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Abstract

The paper presents the parallel implementation of
a multibody formulation for the analysis of the
dynamic stability of a soft-in-plane tiltrotor con-
figuration, with regard to the ground- and air-
resonance phenomena. A multibody model of a
tiltrotor semispan wind tunnel model has been used
to investigate the phenomenon. An original multi-
body, multidisciplinary formulation has been used;
its implementation in a coarse scale parallel envi-
ronment, both on SMP and PC cluster, is proposed
as a means to speed up massive parametric analy-
ses. The dynamic stability of the rotorcraft is in-
vestigated to determine the parametric influence of
various structural components, such as the damp-
ing properties of the blade root.

1 Introduction

The need for medium/heavy-weight tiltorotor air-
craft is emphasizing the limitations in rotor design
related to the conventional stiff-in-plane architec-
ture currently used in tiltrotor design [1]. A soft-
in-plane rotor design results in a lighter rotor, ow-
ing to the reduced in-plane bending stresses in the
rotor blades and in the hub, and thus may lead to
a higher payload or range.

The main problem related to such architecture is
represented by the intrinsically soft support the ro-
tor is attached to, namely the wing of the tiltrotor
aircraft; since the main wing frequencies of a large
scale tiltrotor are likely to be lower than the nom-
inal rotation frequency of the rotor both on the
ground and in flight, the aircraft is potentially sub-
ject to dynamic instability in every flight condition.
Moreover, while it is known that the dynamic insta-
bility of a soft-in-plane rotorcraft is cured by a com-
bination of mechanical damping both in the rotor
blade hinges and in the support [2], in a tiltrotor the

latter is supplied only by the wing structural damp-
ing, which is intrinsically limited and can hardly be
influenced by the design.

An original multibody formulation, resulting in a
code named MBDyn, has been used to model the
tiltrotor [3]. This approach allowed to achieve a
high level of detail, and significantly to avoid undue
simplifications in modeling the kinematics of the
system, which are intrinsically nonlinear.

This kind of analysis, when realistic problems are
addressed, may result in comparatively large, non-
linear models. A thorough study of the stability of
these systems requires long simulation times, both
because the instability shows up at relatively low
frequencies and because the rotor needs a realistic
wind-up simulation, since a trimmed steady solu-
tion cannot be directly computed. To overcome
this problem, the multibody formulation has been
implemented in a parallel scheme based on a coarse
scale parallelization with the Schur decomposition
method. This solution allows to exploit the pecu-
liar topology of the multibody rotorcraft system, as
detailed later, which allows reduced interfaces be-
tween loosely connected subsystems. As a result, a
dramatic speed-up of the computations can easily
be obtained, thus allowing to carry out sensitivity
analyses in a reasonable time.

2 Multibody Formulation

The proposed multibody formulation is based on
the direct writing of the equilibrium equations
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of the independent bodies, which are then con-
nected by algebraic and/or flexible constraints.
The former lead to a Differential-Algebraic Equa-
tions problem of index 3, whose solution requires
special care from a computational point of view
because of the algebraic unknowns resulting from
the constraint equations, which are imposed in a
Lagrangian Multipliers form.

2.1 Dynamics Equations

The dynamics of the bodies are written in a first-
order differential scheme by considering the defini-
tions of the momentum and of the momenta mo-
ment of each body:

B = mi+SxTw,
v = Sxi+Jw,

where & and w are the translational and angular ve-
locities of a point related to an inertial body of mass
m and of first- and second-order inertia moments
S and J, both expressed in an absolute orientation
frame. The derivatives of the momentum and of
the momenta moment participate in the dynamics
equations of the body as the inertial contribution;
the equations are

B = F(z,%Rw,aa,...),
Y+ixpf = Cl(z,%,R,w,a,a,...),

where the forces and couples, F' and C, may depend
on the state and on other parameters: z and R rep-
resent, the position and the orientation of the frame
the momenta are referred to, and the unknowns a
are internal states that can be associated to multi-
disciplinary fields to be simultaneously considered.
The formulation has been extended to include elec-
tric and hydraulic subsystems, which are modeled
in the spirit of the multibody approach, that is by
assembling elementary components to build an en-
tire system. These components are used to imple-
ment the control system of the rotorcraft, ranging
from the swashplate actuation system to a sophis-
ticated active control system based on the Gener-
alized Predictive Control concept [4].

