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R - rotor radius,
F?(?j) - matrix of rotation in third hinge,
‘ S - vector given in expression (7e),
t - time,
- kinetic emergy, T = T(L,y,y,¥y.¥ ),
- rotor thrust,
- matrix of blade section rotation due to elastic deformations,
- potential energy, U = Uly,y,y"),

. - induced velocity,
- in-plane bending deflection of the k-th blade,

- flow velocity in the blade section, V? = Vﬁ + V2

T
T

s

T

U

VvV - vector of bending deformations, \l=[U,v,w']w,r
Vi
Yk

M 5
Vv

- nondimensional velocity, V = /¥,
V. - flight velocity, V [VLX, Ly’ LZ]T
V; - rotor tip speed, VT =52R,
W - out-of~plane bending deflection of the k-th blade,
W - work of nonconservative forces, W = W(t,y.y,¥.¥ ),
X.Xx_ - vectors given in expressions (5) and (&) respectively,
X - nondimensional coordinate along the undeformed blade,
Xl - blade cross section translation along undeformed elastic
axis, X =]:x1,0,0ﬂ
Y - generalized coordinates in general form of equations of motion,
X - blade section angle of attack,
o4 - rotor vortex skew angle,
A, - angle of rotation in i-th hinge,

Jﬁik -~ constant part of angle of rotation in i-th hinge,

jaio - periodic part of angle of rotation in i-th hinge,
fgié - unknown part of angle of rotation in i-th hinge,
"ﬁi - blade viscous damping coefficients, (i=l,...,Nd),

Cﬁ; - flap hinge axis skew angle,
17, - distance between aerodynamic center and elastic axis in blade section,
?i - blade normal modes of vibration, (i=1,...,Ne),

QC(W) - blade pitch control angle, 8. = 8 + Qlcos(%ﬁ + stin(¥?,

B - hlade geomeirical twist angle,

% - pitch-flap coupling coefficient,

A = induced velocity coefficient,

-

A - vector of induced velocity perturbations, J.=|}i,}2,}3},

- rotor axial flow velocity coefficient, .J\-,C AT
Ay~ induced velocity coefficient in hover,
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M. - induced velocity perturbation coefficient,

A - constant term of induced velocity coefficient,
M- tip-speed ratio,
‘g-blade section point coordinates, g =[§L?,§]E
¢ ~ air density,

Gb - blade average density,

}E - angle between blade section velocity component in the rotor plane of

rotation and helicopter plane of symmetry,

9, - torsion angle of the k-th blade,
§/ - blade azimuth angle,

S - rotor shaft angular velocity,

- derivation with respect to time,

-~ derivation with respect to X.

Matrices and vectors are written bold.

Introducztion

New rotor concepts have been put into productyion during the previous decade
(Ref.1l). This was proceeded by a considerable research and development eifort.
Each new product was carefully anmalyzed analytically and tested experimentally.

Parametric studies for the new rotor concepts evaluation have to be done at as
early design stage as possible, The cdmputer simulation is more flexible and
cheaper than ground and flight tests, so it is applied widely in an early de-
sign work.

During thig study the model and the set of computer programs have been develo-
ped for investigation of hub and blade arrangements influence on rotor blade
motion. Hub and blade are modeled in general way to allow studying different

rotor concepts.
The method concerns isolated rotor blade for helicopter in steady flight.

The hub can be composed in many different ways. It is possible to include into
hub model up to three hinges of arbitrary sequence or to consider hingeless or
bearingless rotor. Blades can bend in two planes and twist around elastic axis.

tgquations of motion have been derived from Hamiitonian principle. The blade de-
formations were discretized by deflection modes computed for blade rotating in
vacuum. This diécretization was done at the very early stage of eguations de-
rivation, that helped to express eguations of motion in matrix form and to do
most of algebraic manipulations within the computer program. This procedure can
be named "half automatic" generation of equations and is similar to that worked

out by Done (Ref.2) and his co-workers.
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The equations of motion were included into the set of compuier codes aimed to

perform comprehensive stability analysis of helicopter motion.

