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Abstract 

The mc:thod with computer code was developed for investigation of hub and blade 

arrangements influence on rotor blade motion. The isolated rotor blade of he­

licopter in steady flight is considered. The hub can be hingeless or composed 

1'1i th up to three hinges of arbitrary sequer1ce. Stiffness and damping can be 

present in each hinge. The blade can be rigid or deformable (can t1vist around 

straight elastic axis and bend in two perpendicular directions). The structural 

viscous damping of blade deformations can be included .into analysis. 

The aerodynamic loading is calculated with strip theory using steady nonlinear 

airfoil characteristics with unsteady effects described by dynamic inf101v model. 

The equations of motion have been derived from Hamiltonian principle. The blade 

d8formations were discretized at the very early stage of equations derivation 

lvhich helped to express equations in matrix form and to do most of algebraic 

manipulations 1vi til ill the computer prouram. 

The equations are included into the 'set of computer codes aimed to perform 

comprehensive stability analysis of helicopter motion. 

Notation 

A - matrix of rotation, (7a), 

A Co<;) - matrix of rotation in laggir1g hinge, 

A - rotor disc area, 

A
5 

- blade section area, 

AT -effective (tension) cross section area, 

8 Ccp - inert.ia matrix, 
B (j'.l) matri;; of rotation ir1 flapping hinge, 

C Cq) - Coriolis loading matrix, 

C (G) - matrix of rotation in feathering hinge, 
c(x) - blade section chord, 

c
3

Mx - rotor rolling moment coefficient, caHx ~ 2Ma/1'ARVf, 

caMy - rotor pitching moment coefficient, caMy ~ 2M
3
/\'ARV]-, 

cD - drag forcB coefficient, 

cL - lift force coeff.icient, 

eM - aorodyr1amic moment cocff icient, 
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CFa vector of aerodynamic loading coefficients in dynamic inflow model, 

CT - rotor thrust coefficient, CT = 2Ts/~AVf, 
dO - blade section drag force, 
dl - blade section lift force, 

dM- blade section aerodynamic moment, 

])k(~) - gyroscopic loading matrix, 
D (<p) - rotor shaft rotation mtltrix, 

E - Young 

- blade 

modulus, 

EI 

e­
f -

vector 
bending stiffness, 

of first hub stiff element, e =[e ,e ,e 1; 
X y Z ·T 

vector of second hub stiff element, f =[fx,fy,fzj, 

fCq) vector in the expressions of inertia loading, 

fA() blade section aerodynamic force in 0 coordinate system, 
vector of damping moments, F D -

g [• .] T - vector of third hub stiff element, 9 = gx,gy,gz , 
G - Kirchoff modulus, 

GJ - blade torsional stiffness, 

h - vector of fourth hub stiff element, h =[h ,h ,h ]; 
· X y Z· 

Max 

May 
mM) 

Nd 

Ne 
Nr 

NV 
N 

IV 

N~ 
p Cj\) 

- coefficient in dynamic inflmv model, 

- stiffness of blade pitch angle control system, 

- stiffness of rotor shaft and drive system, 
matrices in dynamic inflow equations, 

- rotor aerodynamic rolling moment, 

-rotor aerodynamic pitching moment, 
- blade section aerodynamic moment in () coordinate system, 

- number of generalized coordinates, Nd = Ne + Nr, 

number of "elastic" degrees of freedom, Ne = Nv + Nw + N~, 

-number of "rigid" degrees of freedom, Nr = 0, •• ,3, 

- number of in-plane bending deflection modes, 
- number of out-of-plane bending deflection modes, 

- number of torsion deflection modes, 
- matrix of rotation in first hinge, 

~ - vector of generalized coordinates, 

Q Cf2) - matrix of rotation in second hinge, 
QA - ve~tor of aerodynamic loading in equations of motion, 
(1 0 - vector of damping forces in equations of motion, 

QN - nonconservative forces in Hamiltonian equations of motion, 

Qsi- hinge spring moments, (i=O, .. ,Nr), 
r,r

0 
- vectors given in expressions (7b) and (7c) re5pectively, 
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- rotor radius, 
matrix of rotation in third hinge, 
vector given in expression (7e), 

t - time, 
T - kinetic energy, T = T(t,y,;,y;;·), 

Ts -rotor thrust, 
T - matrix of blade section rotation due to elastic deformations, 
U - potential 