2.2 Algebraic Constraints

Constraints are added in form of algebraic equa-
tions depending on the configuration of the system.
Holonomic constraints involve the position and the
orientation of the bodies, and result in DAEs of in-
dex 3, while non-holonomic constraints involve the
time derivatives of the configuration as well, leading
to index 2 DAEs:

&, (z,R,...) = 0,
) =

b, (z,2,R,w,..

The constraint equations are added in a Lagrangian
Multipliers form, which implies that the corre-
sponding multipliers apply to the dynamics equa-
tions as reaction forces and couples.

2.3 Flexibility

The forces and couples that act on the bodies in
the dynamics equations may depend on the config-
uration; this is the case of the elastic forces. Elas-
ticity has been accounted for in a lumped scheme.
Lumped elastic elements such as rods and springs
are used to model basic flexible elements such as
the pitch links. More sophisticated flexible ele-
ments have been implemented in form of beams;
an original finite volume scheme has been adopted
[5]. It consists in directly writing the equilibrium of
the finite portions of beam obtained by cutting an
element at appropriate points between the nodes.
The internal forces and couples at such “evaluation
points” are expressed as functions of the general-
ized strain and curvature of the beam by means
of an arbitrary constitutive law. The strains in
turn are written as functions of the nodal configu-
rations, which are interpolated by parabolic shape
functions. The equilibrium equations result in

Uy —0)" 9 — U Dy — 0)" V4

b
- [ Ue© - dp, M
a
where p is the reference line that defines the beam,
zg is the reference pole the moments are referred
to, the 9 are the internal forces and couples at the
extremities of the beam portion and 7 are the dis-
tributed forces and couples, while the matrix U (p)
is defined as

Up) = [é p’;T].

A three-node beam element has been imple-
mented, so Equation 1 is applied to the domains
[p(1/v3),p(1)] with p = p(£), being £ € [-1,1] a
nondimensional abscissa along the beam element.

3 Parallel Solver

To obtain an efficient distribution of the computa-
tional load, it is mandatory to spread on the differ-
ent CPUs both the assembly phase of the Jacobian
matrix and of the residual array, and possibly the
linear solution phase. To exploit the topological
properties that the multibody model computational
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domains under investigation have, a technique be-
longing to the class of non overlapping domain de-
composition has been chosen [6, 7]. Among these,
the substructuring method, that has been tradi-
tionally used also in structural analysis, has been
considered. It basically requires the generation of
s disjointed subdomains, so that the original sys-
tem is reduced to a smaller interface that becomes
the core problem. Connecting a small number of
off-the-shelf personal computers by fast communi-
cation networks is increasingly gaining acceptance
as a low cost and effective alternative to large su-
percomputers [8]. Therefore, special attention has
been dedicated to produce a code that can effi-
ciently run on this kind of platform.

3.1 Schur Complement Technique

The computational domain (2 is first split into the
s subdomains €2; via an element-based partition.
This means that no element is shared by two sub-
domains, i.e. all the information related to a given
element is mapped on the same processor. As a
result, there is no need for information exchange
while the assembly phases are performed. The un-
knowns are reordered, labeling the interface nodes
last. The linear system associated with the problem
has the following structure:

(7 ) ()= ()

where the = array is composed of a succession of
the local subdomain 2; internal unknowns z;, and
y is the vector of the interface unknowns. Assuming
that matrix B is non-singular, the unknown z can
be expressed as

(2)

z=B~'(f - By). 3)

By substituting Equation 3 into the second block-
row of equation (2), the following reduced system
is obtained:

Sy=g-FB'f. (4)

where the matrix S is called the Schur complement
matriz; it takes the form:

S=C-FB'E. (5)

A solution method based on this approach involves
five steps:

1. The local matrices B; are factored.

2. The local parts of the right-hand side of the
reduced system (4) are assembled and trans-
mitted to a “master” processor that will deal
with the interface problem.