In the paper the model and the equations of motion derivation are described.

1. Rotor model

1.1, Hub

The isolated rotor blade of helicopter in steady flight is considered. The ro-
tor shaft angular speed 52 is constant. The hub can be composed in many diffe-

rent ways, including up to three hinges of arbitrary sequence.

The most general hub model (Fig.l) consists of four stiff elements e, f, g and
h 1linking the blade to the rotor shaft. Points DP’ U[J and OR are the ends of
the first three stiff
segments. The fourth
segment h extends to
blade (point A). Locat-
ions of ends of stiff

segments are specified
by vectors: e, §, g and
h. In each point: O, Og

Fig.1l
and DR one of three hinges {(fiapping, lagging or feathering) can be placed. Ma-
trices of rotation in these hinges are given in Appendix 1.

Angle of rotation j%i in i~th hinge consists of:

- constant part J5. describing design angles like: precone, droop etc.,
- periodic functlmn Jb (t) which describes the blade steady motion,

- unknown function j5 (t) related to disturbed motion of the blade,

Sou= Py foip(-w +ﬁ>iq(t), (i=1,...,N). (1

Bilade pitch control angle Q is added to the feathering hinge rotatlonJ g if
such hinge is included into the hub:

By =Py + 8,(0). (2)

If there are both feathering and flapping hinges in the hub, the kinematic
pitch-flap Coupllﬂg can be applled (ﬁf - flapping hinge rotation):

- B, wﬁ (3)

Oamping and stiffness can be taken into account in each hinge.

In the shaft coorcinate system the location of the end of the last hub segment

h (point A) can be written in the form:
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Xp =D e +Pf+PAG+PQRh+ PARX ] . | )

1.2, Blade

The blade (Fig.2) is attached to the hub in the point A at the end of segment h.
The blade can be rigid or deformable.
In the later case the blade has sirai-
ght elastic axis parallel to the axis
of segment h, The blade is pretwisted
by the angle Qg(x) around elastic axis
or, if is rigid, around feathering
axis. The elastic properties of blade

sections are symmetrical about chord.
The viscous structural damping of blade deformations can be also tesken into ac-

count,

The deformations of the blade are:
~ in-plane bending v(x),

- out-of-plane bending w(x),

- torsion §(x).

In the undeformed elastic axis coordinate system the vector of the deformed

blade point coordinates can be written in the form:
X= X + V+TE. (5)

Matrix T is given in Appendix 1.

The vector of deformed blade point coordinates is obtained form (4) and (5);:

Xp = D (v)[e +P§ +PRG+PQRA+PAR X, +v + T'g)] . (6)

The final expression for X p can be written in the form:
Xo =D r, =D (r+Ax+AS), (7

where:
A=PEOAEIREY, (7a)
r-e«PEpf PEDAPRG-PEPQ EHRCDA, (70)
r. = F+Ax+As, (7e)
us . T - o + gi 7=— 51j + 5

X = [x,v,z], y= cou(Qg) ~1n(9g), z 51ﬂ(99) co (QQ), (7d)
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[

=X, +V+TE=)8,,  (i=,2,3), .
=y v o)l 8, = [z, 0wl 8y = [0, vl J

n
It

2. Equations of motion

2.1. General remarks

The blade model described in Section 1.2 includes = variety of models for which
equations of motion can have different forms. This was the reason why & special
method for eguations of motion derivation had to be elaborated.

The eguations of motion have been derived by the method which can be named
"nalf automatic" generation of equations, since algebraic manipulations are
performed mainly by computer.

The method is based on utilizing the vector XF,(7) to the expressions for iner-
tia and stiffness loadings and to the aerodynamic forces calculation. 7o avoid
numerical difficulties, the derivatives of matirices and vectors are calculated
analytically and included intc computer code. The inertizl and structural loa-
dings need not be integrated along the blade span during the computation of
right hand sides of equations. The bhlade generalized masses and stiffresses are
taken from the separate computer program before solving (or analyzing) the

equations of motion.

