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This paper describes a comprehensive study of vibration reduction in a four­
bladed helicopter rotor using an actively controlled flap (ACF) located on the blade. 
This sequel to an earlier feasibility study utilizes a flexible blade model to examine 
the practical implementation of the ACF. A deterministic feedback controller is im­
plemented to reduce the 4/rev hub loads. Comparisons with individual blade control 
(IBC). in which the entire blade is oscillated in pitch, show that the ACF is compara­
ble to IBC in its vibration reduction effectiveness, but requires substantially less 
power for its implementation. A comprehensive set of trend studies are conducted 
and it is found that the torsional stiffness of the blade, the ACF spanwise location, 
and the chordwise offset of the ACF center of gravity from the hinge axis are impor­
tant parameters. Time domain simulations of the helicopter response to control are 
carried out to investigate the validity of the quasistatic assumption frequently used 
in vibration reduction studies. Finally, implementation of the ACF using 
magnetostrictive actuation technology is considered and found to be a viable ap­
proach. 

Nomenclature 

a 
ao 
cb 
Cr 
Cdo 
Cmo 
Cw 
D 
e 
ERR 
fb 
ft 
fCdf 
gb 
IMB2• 
J 
Lb 
Mb 
MH 
Mr,p 
M, 
M,,~ 
Nb 
Pes 

IMB3 

Compressible lift curve slope 
Incompressible lift curve slope 
Blade chord 
Hinge moment correction factor 
Blade drag coefficient 
Blade moment coefficient 
Weight coefficient = Weight/nR2pAR2Q 2 

Control matrix 
Blade root offset 
Error control parameter 
Vector of blade equations 
Vector of trim equations 
Fuselage flat plate drag area 
= fb - M qb 
Principal mass moments of inertia 
Quadratic cost functional 
Blade length 
Total mass of one blade 
Control surface hinge moment 
Blade tip Mach number in hover 
Blade root feathering moment 
Mach number on blade at x, t/J 
Number of blades in the rotor 
ACF power 
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u, 
w., Wu, W6 
Xc 
y 
z, 
Zo 

IBC power 
Vector of blade dofs 
Vector of trim parameters 
Rotot radius 
Time 
Update period of closed-loop controller 
Rotor period, = D./2n 
Transfer matrix relating vibratory response to control 
Vector of control input harmonics 
Weighting matrices in quadratic cost functional 
Spanwise location of ACF centroid 
State vector, = { q~ q~}T 
Nb/rev vibration harmonics 
Baseline value of z, 

Greek Symbols 

WF1' WL1, 

WT1 

(I)F2' WL2 
(J 

Prandti-Giauerl compressiblity correction factor 
Control flap deflection angle 
Lock number 
IBC pitch input 
Advance ratio 
Air density 
Blade azimuth angle 
Rotor angular velocity 
First rotating flap, lead-lag and torsional frequencies, 
respectively 
Second rotating flap and lead-lag frequencies, respectively 
Blade solidity ratio 

Special Symbols 

Derivative w.r.1. spanwise coordinate x 
Derivative w.r.1. time 

1. Introduction and Problem Statement 

The desire to reduce vibrations to levels below those attainable by passive 
means[1 ,2] has motivated the use of active controls for vibration reduction. One 
such approach, commonly denoted as higher harmonic control[3] (HHC), has 
emerged as a potential candidate for implementation in production helicopters. In 
this approach, additional collective and cyclic pitch inputs at frequencies greater than 
1/rev (used for flight control) are introduced in the fixed system through an actively 
controlled conventional swashplate. This approach attempts to reduce vibrations in 
the fuselage, or at the hub, by tailoring the vibratory aerodynamic loads on the 
blades; thus modifying them at their source, before they propagate to the airframe. 
The validity of this approach for producing substantial vibration reduction has been 
demonstrated by analytical simulations[5-10], wind tunnel tests[11-13] and flight 
tests[14-16]. 

The alternative approach denoted individual blade control[17] (IBC) yields an 
improvement in vibration reduction compared to HHC by controlling the pitch angle 
of each blade independently in the rotating frame. This approach removes some of 
the limitations which exist in active control through a conventional swashplate, but a 
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more complex contra: system is required, including the possibility of replacing the 
conventional swashplate by an "electronic swashplate"[18,19]. 

It is noteworthy that both HHC and IBC introduce the pitch control for vibration 
reduction through the primary flight control system of the helicopter, and therefore 
the presence of such an ,,clive vibration control device introduces some constraints 
on the system, from an airworthiness point of view. Furthermore, comparison 
studies[8,9] of HHC carried out for equivalent articulated and hingeless rotors have 
indicated the existence of significant power penalty associated with the need to drive 
harmonically the coupled structural dynamic system represented by the hingeless 
blade. Similar restrictions may be valid for the case of IBC, which also involves os­
cillating the entire blade. 