3. The local parts of the Schur complement ma-
trix are assembled and transmitted as well.

4. The reduced system is solved.

5. The other unknowns are obtained by back-
substitution using Eq. (3).

Only the 4" step cannot be performed concurrently
in a parallel environment, so it must be consid-
ered the bottleneck phase. Furthermore, when a
modified Newton-Raphson method is used to solve
the nonlinearity, since the Jacobian matrix is not
updated, there is no need for steps (1) and (3),
and many of the operations required during the
assembly phase (2) do not need to be performed
either. Usually, the direct substructuring method
described here is not considered feasible for large
structural problems, because the dimension of the
interface problem grows very rapidly; moreover, the
Schur matrix presents a lower grade of sparsity than
the original system, so an iterative inner solver may
be built, which does not require the explicit assem-
bly of matrix S. On the contrary, this strategy can
be very effective when some special conditions are
met. This is the case of complex systems with a pe-
culiar topology of the computational domain that
allows the generation of a partition with very small
interfaces [9]. Many common mechanical problems
show a topology that fits such a requirement; a clear
example is represented by those described later in
the results section. It is not easy to correctly define
a dimension for the computational domain that is
analyzed with a multibody multidisciplinar simula-
tor. The multidisciplinarity requirement obviously
does not allow any structure in the domain, because
structurable, i.e. related to the physical space, and
non-structurable, i.e. abstract, unknowns coexist in
the solution space. Anyway the domain is usually
quasi-monodimensional, with some multiple paths
or close-circuits. This is basically true because the
underlying structure is usually made of rigid or
flexible bodies connected by algebraic constraints,
that represent non-reducible topological items of
the computational domain. Owing to these char-
acteristics, the computational grid can be subdi-
vided into parts with an optimal ratio between in-
ternal and interface nodes. Clearly, the search for
a minimal-interface partition is crucial, so this task
cannot be performed manually, demanding an au-
tomatic partition tool as described later.

3.2 Induced Velocity Element

The rotor element performs a specific task: it
computes the velocity that the rotor disk induces
on each aerodynamic body based on some global
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model, e.g. momentum theory or dynamic inflow
[10], which requires the knowledge of the over-
all forces and moments generated by the rotor.
For this purpose, a two-way communication be-
tween the rotor element and all the related aero-
dynamic elements is required. As a consequence,
another communication channel must be imple-
mented, which differs from the one related to the
exchange of information on the interface problem.
It transmits the force contribution from the aero-
dynamic elements to the rotor element, and the in-
duced velocity from the rotor to the aerodynamic
elements during the assembly steps. These commu-
nications may result extremely inefficient, so non-
blocking communications are used in the attempt
to minimize their influence on the overall simula-
tion time [8]. The assembly of the rotor elements
is scheduled far from that of the aerodynamic ones,
while the information transmission is performed as
soon as possible, and its completion is checked only
when strictly required.

3.3 Partitioning Strategies

A direct substructuring method like the one de-
scribed in the previous section will be really ef-
fective only when coupled to an automated tool
which identifies the best subdivision of the com-
putational domain. The partition should meet two
goals: 1) minimize the ratio between communica-
tions and computations, and 2) balance the com-
putational load among the CPUs. The former re-
quirement mainly results in searching for the sub-
division with the minimal interface size. The latter
is rather related to the assembly steps and, con-
sidering the wide assortment of different elements
implemented in MBDyn, it involves an estimate of
the number of operations required by each type
of element. Graph partitioning problems are NP-
complete [11], therefore efficient heuristic methods
must be used to obtain satisfactory solutions in a
reasonable time. A good tradeoff between qual-
ity and cost in terms of time is offered by multi-
level partitioning methods, that do not require a
geometry associated with the graph of the domain
connections. For the purpose of this paper, the
methods implemented in the METIS library proved
very effective [12]. The problem is stated in terms
of searching the partition that produces s disjoint
subsets such that the sum of the vertex weights in
each subset is the same, and the sum of the (possi-
bly weighted) edges, whose incident vertices belong
to different subsets, is minimized. Since all parti-
tioning routines in METIS allow to specify multiple
sets of weights, a high level of flexibility is achieved.
To obtain an element-based partition, a connection

graph is built, in which both nodes and elements
are considered vertices; in this way, the two main
objectives stated earlier can easily be taken into
account. First of all only the elements contribute
to the computational load balance, so each is as-
signed a computational weight, proportional to the
elaboration time. Nodes are responsible for the
communication time but, as they can be associ-
ated to a different number of degrees of freedom
(there are scalar nodes, static structural nodes with
6 DOFs, dynamic structural nodes with 12 DOF's
and so on), each is assigned a different communica-
tion weight. This emphasizes the unstructured na-
ture of the computational domain, where only the
presence of an element determines the connectivity
of the nodes. For those elements that have internal
states, the related unknowns are usually assigned to
the local subdomain, unless an algebraic constraint
is being considered, as explained in the following
paragraph.