The equations of motion derivation is based on Hamiltonian principle:

£ . t ty 2
s [dw-n-dulat =0, or | @wdt - ! @t = [ wat. (8)
% 4 % {

1 1 1 1

In the asbove equations the inertial loading I.L. results from variation of ki-
netic energy, the stiffness loading 5.L. comes from variation of potential
energy and the nonconservative loading N.L. arises from the work done by aero-

dynamic QA and damping QD forces.

The kinetic and potential energies are the functions of: gererzlized coordina-

tes‘y , generalized velooitieslg and their derivatives with respect to length,

T Y, Y, ¥r Y0, (9a)
Uy, Y5 y". (9b)

. . . . . N i Lr
Variations of T and U in (8) were calculated in terms of the varlatlons:i)x,csx,

T

U

il

4 is @ . . ( . .
(ﬁx and X, and after substituting «<'d = d< and integrating by parts, the ex-

. o . L {® X .
pressions containing the velocity veriations oX and <X were eliminated:
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t t t
25d 1 o1, oL 23U -
j gw dydt + \ ! Sar] - S5+ Sliylat + \ 2=y dt
\) Y dt a 4 (‘) y s
t [ y y YI tl[ y y ] 1 oy § (10)
SZQ ydt
i L N
4 NoYat. ,

During the integratien by parts the boundary conditions (not given here) have
been also obtained.

At this stage of equations of motion derivation, the discretization of deflec-
tions v, w and ¢ was performed.

2.2. Generalized coordinates,

The blade motion can be described by:
"glastic" degrees of freedom v, w, ¢,

- "rigid" degrees of freedom J%i, (i=0,..,N_).

The blade deflections v, w and ¢ were discretized by free vibration modes:

vESv =30 000 (1), (sl N, (11a)
W =}:wi =2, (0a; (), (12N +1, 00w NN ), (11b)
b o= cb.l =Zrzi(x)qi(t), (L=N N +1, 00N ). (1lc)

Vector of generalized coordinates for rotor blade motion is composed with (1)
and (11) in the succession of deflections and angles:

q=la]" = Dowd,pill G, (350,00 N, (12)

2.3. General form of equations of motion

Tseking into account (10) and (12), two kinds of eguations of motion have been

obtained:
- for "elastic" degrees of freedom (j=1,...,Ne):
ot [ a7 cJT AU T, -

S[ 'a-} 51, ]'”R*S 5z } AABTN KAl

R R § (13a)

C'U " j r
jld .,]TL dR = | Oy, T70R,
R R

integration in (13a) exiends along the blade;

- for "rigid" degrees of freedom (j:Ne+l"“’Ne+Nr):
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g__f\T ] AT aU
dt aq aq Oq

= Q- (13b)
Ny

J

3., Blade inertia loading

Kinetic Eenergy T can be calculated in the form:

1
Z

0 ey

j 3b5<5 dA_dR. (14)
Ag

Derivation of vector Xp can be obtained from (7) in the form:

Dr +,D£ar° ] (i=1,...,N ). (15)

Inserting (15) into (14) and putting result into (13a) for "elastic" degrees of
freedom and into (13b) for "rigid" degrees of freedom, the inertial loading in
the eguations of motion takes the form:

=] L e[ 3 B RRE, ¢ 2 3 G DD G
R A L
5 r (16)
' O M . Moy Ty Tt
> ’gj:[aqnj [35115@3 145+ 57 1 .Dro]dAst, |

where n is the number of generalized coordinates considered, (n < Nd)‘

In matrix form the ineriia loading can be written as:

-B @4+20@4 + 4'D @q +f@Q. an

Elements of matrices 13, (:, I>n and vector f are given in Appendix 2.