Inspired by the successful experience at Kaman with mechanically controlled flaps 
mounted on blades[20]. the feasibility of using an actively controlled partial span 
flap, shown in Fig. 1 (a), for vibration reduction was explored in Ref. 21. This feasi­
bility study, based on a simple offset-hinged spring restrained blade model with 
coupled flap-lag-torsional dynamics, demonstrated the capability of the ACF for 
producing roughly the same degree of vibration reduction as IBC (in which the entire 
blade is oscillated), while consuming only 12-20% of the power required by IBC. 

Encouraged by these results a second stage of this study was undertaken, em­
phasizing the practical aspects of the implementing the ACF on a hingeless rotor. 
This paper, which describes the results obtained in the second stage, has a number 
of specific objectives, described below. 

(1) Implement the actively controlled partial span flap with a fully elastic, geomet­
rically nonlinear, blade model in which the dynamics of the blade are represented 
by two torsional, two chordwise bending and three flapwise bending modes. 

(2) Study the sensitivity of the vibration reduction effectiveness of the ACF to the 
following: (a) spanwise location of the control flap; (b) the torsional stiffness of the 
blade; (c) the chordwise offset of the control flap e.g. from the hinge axis; (d) the 
aerodynamic hinge moment correction factor; and (e) compressibility effects. 

(3) Examine time domain simulations of the helicopter response to control to de­
termine the validity of the quasistatic assumption commonly made in helicopter vi­
bration reduction studies. 

(4) Study the feasibility of implementing this highly effective blade control concept 
using magnetostrictive type actuation. 

2. Mathematical Model 

A fully elastic blade model, shown in Fig. 1(b), with fully coupled flap, lead-lag and 
torsional dynamics is selected to represent the hingeless blade. The structural part 
of the flexible blade model is taken from Ref. 23, which presents a set of nonlinear 
partial differential equations of motion for a flexible blade undergoing fully coupled 
flap-lag-torsional dynamics with moderate deflections. A complete and detailed de­
scription of the derivation of the equations of motion can be found in Ref. 24. 

The inertial loads are determined using D' AI em bert's principle. An appropriately 
modified version of Greenberg's quasisteady aerodynamic theory[25] incorporating 
the effects of an aerodynamic control surface is used to obtain the aerodynamic 
loads on the blade. A detailed description of this modification is beyond the scope 
of this paper, and the final expressions have already been presented in Ref. 21. Re­
verse flow is included but dynamic stall effects are neglected. Compressibility effects 
are either neglected, or accounted for using the Prandti-Giauert correction factor 
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f3 = )1 - M~. IV to obtain the compre..;sible lift curve slope a= a0 / f3 , where Mx, ~ is the 
local Mach number at x, i/J. 

The structural, inertial and aerodynamic loads are developed explicitly using the 
symbolic manipulation program MACSYMA[24,26]. A description of the use of 
MACSYMA to formulate the blade loais, and a list of the resulting explicit ex­
pressions, can be found in Ref. 24. Moderate deflections are assumed in the formu­
lation; thus the equations of motion of the blade contain geometrically nonlinear 
terms in the structural, inertial and aerodynamic operators associated with this 
aeroelastic problem. An ordering scheme is employed to keep the size of the explicit 
expressions to a manageable size[27]. The ordering scheme is based on the as­
sumption that 

( 1) 

where e is a small dimensionless parameter on the order of typical blade bending 
slopes ( 0.1 s e s 0.2). Such an ordering scheme is particularly convenient when 
combined with a symbolic manipulator such as MACSYMA[24]. 

The aerodynamic lift and moment associated with the presence of a trailing edge 
flap are modified by an empirical hinge moment correction factor C1, where 
0.0 < C1 < 1.0 , that accounts for the presence of a gap between the trailing edge of 
the blade and the leading edge of the flap, which is not modeled in this study. Ex­
perimental data[28,29] indicate that flap effectiveness can vary by as much as 50% 
due to the presence of such a gap. 

The spatial dependence in the equations of motion is removed using Galerkin's 
method of weighted residuals based on two torsion, two lead-lag, and three flap free 
vibration modes of a rotating, uniform, cantilevered blade. The rotating modes are 
obtained from the exact nonrotating mode shapes of a uniform cantilevered beam. 
The resulting coupled ordinary nonlinear differential equations of motion can be 
conveniently written in vector form 

(2) 

The vector q1 contains the quantities governing the trim state of the helicopter, for 
propulsive trim, which are obtained from the solution of 

(3) 

which represents the requirement for longitudinal and vertical force equilibrium as 
well as pitch and roll equilibrium of the helicopter in steady, level flight. In Eqs. (3) 
the uniform inflow is calculated from[33] 

(4) 

Note that in these and the following equations bold type indicates vector or matrix 
quantities. 