3.4 Algebraic Constraints

Kinematic constraints require special treatment
during the partition generation phase in order to
obtain a consistent subdivision. If the computa-
tional domain is cut between two nodes connected
by a kinematic constraint, the internal unknowns
related to the joint element must be positioned on
the interface, otherwise a local singularity problem
arises. If the unknowns that represent the reac-
tion forces are assigned to a local subdomain, the
local subproblem will be overconstrained because
the node connected by the constraint has moved
to the interface problem. A statically overdeter-
mined problem results, so even if the global prob-
lem is consistently formulated, a local singularity
will drive the parallel algorithm singular. To solve
the problem, the unknowns related to the reaction
forces must be moved to the interface. The local
problem will now be underconstrained, in the sense
that it will behave as a free subsystem, loaded by
the reaction forces that come from the algebraic
constraints. The back-substitution phase will re-
store the effect of the kinematic constraint on the
local solution. Clearly, if the constraint element is
connected to a static node, i.e. a node with no iner-
tia, the latter must be replaced by a dynamic one,
characterized by a very small inertia that prevents
the system from becoming singular. This may be
considered the only additional cost required by the
procedure.
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4 Numerical Results

The work is focused on the analysis of a signifi-
cant test case, the semispan tiltrotor wind-tunnel
model currently investigated at the NASA Langley
Research Center under the denomination of Wing-
Rotor Aeroelastic Test System (WRATS). It has
been initially built by Bell Helicopter to support the
development of the V-22 Osprey, and subsequently
destined by the US Navy to the investigation of
the tiltrotor technology [13]. A multibody model
of such a system has been recently implemented to
assess the capabilities and the performances of the
multibody code MBDyn [3]. The analytical model
describes the kinematics of the system to a com-
paratively high level of refinement. Significantly,
it considers the gimbal joint, that links the hub to
the mast in order to allow the flapping motion of
the overall hub, and thus implementing a constant
velocity joint, and the swashplate, with all the re-
lated components that are required to transmit the
pitch controls to the rotor blades. The most signif-
icant flexible parts of the model are the wing and
the rotor blades. All of them have been modeled
by means of beam elements, while inertia has been
concentrated in the nodes in a lumped scheme. A
visualization of the analytical model by means of
ADAMS/View is shown in Figure 1, while Figure 2
presents a detail of the hub mechanisms. The base-

Figure 1: Tiltrotor Model

line rotor blades were originally modeled with four
three-node beam elements; such discretization al-
lowed to match the first significant modes of the
blade within a range of 100 Hz, which corresponds
to the first blade twist mode [3]. The improved per-
formances of the parallel implementation allowed
to refine the discretization while at the same time
reducing the total computational time. The paral-
lelization performances are presented first, followed
by a discussion of the results.

Figure 2: Tiltrotor Controls Detail

Table 1: 8 beam blade model (1097 DOFs)

CPUs Interf. DOFs T (s) Speedup
1 — 801 1
2 58 314 2.55
3 111 240 3.34
4 91 154 5.20
5 158 232 3.45

4.1 Parallelization Performances

All data presented for parallel performance compar-
ison refer to a 2 s simulation run on a 8 CPU HP
4000 platform. Tables 1-3 show excellent results for
the speedup. With regard to the smaller problem,
with eight flexible beams per blade, the speedup
grows almost linearly with the number of CPUs.
For larger problems, the behavior of the speedup
becomes superlinear. This happens because the in-
terface migrates from the hub area, where it in-
volves a number of algebraic constraints, towards
the blade tips, where the local interfaces consist in a
single structural node each. Parallel programming
has been traditionally applied to problems with a
large number of unknowns (10° and over). The
proposed results show how a linear scalability, with
regard to the number of CPUs, is achievable even
when the number of unknowns is reduced (less than