V - vector of 

( • II) energy, U = U y,y,y , 

bending deformations, V ~ [ 0, v, 11]; 

vi - induced velocity,. 
vk - in-plane bending deflection of the k-th blade, 
V - flow velocity in the blade section, V' = V~ + V?, 

c s 
V- nondimensional velocity, V ~ V/VT, 

VL - flight velocity, V L = [\x, \y, \~]; 
VT - rotor tip speed, VT =j2R, 
wk - out-of-plane bending deflection of the k-th blade, 

W - 1vork of nonconservati ve forces, vJ = W( t ,y ,y ,y ;y ·), 
:IC,)Cp - vectors given in e:(pressions (5) and (6) respectively, 

x- nondimensional coordinate along the undeformed blade, 

X1 - blade cross sect.ion translation along undeformed elastic 

a:<is, xl =[xl,o,o]; 
y - generalized coordinates in general form of equations of motion, 
·:x;- blade section angle of attack, 

0 

..!'-'ip 
r... . .1~/iq 

Y· 
.. i 

- rotor vortex skew angle, 

- angle of rotation in i-th hinge, 
constant part of angle of rotation in i-th hinge, 
periodic part of angle of rotation in i-th hinge, 

- unknmvn part of angle of rotation in i-th hinge, 
- blade viscous damping coefficients, ( i=l, ... , Nd), 

- flap hinge axis skew angle, d3 
r; 
'·a 

distance between aerodynamic center and elastic axis in blade section, 
!) . 
.. l - blade normal mode:; of vibrat.ion, Ci=l, ... ,Ne), 

gc (V') - blade pitch control angle, g ~ g + g1 cos('/') + g7sin('.f':), c 0 ~ -

gg - blade geometrical twist angle, 

~~ri- pitch-flap coupling coefficierrt, 
.\- induced velocity coefficient, 

T 

).. - vector of induced velocity perturbations, .).. = 1)1 ,\2, \] : 

).c - rotor axial flmv velocity coefficient, A = VL /V T, 
C Z I 

),,h - induced velocity coefficimt in hl'Ver, 
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-\ - induced velocity perturbation coefficient, 

;,\..
0 

- constant -term of .induced velocity coefficient, 

)1- tip-speed ratio, 

s- blade section point coordinates, ~ ~[§,?.,)]; 
I(- air density, 

eb - blade average density, 
)'

0 
angle between blade section velocity component in the rotor plane of 

rotation and helicopter plane of symmetry, 

~K - torsion angle of the k-th blade, 

~- blade azimuth angle, 

Q - rotor shaft angular velocity, . 
( ) - derivation with respect to time, 
( /) - derivation 1v.ith respect to x. 

Matrices ar1d vectors are wri tter1 bold. 

Introduction 

Ne1v rotor concepts have been put into production during the previous decade 

(Ref .1). This 1vas proceeded by a considerable research and development effort. 

Each ne1v product was carefully analyzed analytically and tested e;;perimcntally. 

Parametric studies for the ne1v rotor concepts evaluation have to be done at as 

early design stage as possible. The computer simulation is more flexible and 
cheaper than ground and flight tests, so it is applied widely ir1 an early de­

sign 1vork. 

During this study the model and the set of computer programs have been develo­

ped for investigation of hub and blade arrangements influence on rotor blade 

motion. Hub and blade are modeled in general way to allow studying different 

rotor concepts. 

The method concerns isolated rotor blade for helicopter in steady flight. 

The hub can be composed in many different ways. It is possible to include into 

hub model up to three hinges of arbitrary sequence or to consider hingeless or 

bearingless rotor. Blades can bend in two planes and twist around elastic axis. 

Equations of motion have been derived from Hamiltonian principle. The blade de­

formations were discretized by deflection modes computed for blade rotating in 

vacuum. This d:iscretization \vas done at the very early stage of equations de­

rivation, that helped to express equations of mot.ion in matrix form and to do 

most of algebraic man.ipulations 1vi thin the computer program. This procedure can 

be named "half automatic" generatior1 of equations and is similar to that worked 

out by Done (Ref. 2) and his co-1vorkers. 
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The equations of motion were included into the set of computer codes aimed to 

perform comprehensive stability analysis of helicopter motion. 