3. Method of Solution 
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3.1 Frequency Domain Approach 

The harmonic balance technique (HBT) 'is used to calculate the trim state and 
equilibrium solution of the blade in a coupled manner; this approach is usually de­
noted coupled trim/aeroelastic analysis. The blade response in steady forward flight 
is periodic with a fundamental frequency eqL31 to the rotor speed Q , and thus it can 
be approximated by a truncated Fourier expansion containing NH harmonics 

NH 

qb = qbO + L [qbnc cos(nifk) + qbns sin(nifk)] {5) 

n=1 

where the number of harmonics NH retained determines the quality of this approxi­
mate solution. 

The blade equations of motion, Eqs. (2), represent a periodic system and thus can 
also be approximated by a truncated Fourier series expansion 

NH 

fb = fbo + L [fbnc cos( nif k) + fbns sin( nljt k)] (6) 
n=1 

An approximate solution to the blade equations can be obtained from the require­
ment that the constant part as well as the first NH harmonics in Eq. {6) be zero: 

fbo = 2~ r" fb(qb, qb, qb, qt, b; 1/t) dljt - 0 

and for 1 :<;; n :<;; NH 

(7) 

(8) 

(9) 

Similarly, the trim equations, Eqs. (3), can also be approximated by the truncated 
Fourier series expansion 

NH 

f1 = f10 + L[f10ccos(nljt)+f105 sin(nif)] (1 0) 
n=1 

Enforcing the trim condition for straight and level flight at fixed advance ratio implies 
that only the constant part of the forces and moments acting on the vehicle have to 
satisfy the equilibrium condition. Therefore only the constant part of Eq. (3) needs to 
be satisfied 

(11) 
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Using the HBT to solve the coupled trim aeroelastic response problem requires 
the iterative solution of the nonlinear algebraic system represented by Eqs. (7)- (9) 
and (11) for the vector of trim variables q1 and the (1 + 2NH) Fourier coefficient vec­
tors represented by qbO, qbnc• and qbns (1 s n s NH). The same number of harmonics 
is retained in both Eqs. (5) and (6) so that the system contains the same number of 
equations as unknowns. Since the ultimate goal is to determine the 4/rev vibratory 
hub loads, at least four harmonics should be retained in the expansion. Also, to 
properly capture the effects of the various N/rev harmonic inputs, NH should be at 
least one greater than the highest harmonic used in the control input. 

Gaussian quadrature is used to perform the integrations in Eqs. (7)- (9) and (11). 
Equation (5) is not substituted directly into Eqs. (7)- (9) and (11), but is instead 
evaluated numerically at each if; required by the numerical integration scheme. The 
IMSL subroutine DNEQNF[30], which solves systems of non-linear algebraic 
equations, is used to obtain the coupled trim and response solution. 

3.2 Time Domain Solution 

The HBT is convenient for simultaneously extracting the trim and aeroelastic re­
sponse solution. However, only the steady state solution is generated, and thus one 
can only simulate the implementation of discrete time controllers. This precludes 
application of many modern control approaches which have been developed for 
continuous time systems. Furthermore, since the HBT provides only the steady state 
response, the problem of transient system dynamics and its control cannot be ad-
dressed. · 

Therefore, in this section direct solution of the nonlinear ordinary differential 
equations of motion of the blade in the time domain is examined using a general 
purpose ordinary differential equation (ODE) solver DE/STEP[31]. In this approach 
the entire time history of the system response is available for control applications. 
The algorithm implemented in DE/STEP is a variant of the Adams-Bashforth method, 
in which the integration step size is selected such that each component of the local 
error vector e1ocal satisfies 

jelocal(i)l s RELERR x jy(i)l + ABSERR 

where RELERR and ABSERR are the relative and absolute error bounds, respec­
tively, specified by the user. A combined error criterion is usually best[31], so in this 
study ERR = RELERR = ABSERR. 

To use the ODE solver the equations of motion must be expressed in first order 
form y = F(y, t) . The second order differential equations of motion of the blade, re­
presented by Eq. (2), can be converted to first order form by decomposing the blade 
equations as indicated below 

(12) 

The matrix M is identical to the mass matrix obtained from a linearization of the 
equations about the response. The vector gb is the component of the blade equations 
which is independent of the acceleration vector qb. The decomposition of the blade 
equations fb represented by Eq. (12) is performed explicitly using the symbolic ma-
nipulation software MACSYMA[24]. · 

Solving Eq. (12) for qb, the first order, state variable form of the equations can be 
expressed as: 
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y (13) 

which is in the appropriate form y = F(y, t) . The matrix inversion M-1 required to 
generate Eq. (13) is performed numerically in the FORTRAN code. 

When solving the response problem directly in the time domain the order of the 
system is doubled; however, comparing this to the HBT leads one to conclude that 
this approach requires much less memory storage and bookkeeping than the HBT. 
Furthermore, availability of the time domain response facilitates the application of 
modern control techniques. 