Table 2: 16 beam blade model (1673 DOFs)

CPUs Interf. DOFs T (s) Speedup
1 — 1724 1
2 62 562 3.07
3 65 333 5.18
4 80 270 6.39
5 103 215 8.01
6 115 181 9.52
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Table 3: 60 beam blade model (4841 DOFs)

CPUs Interf. DOFs T (s) Speedup

1 — 8320 1

2 29 2412 3.45

3 48 1660 5.01

4 48 930 8.94

5 70 706 11.78
6 89 624 13.30
7 108 481 17.30
8 125 444 18.74

10%). The algorithm scales correctly, except for few
special partitions that are not suitable to exploit
the model topology, until it reaches an interface
size that is comparable to the local problem size.

4.2 Tiltrotor Dynamics Results

The WRATS model has been recently modified by
Bell Helicopter by installing a soft-in-plane hub in-
stead of the usual stiff-in-plane one. The soft-in-
plane hub is intended as a proof-of-concept device
to investigate the properties of such a configuration,
mainly in terms of dynamic stability. The blades
are attached to the hub by means of a lead-lag
hinge, with a viscous damper and a set of springs
that are used to emulate the behavior of a possi-
ble soft-in-plane flexbeam. An analogous setup has
been applied to the analytical model. It is worth
remarking that the analyses presented here are not
part of a correlation with the tests recently per-
formed at LaRC, nor are intended as a direct nu-
merical prosecution of such work. In fact, since the
rest of the model has been also modified, resulting
in an appreciable change in the fundamental fre-
quencies, there is no longer a direct correspondence
between the test setup and the multibody model.
As a consequence, the results here discussed should
be viewed as an investigation on the feasibility and
the efficiency of the multibody approach to the nu-
merical investigation of this kind of problem.

The basic approach to the stability analysis of
the system consists in winding the rotor up to a
trimmed configuration and in assessing its behav-
ior. Such a procedure is analogous to usual ex-
periments, without the strict constraint of avoiding
unstable conditions. This procedure does not re-
quire a trimmed rotating configuration, which can-
not be easily determined. However, since the rotor
is soft-in-plane, special care must be taken to en-
sure that the lead-lag motion resulting from too
fast a wind-up does not disturb or alter the re-
sponse of the system. The possibility to perform
long runs in a reasonable time, achieved by means

of the parallelization of the analysis, allowed the use
of quasi-realistic wind-up times. Figure 3 shows
the wing in-plane bending during a wind-up ma-
neuver. The reference rotation speed is reached in

-10 +

-20 +

-30 +

Chord Bending, N m

-40 | ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16
Time, s

Figure 3: Tiltrotor Wind-Up: Wing Chord Bending
for 20% Blade Root Damp

10 s with a half-period cosine wind-up law, namely
Q/Qes = 1/2(1 + cos (mt/10)) for 0 < t < 10 s.
The system is unstable; in fact, a very conservative
0.2% damping of the wing modes has been consid-
ered, while the blade root has a 20% damping at
rest. A lead-lag lock that prevents the blade from
lagging is released after about 3 s (at 30% of the
reference rotation speed); a peak in the bending
moment can be clearly noticed in Figure 3 and in
detail in Figure 4. The latter shows that there is no

10

Chord Bending, N m

35 4 45 5 55 6
Time, s

Figure 4: Tiltrotor Wind-Up: Wing Chord Bending
After Lead-Lag Lock Release

dynamic instability at such an angular velocity; in
fact the response of the system is quickly damped
regardless of the damper setting. At 11 s from the
beginning, namely one second after the nominal ro-
tation speed of 888 rpm has been reached, a per-
turbation of the lead-lag motion is applied in form
of two couples acting in opposition on two blades,
to determine an in-plane displacement of the rotor
center of gravity. As a result, the wing is excited by
the excentricity of the rotor inertia, mainly in the
in-plane and torsion modes. Figure 5 shows the
wing in-plane bending in this condition for the pre-
viously mentioned blade damper settings. The first
stable one is about 30%; a setting that results in a
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Figure 5: Tiltrotor Wind-Up: Wing Chord Bending
After Lead-Lag Perturbation at 100% RPM

damping of about 40% at rest has been used in the
subsequent simulations where stability is required.
The conversion maneuver is peculiar to the tiltro-
tor aircraft. Such a maneuver requires the rotor
to perform a rotation about an axis that is offset
along the mast, and thus implies a movement of the
rotor in its plane together with a tilting (see Fig-
ure 6). As a consequence, the lead-lag motion of the