In the paper the model and the equations of motion derivation are described. 

1. Rotor model 

1. 1. Hub 

The isolated rotor blade of helicopter in steady flight is considered. The ro­

tor shaft angular speed 9. is constant. The hub can be composed in many diffe­

rent ways, including up to three hinges of arbitrary sequence. 

The most general hub model (Fig.l) consists of four stiff elements e, f, g and 

h linking the blade to the rotor shaft. Points Dp, o0 and OR are the ends of 

the first three stiff 

segments. The fourth 

segment h extends to 

blade (point A). Locat-

ions of ends of stiff 

Fig.l 

segments are specified 

by vectors: e, f, 9 and 

h. In each point: Dp, o0 
and OR one of three hinges (flapping, lagging or feathering) can be placed. Ma-

trices of rotation in these hinges are given in Appendix 1. 

Angle of rotation J~i in i-th hinge consists of: 

-constant part j6ik describing design angles like: precone, droop etc., 

- periodic function f-\p ( t) which describes the blade steady motion, 

- unknown function J?>iq(t) related to disturbed motion of the blade, 

(i=l, ..• ,Nr). (1) 

Blade pitch control angle gc is added to the feathering hinge rotationj1g, if 
such hinge is included into the hub: 

If there are both feathering and flapping hinges in the hub, the kinematic 

pitch-flap coupling can be applied Cj3f - flapping hinge rotation): 

(2) 

fig = J3 g - iliPr o) 

Damping and stiffness can be taken into account in each hinge. 

In the shaft coordinate system the location of the end of the last hub segment 

h (point A) can be written in the form: 
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1.2. Blade 

The blade (Fig.2) is attached to the hub in the point A at the end of segment h. 

! 

Fig.2 

The blade can be rigid or deformable. 

In the later case the blade has strai-

ght elastic axis parallel to the axis 

of segment h. The blade is pret1visted 

by the angle g (x) around elastic axis 
g 

or, if is rigid, around feathering 

axis. The elastic properties of blade 

sections are symmetrical about chord. 

The viscous structural dampir1g of blade deformations can be also taken into oc-
coun·~. 

The deformations of the blade are: 

- in-plane bending v(x), 

- out-of-plar1e bending w(x), 

- torsion ~(x). 

In the undeformed elastic axis coordinate system the vector of the deformed 

blade point coordinates can be written in the form: 

Matrix T is given in Appendix 1. 

(5) 

The vector of deformed blade point coordinates is obtained form (4) and (5): 

The final expression for X p can be 1vri tten in the form: 

XP = D Ci~ r
0 

= .D ('!)( r +AX +AS), 

1vhere: 

A= P0\)Q032)'R~\), 

r= e+.P0\)f + P0\)Q0°2)9+P0\)Q0)2)RCi\)h, 

r = r +Ax+As, 
0 

·T X= [x,y,zJ , y= cou(gg)+ tJin(g
9
), z=- sin(g )+ cos(g ), 

g g 
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(7) 

(7a) 

(7b) 

(7c) 

(7d) 



5= x 1 +V +T-5= L_5i, (i=l,2,3), 

5 1
- , .] T 

1 = . -v y' v' o_ ' 

2.1. General remarks 

s -2 - l- - .] T 
-w z, 0, w , 

2. Equations of motion 

(7e) 

The blade model de~;cribed in Section l. 2 includes c: v<::riety of models for 1·1hich 

equations of motiorJ can have different forms. This was the reason 1;hy ::; special 

method for equations of motion derivation had to be elaborated. 

Tht: equations of motion have been derived by the method 1;hich can be named 

"half automatic" generation of equations, since algebraic manipulations are 

performed mainly by computer. 

The method is based on utilizing the vector Xp (7) to the expressions for iner­

tia and stiffness loadings and to the aerodynamic forces calculation. To avoid 

numerical difficulties, the derivatives of matrices and vectors are calculated 

analytically and included into computer code. The inertial and structural loa­

dings need not be integrated along the blade span during the computation of 

right hand sides of equations. The blade generalized masses and stiffnesses are 

taken from the separ2te computer program before solving (or analyzing) the 

equations of motion. 