3.3 Simplified Trim Procedure 

A possible deficiency of the time domain solution approach may be associated 
with the need to solve the trim and response problems separately. One approach to 
solving these two problems simultaneously, in the time domain, is commonly de­
noted the "auto-pilot" method[32]. In this approach a fictitious feedback system (i.e., 
a numerical controller) is used to trim the helicopter automatically as the equations 
are integrated in time. Procedures[32] developed thus far, however, demonstrate 
acceptable convergence characteristics only for torsionally stiff blades. 

Instead of using the "auto-pilot" approach, a simplified version of the aeroelastic 
analysis developed in this study is used to calculate, with sufficient accuracy, the 
steady state trim settings of the rotor needed as input to the time domain solution 
procedure. The simplified analysis employs only the fundamental flap, lead-lag and 
torsional rotating modes for modeling the blade dynamics. Furthermore, only two 
harmonics are retained in the expansion of the ·blade degrees of freedom. Compar­
isons with HBT results, presented later in this study, demonstrate that this simplified 
aeroelastic analysis yields accurate trim solutions, at a fraction of the computer time 
needed for implementation with the complete model. 

3.4 Vibratory Hub Loads Calculation 

Once the trim and aeroelastic response have been obtained, the force and mo­
ment at the hub due to the individual blade can be determined by integrating the 
distributed forces and moments along the span of the blade in the rotating frame, and 
transforming them to the nonrotating, hub-fixed system. The total hub loads are then 
calculated by summing the contribution from each blade in the rotor, using a time 
delay of 2n(k- 1 )/Nb to obtain the contribution from the kth blade. A harmonic anal­
ysis is then performed; for a four-bladed rotor the principal contribution to the vi­
bratory hub loads is the 4/rev vibratory component. 

4. Vibration Reduction Using Active Control 

The majority of vibration reduction investigations[5-19] to date have used a fre­
quency domain control approach based on the minimization of a quadratic perform­
ance index J given by 

(14) 

where ~u, = u,- u,_1 • The index i is used here to indicate the discrete time nature 
of control solutions based on frequency domain formulations. Typically, the vectors 
z, and u, contain the harmonics of the vibrations and control input, respectively, dur-
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ing the i'" time step of the discrete time controller. The time 15 between control up­
dates must be sufficient to allow the system to return to a steady state condition, 
which may require one or more rotor revolutions. The matrices w •. Wu and W6 rep­
resent weighting matrices on the vibrations, control amplitudes, and rate of change 
of the control, respectively. 

A deterministic optimal control law is obtained by taking the partial derivative of 
J given by Eq. (14) with respect to u, and setting this equal to zero 

aJ - 0 
au; 

and then solving for the optimal control u: . 

(15) 

In this study a linear, quasistatic, frequency domain representation of the heli­
copter response to control is used. This type of representation has been used in 
many previous studies[S-19]. Though in general the response of the helicopter to 
control is nonlinear, a linear approximation can be obtained by linearizing the system 
about the current control 

(16) 

Substituting Eq. (16) into Eq. (14) and minimizing with respect to the control yields 

(17) 

where 

(18) 

Equation (17) is in the form of a closed-loop controller[ 4] where the control input 
during each time step is determined by feedback of the vibration levels. 

5. Control Power Requirements 

The instantaneous power required to drive the control flap, averaged over one 
rotor revolution, and multiplied by the number of blades 

Nb 

p cs = I 2~ f" MH(l/Jk) b(lh) dl/Jk 
k=1 0 

(19) 

is used as a measure of the power required to implement the ACF. 

The power required to implement IBC is defined as the average power needed to 
drive the blade root pitch actuators during each revolution 

(20) 
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6. Results and Discussion 

6.1. Model Verification 

Before conducting the active control studies, the flexible blade model (without the 
control flap) and the solution procedure used in this study were carefully validated 
by comparing results with Refs. 8 and 34, which employed flexible blade models 
similar to the one used in this study. Comparisons of trim and response results with 
Ref. 34, and blade stability and 4/rev hub loads with Ref. 8, are presented in detail 
in Ref. 24. 

6.2. Active Control Studies 

The feedback control law given by Eq. (17) was employed to produce simultaneous 
reduction in the vibratory hub shears and moments using the ACF. Conventional IBC 
was also implemented for comparison. The input signal consists of 2, 3, 4, and 5/rev 
harmonic components in the rotating reference frame. This combination of frequen­
cies was found[24] to produce the greatest degree of reduction in the 4/rev hub 
loads without producing significant increases in the 8/rev hub loads, the next largest 
component of the vibratory loads in a four-bladed rotor. 

In the vibration reduction studies presented in this paper, only the vibration levels 
were penalized in the quadratic cost functional J (i.e. Wu = W6 = 0). In this case, J 
consists of the weighted sum of the squares of the amplitudes of the hub shears and 
hub moments, and thus represents a measure of the vibration levels experienced 
during the i'" control step. The weightings on the squares of the hub moment ampli­
tudes were scaled by a factor of ten relative to the weightings on the squares of the 
hub shear amplitudes. This was found to be necessary to produce roughly the same 
level of reduction in the hub shear and moment components. 