Figure 6: Tiltrotor Conversion: Blade Tip Path

blades can be excited during a transient phase in
which the stiffness of the support is reduced because
the conversion actuator is not locked, as in normal
airplane configuration. The conversion maneuver
has been simulated with the multibody model to
investigate the possible excitations it may cause.
After the usual 10 s wind-up, another 10 s con-
version has been simulated. A constant angular
speed maneuver at 9 deg/s has been considered,
with some smoothing of the startup and stop to
avoid excessive excitation of the system. Figures 8
and 7 show the bending moments in the wing and

in the flexbeam. The oscillations in the flexbeam
moments are related to the flapping caused by the
movement of the rotor; they are not transmitted
to the wing because they the overall excitation of
the rotor is self-balanced. The retreating, lower fre-
quency lead-lag motion can be clearly seen in Fig-
ure 7 in the in-plane bending of the flexbeam, both
at the beginning and at the end of the maneuver. It
dampens more slowly than the baseline oscillations
related to the flapping motion. The out-of-plane
bending, on the contrary, disappears as soon as the
maneuver is completed because of the high aero-
dynamic damping related to the flapping motion.
Figure 8 shows the wing out-of-plane bending rise
during the wind-up because of the thrust of the ro-
tor in helicopter configuration. Then, during the
conversion, the thrust tilts forward, bending the
wing in the in-plane direction while changing from
helicopter to aircraft mode. At the beginning of
the maneuver the in-plane bending is excited by
the in-plane movement of the rotor; an analogous
excitation can be found at the end of the conver-
sion, this time in the wing out-of-plane bending.

onN MO
!
L

r Out-of-Plane b

Bending, N m
N}

Time, s

Figure 7: Tiltrotor Conversion: Flexbeam Bending

Chord Bending
Out-of-plane Bending -

Bending, N m
o

0 5 10 15 20 25
Time, s
Figure 8: Tiltrotor Conversion: Wing Root Bend-
ing

Figure 9 shows an interesting dependency of the
first wing bending mode damping on the collective
pitch. At low thrust, with a 3.5 deg collective pitch,
the 30% blade root damping configuration is stable
but the damping is fairly limited. When the collec-
tive pitch is increased, an appreciable raise of the
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damping can be noticed. Notice also that the same
excitation has been used in all the presented cases;
the larger response at higher collective is related to
the aerodynamic loads on the blades, which grow
with the collective pitch.

3.50 deg
6.00 deg
8,50 deg
11.00 deg

<« rem

Chord Bending

11 115 12
Time, s

125

Figure 9: Tiltrotor Stability: Wing Chord Bending
After Perturbation

The stability properties of the system are summa-
rized in the so-called Coleman plot, shown in Fig-
ure 10. The continuous lines represent the theoret-
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Figure 10: Tiltrotor Stability: Coleman Plot

ical frequencies of the undamped system, while the
circles represent the values computed from the sim-
ulations. The stability of the system is governed by
the lowest wing frequency, which meets the retreat-
ing lead-lag frequency of the rotor at about 90% of
the reference rotation speed, as can be appreciated
also in Figure 3, where the unstable response ap-
pears at about 8.5 s.

Concluding Remarks

An efficient, coarse-scale parallelization of a multi-
body formulation has been presented. Its suitabil-
ity for the analysis of typical multibody problems
as those encountered in the rotorcraft industry has
been shown by investigating the dynamic stability
of a soft-in-plane tiltrotor. The parallel implemen-
tation allowed to consider sophisticated problems
requiring long simulations without incurring in un-
necessary limitations in the size of the problem.
The multibody approach showed its unique ability
in investigating unusual flight conditions as those
involving transient analyses. Future work will con-
sider a detailed correlation with experimental re-
sults, and the investigation of air-resonance prob-
lems as well.
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