The equations of motion derivation is based on Hamiltonian principle: 

+ t2 t2 + 
!~2 '2 

[cS cu-T)- c\ wJ dt = 0, or J (dU)dt \ (clT)dt = ) ccivl)dt. (8) 
+ t + +-o, 1 'l 'l L 

In the above equations the inertial loading I.L. results from variation of ki­

netic energy, the stiffness loading S.L. comes from variation of potential 

energy and the nonconservative loading N.L. arises from the work done by aero­

dynamic QA and damping q0 forces. 

Tho kinetic and potential energies are the functions of: generalized coordina­

tes y , generalized velocities y and their derivatives with respect to length, 

T = T(t, '), y, y; ~'), (9a) 

u = ucy, y~ y"J. C9b) 

Variations of T and U ir1 (8) were calculuted in terms of the variations: Jx ,clic, 
cl
., ,., ' ( 
X snd 1\)(, and after substituting c) d = d cJ and integra·;ing by parts, the ex-

press ions containing the yeloci ty vDrintions c5X and dX"' ~·JE::l"'e eliminated: 
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During the integration by parts the boundary conditions (not given here) have 

been also obtained. 

At this stage of equations of motion derivation, the discretization of deflec­

tions v, wand ~was performed. 

2.2. Generalized coordinates. 

The blade motion can be described by: 

- "elastic" degrees of freedom v, w, ~' 

- "rigid" degrees of freedom foi' (i=O, .. ,Nr). 

The blade deflections v, w and ~were discretized by free vibration modes: 

v =I:Vi =2::'2/x)qi(t), 

\v =2::wi =.L~i(x)qi(t), 

~ = 2:: ~i = 2::'2 i (x)qi (t)' 

(i=l, ..• ,N), 

(i=Nv+l, ... ,Nv+Nw), 

(i=Nv+Nw+l, ... ,Ne). 

(lla) 

(llb) 

(llc) 

Vector of generalized coordinates for rotor blade motion is composed lvith (1) 

and (11) in the succession of deflections and angles: 

·JT- p,JT q.= l_qi = [v,1v,~,n , (12) 

2.3. General· form of equations of motion 

Taking into account (10) and (12), two kinds of equations of motion have been 

obtained: 

- for "elastic" degrees of freedom (j=l, ... ,Ne): 

r[d10TJ cJT ClUJ l(dr()T·I clT r)UJ.· ) dt -,)•. - ()q. + ()q. ~jdR + j CIF()q. - ()q. + i)q. rljdR 
R qJ J J R J J J (13a) 

+ fr~u ]tL'!dR = ('QN.~.dR, J ·<.Jq'! J J J J 
R J R 

integration in (13a) extends along the blade; 

-for "rigid" degrees of freedom (j=Ne+l, .•. ,N
8
+Nr): 
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(13b) 

3. Blade inertia loadina 

Kinetic energy T can be calculated in the form: 

r=llf'ox' 2.Jlbp (14) 

R A s 

Derivation of vector )(P can be obtained from (7) in the form: 

• D. T\ ,oro . xP = r +.,vL-;::--- q., 
0 vqi l 

(i=l, ••• ,Nd). (15) 

Inserting (15) into (14) and putting result into (l3a) for "elastic" degrees of 

freedom and into (13b) for "rigid" degrees of freedom, the inertial loading in 
the equations of motion takes the form: 

I. L. = s [· p ["" ,-,)To] T [uro]". + 2 , ..0ro] T,..,. TD ril roj .. J ) b L ·c)q Jq. ql ~ IJq .w l<)q. ql 
R A 1 n 1 1 n 1 

s 

+ i·clro] T.D Ti) r J dA dR 
-2iq . 0 s ' 

n 

where n is the number of generalized coordinates considered, (rl < Nd). 

In matrix form the inertia loading can be 1vri tten as: 

Elements of matrices .B , C, D n and vector { are given in Appendix 2. 

4. Blade stiffness loading 

Stiffness loading is caused by deformations of hinge springs and/or blade 

deflections. 