The nominal data for the flexible blade configuration employed in this study is 
presented in Table 1 and corresponds to a soft-in-plane fully flexible blade with uni­
form mass and stiffness. The data is intended to represent a helicopter configuration 
vaguely resembling an MBB-105 helicopter. The data in the table (except for Cw , y 
and (J ) have been nondimensionalized using Mb, Lb and (1/Q) for mass, length, and 
time respectively. The control studies were obtained using a control flap centered 
about the 75% blade span position and extending over 12% of the blade span, with 
a chord equal to 25% ·of the blade chord. This configuration was found to provide 
levels of vibration reduction comparable to IBC (in which the entire blade undergoes 
cyclic pitch change) with control flap deflection angles less than 10°, which was con­
sidered a practical upper limit. 

The minimum values of the quadratic cost functional obtained when implementing 
control through the ACF and IBC are presented in Fig. 2. The figure shows that very 
substantial vibration reduction was achieved by both control approaches over the 
entire range of torsional frequencies considered, and that the level of reduction 
produced by the actively controlled flap is comparable to IBC. In fact, for blades with 
a torsional frequency in range 3.1 ::0: wT1 ::0: 3.7 , which includes a considerable num­
ber of modern helicopter rotor blades, the level of vibration reduction produced by 
oscillating the relatively small trailing edge flap exceeds that achieved by oscillating 
the entire blade. This occurs when the torsional frequency of the blade wT1 is close 
to the rotating frequency of the second flap bending mode, which is given by 
wF2 = 3.7/rev when Xc = 0.75R. 

A very important capability lacking in IBC, in which the entire blade undergoes a 
uniform pitch change about the blade root, is the ability to cyclically vary the twist 
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distribution of the bladt-. It was shown in Ref. 20 that cyclic variations in the blade 
twist could have a substantial impact on blade bending amplitudes. This may in part 
explain why oscillating a relatively small trailing edge flap can produce roughly the 
same degree of vibration reduction obtained by oscillating the entire blade. This 
implies that the control flap's ability to cyclically change the blade twist is responsi­
ble for its enhanced capab1'ity to influence, in a beneficial manner, the dynamic re­
sponse of the blade. 

Examination of Fig. 2 shows that the effectiveness of IBC is relatively insensitive 
to variations in the torsional stiffness of the blade, while the figure depicts a decrease 
in ACF effectiveness at the higher blade torsional frequencies. As the blade becomes 
stiffer in torsion, the ability of the control flap to affect the twist distribution of the 
blade is reduced, thus reducing its effectiveness in controlling vibrations. Practically, 
though, the value of the optimal cost functional at the higher torsional frequencies is 
still very small. 

The degree of reduction obtained in the 4/rev hub loads by the ACF and IBC is 
compared in Figs. 3 and 4 for the torsional frequencies wn = 3.5/rev and 
wr1 = 5/rev, respectively. For the torsional frequency Wr1 = 3.5/rev, both control ap­
proaches successfully reduce the hub shears and moments by at least 95%. At the 
higher torsional frequency wr1 = 5/rev, the degree of reduction in the hub loads 
achieved by IBC is essentially unchanged; however, the ACF is slightly less effective, 
reducing the hub shears by only about 80%. 

The maximum control angle amplitudes required for vibration reduction by the two 
control approaches are shown in Fig. 5. Of course larger control input angles are 
required by the ACF; however, these angles are quite reasonable. Over the entire 
range of blade torsional frequencies considered, the largest control flap deflection 
angle required was only 10°. Larger control input amplitudes are needed when the 
torsional stiffness increases, for both control approaches, as evident from Fig. 5; this 
behavior is also consistent with the observations made in Ref. 20. 

A comparison of the power required to implement control through the ACF and 
IBC is presented in Fig. 6. The power required to drive the control surface actuators 
is defined by Eq. (19) and the power required to implement IBC is defined by Eq. 
(20). Figure 6 reveals that oscillating the entire blade requires considerably more 
power than oscillating the relatively small trailing edge flap: IBC requires anywhere 
from 3 times (for a torsionally stiff blade) to 10 times (for a torsionally soft blade) 
more power than consumed by the ACF. An increase in power requirements for both 
control approaches with increasing torsional stiffness is evident from Fig. 6; clearly 
vibration reduction in torsionally stiff blades is a more costly proposition. 