4, Blade stiffness loading

Stiffness loading is caused by deformations of hinge springs and/or blade

deflections.,

Hinge springs stiffness can be an arbitrary function of hinge angles of rotat-
ion, i.e. in the "rigid" degrees of freedom the stiffness loadings can be
expressed as:

L, = QSl(q}_), (i:D,...,Nr)- (18)

Blade deformation forces and moments are derived from model given in Ref.3. In
the equations of motion the stiffress loading can be put in the form:

= Qq+h. (19)
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Elements of matrix Q and vector b are given in Appendix 3,

5. Agrodynamic loading

Aerodynamic loading is calculated according to two-dimensional model with the
steady nonlinear airfoil characteristics. The unsteady effects are included by
applying dynamic inflow model with Pitt-Peters (Ref.4) coefficients. In each
blade cross section (Fig.3) the 20
flow 1s assumed. The aerodynamic loa-
ding acting in section aerodynamic

center A.C, consists of:

- drag dD=ggcGOViey60dx,  (20)

- 11t dl=pge(OVie Gk, (200)

Fig.3

- moment dM:%ch(x)VZCMGiﬁdx. (20c)
The aercdynamic coefficients CD; L and Gy are calculated from nonlinear cha-

racteristics for blade section instant angles of attack.

In the blade section coordinate system U§Qs the flow velocity can be expressed
as:

-1 *
V= @D (V| +V; +X). (21)

The aerodynamic loadings in the blade section are expressed as force fA and
moment "‘A vectors in 0gng coordinate system:

1T - . . C . R
f,=[fx, 50,52, 1;=0, fy=dlcos@)-dlsin®e), f =dbsin@x)+dloos®e), o
. T
n1An[mB,mq,m5|, m=-aMrpaEp,  mp=0,  me=0.
Vector of blade aerodynamic loadings can be obtained from (22) by integration
along the blade span and then vector of total rotor aerodynamic loadings

Q, - Q,t.9.9 -, (i=1,... Ny (23)

can be calculeted by successive transformations of loads from the blade root
to the rotor shaft.

5.1, Dynamic inflow model

The dynamic inflow model allows to account into analysis the effects of un-
steady flow. The total rotor aerodynamic loadings are utilized for calculations.

In this model there is only one component of induced velocity vector, perpendi-

cular to the plane of rotation, i.e. the component OzS in the Dvxpyvzs {rotor
e B T |
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shaft) system of coordinates. Induced velocity coefficient is obtained from:

A=+, As vy N (24)
Constant part J\O of induced velocity is calculated:
- for hover: )”h = VCT/Z, (25a)
\ PR
- for axial rotor flow: J& = —1%% + 2?0 ,l; (25b)

- for forward flight: _} \/ (VV + +lﬂ = Vi, o+ Vﬁy (25c)

Induced velocity perturbatiocn )Vi is compuied as:

;li x‘%l 4wA?;éin(?Lj%) +,Aj§bos(%ij%), | (26)

where
- ain-l
Y, = sin (VLY/VP). (27>

Components.kl,dkz aﬂcl\.}x,3 of induced velocity perturbation are calculated from
the system of ordinary differential equations:

SQIIMALTIN=C (28)
where (29)
o T ] : T 29
J\x LJLJLJ’ (1=1,2,3), and CFa - [CT’CaMx’CaMy]'
Matrices M and L teken from Ref.4 are given in Appendix 4.
&, Damping loading
Damping forces can b expressed as a vector: .
N sy e T .
Fro=Fpa;,0) = [Fyls (1=1,...,NJ). (30)
For hinges loading, the damping moments can be arbitrary function.of hinge
angles of rotation and angular velocities:
Foi = FDi(qi,qi), (1=§\ld]+l,...,l\l¢+Nr). (31
For blede deflection, the viscous damping loading is modeled in the form:
. I
Foi = Gyl hi¥4dR, (i:l,...,Ne). (32
R

7. Final form of eqguations

Collecting together expressicns: (17), (19), (23} and (30), equations of motion

can ve written in the form:
B@§--2094-4D @4-{¢q -Qq-h-Fq.9 - A(tqcp (33)
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For numerical integration of (33) the Gear s algorithm has been used.