(16) 

(17) 

Hinge springs stiffness can be an arbitrary function of hinge angles of rotat­

ion, i.e. in the "rigid" degwes of freedom the stiffness loadings can be 

expressed as: 

(18) 

Blade deformation forces and moments are derived from model given in Ref.3. In 

the equations of motion the stiffness loading can be put in the form: 

(19) 
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Elements of matrix Q and vector h are given in Appendix 3. 

5. Aerodynamic loading 

Aerodynamic loading is calculated according to two-dimensional model with the 

steady nonlinear airfoil characteristics. The unsteady effects are included by 

applying dynamic inflow model with Pitt-Peters (Ref.4) coefficients. In each 

Fig.3 

blade cross section (Fig.3) the 20 

flmv is assumed. The aerodynamic loa­
ding acting in section aerodynamic 

center A.C. consists of: 

drag dD-~?c(x)V'c0(oV)dx, (20a) 

- lift dl -~~c(x)V'cl ~)dx, (20b) 

-moment dM-~?c'(x)V'cM(c(,)dx. (20c) 

The aerodynamic coefficients c0, cl and eM are calculated from nonlinear cha­

racteristics for blade section instant angles of attack. 

In the blade section coordinate system 0_5r(5 the flow velocity can be expressed 

as: 

(21) 

The aerodyn<Jmic loadings in the blade section are expressed as force fA and 

moment mA vectors in ogq5 coordinate system: 

fr1_ =dDcos(o<,) -dlsin (o(;), f_s =dDsin0c) +dlcos (v.v) , 
(22) 

Vector of blade aerodynamic loadings can be obtained from (22) by integration 

along the blade span and then vector of total rotor aerodynamic loadings 

(23) 

can be calculated by successive transformations of loads from the blade root 

to the rotor shaft. 

5.1. Dynamic inflow model 

The dynamic inflo;v model allows to account into analysis the effects of un­

steady flow. The total rotor aerodynamic loadir1gs are utilized for calculations. 

In this model there is only one component of induced velocity vector, perpendi­

cular to the plane of rotation, i.e. the component Ozs in the 0
5
x

8
y

8
zs (rotor 

III.B.2.10 



shaft) system of coordinates. Induced velocity coefficient is obtained from: 

,\ ~ v, /VT. 
1 

Constant part } of ir1duced velocity is calculated: 
0 

-for hover: ),h =1[C;/2, 

for axial rotor flow: )_0 

- for forward flight: 

()c)' ).' , 
2 + h' 

4)} - \[') h , 

Induced velocity perturbation )_,i is computed as: 

J\ ,J1 +J2xsin(:J'-~) +),3xcosCY;-~), 
\vhere 

(24) 

(25a) 

(25b) 

(25c) 

(26) 

(27) 

Components _A 
1
,). 

2 
and ) 3 of induc8d velocity, perturbation ar8 calculated from 

the system of ordinary differential 8quations: 

(i=l,2,3), and 

~1atrices M and L tak8n from Ref. I> are given in f1ppendix 1,. 

6. Damping loading 

Damping forces can b9 expressed as a vector: 

Fo =F'oCqi,qi) = [FoJT (i=l, ... ,Nd). 

For hinges loadir1g, the damping moments can be arbitrary function, of hinge 

angles of rotation and angular velocities: 

FD1' = FD.(q. ,~.), 
1 1 1 

For blcde rJeflection, the viscous damping loading is modeled in the forrn: 

. (· 

= q. i n.J:dR, 
1 .. ( 1 1 

R 

7. Final form of 8quations 

(28) 

(29) 

(30) 

(31) 

(32) 

Collecting together expressions: (17), (19), (23) and (30), equations of motion 

can be written in the form: 
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For numerical integration of (33) the Gear's algorithm has been used. 

Examples of application of the descr.ibed model 1v.U l be shown during presentat­

ion of this paper. 

Ref ere r1c e s 

1. Kaminski S.: "Composite mair1 rotor blade of PZL--Sokol helicopter", XI Euro­

pean Rotorcraft Forum, 1985, Paper No. 046. 

2. Patel M.H., Done G.T.S.: ''Experience with a new approach to rotor aeroelas­

ticity", X European Rotorcraft Forum, 1981>, Paper No. 058. 

3. Houbolt J.C., Brooks G.\v.: "Differer1tial equations of motion for combined 

flapwise bending, chordwise bending ancJ torsion of twided nonuniform rotor 

blades", NACf, Rep. 131>6, 1957. 