6.3. Influence of Control Flap Spanwise Location 

In the results presented in the last section, the trailing edge flap was centered 
about the 75% span position (i.e., Xc = 0.75R). This is very close to the node position 
of the second flap and lead-lag bending modes of the flexible blade, and therefore 
one could assume that centering the trailing edge flap about this node point would 
minimize its potential for exciting these modes. The effect of changing the spanwise 
location of the ACF was examined by moving its centroid outboard to the 85% blade 
span position (xc = 0.85R). Figure 7 presents a comparison of the vibration re­
duction effectiveness of the ACF for these two different spanwise locations. An in­
crease in the minimized value of J by nearly 1%, which represents about a 5% 
increase in the minimized 4/rev hub loads, is evident when the flap is moved out­
board, for blades with a torsional frequency in the vicinity of Wn = 4.4/rev. This 
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torsional frequency is very close to the rotating orequency of the second lead-lag 
bending mode, which is wl2 = 4.48/rev (for Xc = 0.85R). Figure 7 implies that moving 
the centroid of the trailing edge flap away from the node position of the second flap 
and lead-lag bending modes has a detrimental impact on the vibration reduction 
potential of the ACF when the second lag and first torsional frequencies are relatively 
close. The decrease observed in the minimized value of J at the higher torsional 
frequencies for Xc = 0.85R implies that moving the ACF outboard of the node point 
improves its vibration reduction effectiveness on torsionally stiff blades. 

The effect of the ACF spanwise location on the control flap angles required for vi­
bration reduction is shown in Fig. 8. It appears that the decrease in control flap ef­
fectiveness in the vicinity of wT1 = 4.4/rev is counterbalanced by a small decrease in 
the required control input amplitudes. This change is quite small and it is difficult to 
assess its significance. A small increase in the required control input amplitudes is 
evident in Fig. 8 in the vicinity of wT1 = 4/rev. This frequency is very close to the ro­
tating frequency of the second flap bending mode, which is wF2 = 3.97/rev (for 
Xc = 0.85R). 

The effect of the ACF spanwise location on the power requirements is shown in 
Fig. 9. The increase in control angles in the vicinity of wT1 = 4/rev is accompanied 
by about a 100% increase in power requirements. However, for blades relatively stiff 
in torsion (wn > 4.5/rev) power requirements decrease by up to 70%. Thus, for 
torsionally stiff blades, moving the control flap outboard toward the blade tip en­
hances the vibration reduction effectiveness of the ACF and reduces the power re­
quired for vibration suppression. 

Figures 7-9 demonstrate that coupling of the fundamental torsional mode with the 
second flap and lag bending modes of the blade has a substantial influence on the 
vibration reduction effectiveness of the ACF, and this effect is quite sensitive to 
changes in spanwise location. 

6.4. Influence of Mass Offset 

For the results presented thus far, the offset X,c between the control flap hinge axis 
and the center of gravity of the control flap has been assumed to be zero, i.e., the flap 
is mass balanced. However, this offset can have a substantial influence on the 
inertial hinge moment. Therefore, the effect on the vibration reduction potential of 
the control flap is studied by moving the e.g. of the control flap aft one-quarter chord. 
Moving the e.g. aft had almost no effect on the vibration levels. However, Fig. 10 
shows that moving the e.g. toward the trailing edge of the control flap resulted in 
slightly lower control flap deflection input amplitudes for blades relatively soft in 
torsion. The most pronounced influence of the chordwise movement of the control 
flap e.g. is on the power requirements, as shown in Fig. 11. This figure shows that 
moving the control flap aft of the hinge point resulted in up to a 66% reduction in the 
power requirements in the case of blades relatively soft in torsion. However, almost 
no power reduction is obtained on torsionally stiff blades. 

6.5. Effect of Hinge Moment and Compressibility Correction 

The importance of the value of the hinge moment correction factor C1 used in the 
active control studies was studied by changing its value from C1 = 0.6, used for gen­
erating the majority of the results, to a more conservative value C1 = 0.5. The results, 
presented in Ref. 24, indicate that the 16.7% decrease in the value of C1 had almost 
no effect on the potential of the ACF to reduce vibrations; however, it resulted in a 
15-20% increase in both the control input requirements and the power requirements. 
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A qualitative approximation of the effects of compressibility on the perfo1 mance 
of the ACF can be obtained using the Prandti-Giauert correction factor. These re­
sults, presented in Ref. 24, indicate that for p = 0.3 and a blade tip Mach number, in 
hover, M1;p = 0.65, compressibility has a minor effect on the vibration reduction and 
power requirements of the ACF. However, for higher values of p or Mup• the effects 
of compressibility increase significantly, as the tip region of the blade approac1~es 
transonic conditions. 

6.6 Time Domain Simulation 

The results obtained by solving the flexible blade equations of motion using the 
ODE solver DE/STEP are presented next. All time domain studies are performed 
using the data presented in Table 1, with the 12% span, 1/4 chord trailing edge flap 
centered about the 75% blade span position. Unless stated otherwise, the numerical 
integration is performed using an error tolerance of ERR= 10-5. This error tolerance 
was found to yield sufficient accuracy without requiring excessive computer CPU 
time expenditures. All calculations were performed on an IBM ES9000 model 900 
mainframe computer. 