Examples of application of the described model will be shown during presentat-

ion of this paper.
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Appendix 1. Mairices of rotation

shaft rotation Lagging hinge rotation
[ . . T - i

cos(¥) sin{¥) 0 cos@) -sin@y) 0O

D =] -sin(¥) cos¥) 0, A =|sin6s) cos) 0,
0 0 lJ 0 0 1

Flapping hinge rotation Feathering hingg rotation
cosgb) 0 —sing5) 1 0 0

B ()= 0 1 0 , C® ={0 cos(8) sin(@) |,

singﬁ) 0 cosqb) 0 -sin(B8) cos(8)

Blade deformation
I -vcos(B8 )sw sin(B_ ) -v'sin(8 )-w cos(9 )
T -=| v cos(8 )4 sin(8)) sin(@g)+nb cos(%)
© si . 5 (0 )-¢ si
W 51n(99) ¢ cos( g) ¢o (Qg) b QIHCQQ)‘

Appendix 2. Inertia matrices

aro Oﬁ) f Jro 8!
B 1 J?b’ uql]dA aR, % So |-)---—Id/\ dR,
PA;
Cf[ aforTe o | Dl’oﬁ
By H ol5e) L)q 5 |0A_CR, £, Hfb| D 'Dr dh or.

RAT
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Appendix 3. Elements of blade stiffness matrix

Matrix Q is symmetrical; ithe elements Qij are:

for i = 1""’Nv’ for 3= 1,...,N

0; 4= [(EI%COSZ(QQ)+EI§-SSin2(QQ)J (1t (2,

V,

for j = NV+1,...,NV+N ,

W
Q; ;=-(EIpq-EI 5y )00s(8 )sin(8 in .,

for j = NV+NW+1,...,NV+NW+N¢,

Q..:~Q'CQQGS(Qg)qiﬁg+t(x)qssin(gg)qi?

"
i1 g J’

for i = N+l .0 NN, for 3 = N+1l,o NN,
Qijr [Equsinz(Qg)+EI§§cUSZ(Qg)](Q£)2+t(x)(qi)2,
for J = Nv+Nw+l""’Nv+Nw+N¢’
Qijzgégn?i”(gg)7i05+tcx)?5005(gg)Viﬁg’
for i = NV+NW+i,...,NV+NW+N¢, for j = NV+Nw+l,...,NV+Nw+N¢,

Qij:[GJ+QéLK+t(X)kEJ(Qg)z.

Components of vector h are:

hi:ut(x)qscos(gg)qz, (ixl,...,NV),
hi:t(X)QSSin(gg)Q;’ (i=NV+1,...,NV+NW),
‘hizt(x)kEQgQi, (i:NV+Nw+l,...,NV+NW+N¢),
where
_ — 2 2_ - = .
A= Ean_, o J gk g, pg= [ Erong/a,
AT AT AT

kE: j\ E<?2+52HKT)C}AS/AE> kT:J‘ E(Q2+éz)dAS/AE’ LK:.[ E(Q2+52~k-l—)d,t\
Ay | A Ay 57

‘t(x)mé E[U '_Hb 'gé<qz+sz)“val [CDSCQQ)+Sin(gg)]+"V]l {-Sln(gg)_‘COS(gQ)]]dAS.
T
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Appendix 4., Dynamic inflow elements

= 0 0 o RN
Nt e+ Y00 +2X)
-};—%%. 0|, sin@ )= reo -, KL:-/ c_b & 0
\/ 20 4 2 . 2
0 7‘%—% f’“+()“c+)“o) WL *O\c“\‘u)
1 ) l.s,ﬂ"' /l-sin(oév)
2 4 l+sin(00V)
2 2
0 i 0 EVVLerVLz
1+s5in(e0 ) ? /LL v '
Vv 1
Qﬂ fl—sin(oov) . s
64 1+sin(o<}v) 1+sin('virv)

- * -
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