1;. Pitt D.M., Peters D.f,.: "Theoretical prediction of dyrmmi.c inflow derivati­

ves'', Vertica, Vol. 5, No. 1, 1981. 

D 

B Cj:>) 

Appendix 1. Matrices of rotation 

Shaft rotation Lagging hinge rotation 

cos('f) sin(of) 0 cos("") -sin('-"') 0 

- -sin(f) cos(1J) 0 ,. A (ex,) = sin(ov) cos(-'<) 0 

0 0 1 0 0 1 

Flapping hinge rotation Feathering hinge rotation 

cosCJ) 0 -sin~) 1 0 0 

= 0 1 0 c (9) = 0 cos(9) sin(9) 

sinCJ6) 0 cos~p) 0 -sin(9) cos(9) 

Blade deformation 

1 

T = v 

-v"cos(9g)+w"sin(9g) 

cos(9g)-~ sin(9g) 

-sin(9g)-~ c~s(9g) 

Appendix 2. Inertia matrices 

C .=2J'JD l)foiTD Tf> laro]dA dR m ~ b ,)q · ~)q. · s ' 
RA . n 1 

T 
2 

JJ., ;clro·, T r ?J ro i 
D .. = · '(b 1::;--J ,~-~ dA dR, nlJ J ·uq cJq -vlj . s 

RAT n l J 
' 
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Appendix 3. Elements of blade stiffness matrix 

Matrix Q is symmetrical; the elements Q .. are: 
1J 

fori= l, ... ,Nv, for j = l, •.. ,Nv, 

Q .. =[(EI00 cos 2 (Q )+EI.~sin 2 (Q )j(n~) 2 +t(x)(~:) 2 , 
1J , ' g " g - 'c1 1 

for j = N +l, ... ,N +N , v v ,, 

Qij=-(EI~q-Eis~)cos(Q9 )sin(Q9 )q{q;, 

for j = Nv+Nw+l, ... ,Nv+Nw+N~, 

Q .. =-Q'Cr.Lcos(Q )n1:q'!+t(x)rz sin(Q )r). n'!, 
1J g g 1 J s g ·1'J 

fori= Nv+l, .•. ,Nv+Nw, for j = Nv+l, ... ,Nv+Nw, 

Qij = [EI 'Z'2sin 2 
( gg) +EL5~cos 2 

( g
9

)] Crz.i) 2 +t ( x) ( r1 i) 2 
, 

for j = Nv+Nw+l, ..• ,Nv+Nw+N~, 

Q .. =Q ·c,sin(Q )n: n'!+t(x)n cos(Q )n. ii1'!, 1J g ., g t1''J ts g ·11 J 

for i = Nv+Nw+l, ••• ,Nv+Nw+N~, for j = Nv+Nw+l, ... ,Nv+N1,+N~, 

Q .. = [GJ+Q 'LK+t(x)kE] (r() 2 • 1J g . 1 

Components of vector h are: 

where 

h.=-t(x)n cos(Q >rz~, (i=l, ... ,Nv), 
1 ·<s g 1 

h.=t(x)nt sin(Q )~~. (i=N +l, ... ,N +N ), 
1 s g ·1 v v w 

c() EC7_'+ f-kT) Cr{-q5 )dAs, 

AT 
~s= r E~dA/AE, 

AT 

t(x) = J' E [ u · +~ · g~ ( ~'+s' )-v" [cos( g
9

)+sin( g
9

)] +w" [sin( g
9

)-cos( g
9

) J J dAs. 

AT 
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128 
751T 

M= 0 

0 

Appendix 4. Dynamic inflow elements 

0 0 
-16 0 1;511 -16 0 1;5"J 

1 
2 

0 

1-sin(~>V )' 
v 

l+sin(o<; ) 
v 

~\c+.\ 
sin ( oe ) = -;;==="::===='===:::; 

v Vp.Z+C>-c+}o)2 

0 

-4 
1+sin(w ) 

v 

0 

1-sin(o<, ) v 
1 +sin(v:i ) v 

0 

-4 
l+sin0::>V ) v 

* 
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yv2 +V2 . 
11 = Lx Lz 

;- VT 