The optimal control strategy used in this study, and in the majority of helicopter 
vibration reduction studies[5-19], is based on a quasistatic frequency domain model 
of the helicopter response to control. This approach completely ignores the effects 
of transient blade dynamics. The validity of this model and its implications are 
studied by generating time histories of the helicopter response to control. 

As a first step, the converged optimal control solution obtained using the HBT is 
applied in the open-loop mode starting from steady state conditions at timet= 0. The 
time history of the quadratic cost functional J is compared in Fig. 12 with the mini­
mum value obtained using the HBT. Figure 12 shows that the minimum vibration 
levels are not attained immediately after the control is applied, but only after 5-10 
rotor revolutions; this delay is attributed to transient blade dynamics. This implies 
that when implementing control in the feedback mode, the update period of the 
discrete-time closed-loop controller must be sufficient to allow the transients dy­
namics to die out, so that the vibration levels can be accurately measured before 
feeding them back to the controller. 

Next, closed-loop control is examined by applying feedback control starting from 
steady state conditions at t = 0. The performance of the closed-loop controller, im­
plemented in the time domain, is depicted in Fig. 13 for the controller update periods 
ts = 1T and Is= 2T, where T = 2n/D. is the rotor period. The figure shows that the 
selection of the update period of the discrete-time controller is very important. In the 
case where control is updated at the end of each revolution (Is= 1T), Fig. 13 shows 
that the controller can become unstable, resulting in a dramatic increase in vibration 
levels. For the update period ts = 2T, however, the feedback controller produces 
substantial vibration reduction. 

The performance of the closed-loop controller is examined in greater detail in Fig. 
14 for the controller update periods ts = 2T, 3T, and 4T. The smoothest performance 
is obtained using the update periods ts = 3T and 4T. For these two update periods, 
the closed-loop controller converges to the minimized vibration levels in about 20 
revolutions, as shown in Fig. 14. This required roughly 40 seconds of CPU time. 
When performing control simulations using the HBT, however, the closed-loop con­
troller required 3-4 iterations to converge to converge to the minimized vibration 
levels, which represents roughly 90-120 seconds of CPU time. Comparing this to the 
30 CPU seconds needed by the procedure DE/STEP shows that time domain simu­
lation of the helicopter response to control is potentially more efficient, in terms of 
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CPU time, than using a frequency domain solution approach such as the HBT. This 
may lead one to conclude that time domain simulations of feedback control are su­
P.erior to frequency domain simulations. Furthermore, in a more practical case one 
could have highly unsteady aerodynamics, such as dynamic stall, where time domain 
simulation may be the only feasible approach. 

A time domain simulation of the closed-loop controller starting from zero initial 
conditions (at time t=O) is shown in Fig. 15. Though zero initial conditions are un­
realistic in a practical situation, they are used here to represent an arbitrarily large 
initial disturbance to the system. The performance of the controller in the presence 
of such a large disturbance is studied for the update periods t 5 = 2T, 3T, and 4T. 
The time history of the vibration levels with the controller turned off (i.e., no control) 
is also shown. Figure 15 shows that the performance of the controller with the update 
periods t5 = 2T is very poor. However, the controllers .with the update periods 
t5 = 3T and t5 = 4T attained steady state minimized vibration levels within 30 revo­
lutions, requiring about 60 seconds of CPU time. This is still less than the 90-120 CPU 
seconds required by the HBT to converge to the minimized vibration levels. Thus 
time domain simulation appears to be more computationally efficient than the fre­
quency domain approach. 

Figures 12-15 indicate that an update period of at least three rotor periods is nec­
essary to ensure controller stability. Sufficient time must be allowed for the low fre­
quency transient dynamics to be adequately filtered from the measured 4/rev 
vibration levels before feeding them back to the controller. The lead-lag regressing 
mode, which is very lightly damped, is the lowest frequency dynamic mode present, 
having a fundamental period of roughly three rotor revolutions. Thus using an up­
date period equal to at least one full period of the lead-lag regressing mode, i.e. 
three rotor revolutions, should increase the degree to which the transient dynamics 
are filtered out of the vibration measurement. 

7. Magnetostrictive Actuation 

A recent study[35] indicated that the practical implementation of an ACF may be 
feasible using magnetostrictive actuation based on Terfenoi-D. Magnetostrictive 
materials such as Terfenoi-D produce strain when subjected to a magnetic field. 
Motivated by Ref. 35, the feasibility of implementing this particular magnetostrictive 
approach to vibration reduction was studied. A schematic drawing of the 
magnetostrictive actuator, which is conceptually similar to that proposed in Ref. 35, 
is shown in Fig. 16. The feasibility study, presented in detail in Ref. 36, concluded 
that relatively light weight and low power magnetostrictive actuators can be devel­
oped which are capable of driving blade mounted control flaps for vibration reduction 
in helicopter rotors. The minimum mass actuator design summarized in Table 2 was 
determined in Ref. 36 to be capable of producing the control flap hinge moments and 
deflection angles necessary for vibration reduction. The total mass of Terfenoi-D re­
quired for each actuator amounts to only about 1.2% of the blade mass. Accounting 
for the mass of the supporting structure, wire coil, and power transfer system, a 
conservative estimate of the total mass of the actuator would be five times this 
amount, or 6% of the blade mass. 

Other approaches to the actuation of blade mounted control flaps are also being 
considered. Researchers at McDonnell Douglas Helicopters[37] are currently de­
veloping an experimental mechanical device to actuate a trailing edge flap located 
near the blade tip for the purpose of reducing vibrations or enhancing rotor per­
formance. 
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8. Conclusions 

The most important conclusions obtained in this study are presented below. 
These conclusions should be considered within the framework of the simplifying as­
sumptions used. 

(1) Comparing the vibration reduction effectiveness of the ACF with IBC revealed 
that both approaches are equally effective in producing substantial vibration re­
duction. Furthermore, comparing the power requirements of the two approaches 
showed that the ACF required substantially less power than IBC for its implementa­
tion. This validates the results of the first stage of the feasibility study which con­
cluded that the ACF is a very attractive device for vibration reduction, both due to its 
power efficiency and because it has no effect on the airworthiness when compared 
to IBC. 

(2) Comparisons of the vibration reduction effectiveness of the ACF with IBC, in 
which the entire blade undergoes a uniform pitch change, indicate that the control 
flap's ability to alter the twist distribution of the blade is a key factor in its success in 
producing substantial vibration reduction despite its relatively small size. 

(3) A detailed examination of the influence of the blade torsional stiffness on the 
vibration reduction potential of the ACF shows that the best vibration reduction was 
obtained for blades with a torsional frequency in the range 3.0:;; Wn:;; 4.0, when a 
high degree of coupling existed between the fundamental torsional mode and the 
second flap bending mode of the blade. 

(4) It was found that the vibration reduction effectiveness and power requirements 
of the control flap are strongly influenced by its spanwise location, and also on the 
chord wise offset of the e.g. from the hinge axis. 

(5) The importance of the aerodynamic hinge moment and compressibility cor­
rection on the vibration reduction potential of the ACF was also considered and it 
was found that these two parameters play a relatively minor role. 

(6) Comparisons of the CPU time requirements of the frequency domain and time 
domain solution approaches indicate that time domain simulations may potentially 
be more efficient. 

(7) It was found that the quasistatic assumption, frequently used in active control 
studies, is equivalent to the requirement that sufficient time be allowed for the tran­
sients to die out before measuring the vibration levels and feeding them back to the 
controller. Using an update period equal to one full period of the lowest frequency 
transient mode should effectively filter out the effects of the transient dynamics. 

(8) Magnetostrictive actuation may be a viable approach for the practical imple­
mentation of the ACF using a Terfenoi-D based actuator. 
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Dimensional Data 
R = 4.91m 
Q = 425 RPM 
M0 =52 kg 

Flight Data 
II. = 0.3 

Blade Data 
N0 = 4 
cb = 0.05498 
IMB2 = 0.0000 
WF1 = 1.123 
wu = 0.732 
2.5 :5: WT1 :5: 5.0 
]I = 5.5 

Helicopter Data 
Cw = 0.005 

TABLE 1 

Nominal blade configuration 

e = 0.0 
L0 = 1.0 
IMB3 = 0.0004 
a0 = 2n 
Cdo = 0.01 
cmo = 0.0 
(J = 0.07 

fC 01 = 0.01n 

60-17 



TABLE 2 

Minimum mass actuator design 

Maximum stress: 
Minimum stress: 
Prestress: 
Minimum strut angle: 
Strut volume: 
Strut mass: 
Strut diameter: 
Strut length: 
Lever arm length: 
Control stroke: 
Magnetostrictive strain: 
Maximum field strength: 

(J max 

(J nun 

CJo 

¢m;n 
v 
M 
D 
L 
r 
l:!.y 

OFFSET POINT 

(a) 

(b) 

= -5 MPa 
= -10 MPa 
= -5.57 MPa 
= 10 
= 34 cm 3 

= 315 g 
= 1.6 em 
= 16.9 em 
= 3.0 em 
= 5mm 
= 1.167e-3 
= 500 Oe 

TORSION 

\ 

Figure 1: Rotor blade with trailing edge flap: (a) spring restrained blade (b) flexible 
blade 
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Controlled Cost Functional 
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Figure 2: Minimized cost functional 
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Figure 3: Minimized hub loads, torsional frequency = 3.5/rev 
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Reduction of the 4/rev Hub Shears and Moments 
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Figure 4: Minimized hub loads, torsional frequency = 5/rev 
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Control Power Requirements 
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Figure 6: Control power requirements 
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Figure 16: Schematic of magnetostrictive actuator: (a) top view (b) side view 
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