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OVERVIEW 
The paper is devoted to the numerical simulation of aerodynamic characteristics of helicopter rotors in hover 
using higher-accuracy lower-cost algorithm on unstructured meshes. 

The helicopter rotor construction is being constantly developed and inevitably complicated. It is connected with 
the permanent necessity to optimize the shapes in order to improve aerodynamic characteristics of rotors. In this 
situation mathematical modeling and numerical simulation become one of the efficient tools since it offers a 
possibility to easily change the rotor geometry and flight regimes and to perform serial predictions needed for the 
optimization and production.  

The rotor geometry is primarily determined by the blades. The blade shapes are composed of basic varying 
elements such as tips, twists and constitutive airfoils. To handle complicated changeable geometry of a blade 
numerically, an efficient way is to use unstructured meshes. To carry out the corresponding computations for 
reasonable time, high accuracy numerical schemes and efficient parallel algorithms for multi-CPU computer 
systems are needed.  

In the talk we present a numerical technique for predicting rotor aerodynamics. The numerical algorithm is 
generally applicable to all the family of models based on the Euler equations within DNS, RANS, LES and hybrid 
RANS-LES approaches for simulating compressible turbulent flows. However in the predictions considered here 
we use the Euler and Navier-Stokes equations taken in non-inertial reference framework.  

A feature of the numerical technique presented is the usage of vertex-centered EBR scheme, [1], [2]) for 
unstructured meshes which provides accuracy higher than most second order schemes in terms of error values 
and takes lower computational costs in comparison with very high order algorithms. The higher accuracy of the 
scheme is provided due to the quasi-1D edge-based reconstruction of variables involved in the calculation of 
fluxes arbitrary unstructured meshes. As a result, when operating on uniform grid-like meshes the scheme 
possess the accuracy of the 5

th
 order. For the time advancing we use the second order implicit scheme with 

BiGSStab method for solving linear algebraic equations. The numerical techniques are implemented in the in-
house code NOISEtte++ [3] for solving aerodynamics and aeroacoustics problems on unstructured meshes. The 
hybrid MPI-OpenMP parallel model of NOISEtte++ allows its efficient performance on tens thousands of CPU-
cores.  

We demonstrate an efficiency of the numerical tools on solving two model problems on rotor aerodynamics in 
hover.  

The first problem considers the configuration “rotor in a ring”. The rotor installed in toroidal channel (“ring”) 
consists of four blades located in the same disc plane and a central body. The blades are based on one airfoil 
with the liner twist. We consider the case of the same pitch angle for all the blades.  

In the second problem we simulate the flow generated by the model main rotor. The rotor consists of four blades 
of complicated configuration based on five different airfoils. The blade geometry includes piecewise linear twist 
and swept tip.  

The study was carried out within the framework of the Program of Applied Scientific Investigations 
“Development of the Software for Modeling Aerodynamic and Aeroacoustic Characteristics of Helicopter Rotors 
on Supercomputers” (unique identifier of the project RFMEFI160414X0092) of the Federal Goal-Oriented 
Program “Investigations and Developments in the Top Priority Lines of the Development of the Science and 
Engineering Complex of Russia for the Years 2014–2020” of the Ministry of Education and Science of the 
Russian Federation in the Top Priority Line “Transport and Space Systems”. 
 



 

1. PROBLEM OF VISCOUS FLOW AROUND 

ROTOR 

1.1. Shrouded rotor case 

The geometry of the model under consideration is 
based on an actual experimental setup representing a 
shrouded four-blade tail rotor. In the channel there is a 
single rotor without details of its mechanization, while 
the channel (ring), where the rotor rotates, represents 
an axisymmetric body of revolution. The central body is 
in the shape of a cylinder with rounded end faces. 

 
 

Fig. 2. Shrouded rotor sector with one blade; geometry 
(left) and dimensions (right). 

As mentioned above, due to the symmetry of this 
formulation in the absence of external flow the problem 

is solved for a sector with the angle 2/N (N = 4) 

containing one rotor blade (Figs. 1b and 2a), the 
periodic boundary conditions being imposed on the 
lateral planes of the sector in the azimuthal direction. 
In accordance with the description of the experimental 
setup, the radius of the central body, to which the 
blade is fastened, is taken to be 0.248 m, the rotor 
radius being R = 0.6 m. The blade chord b = 0.13 m. 
The blade surface is based on the TsAGI SV-11 

airfoil with the linear twist  ( ) 40 0.7 / 3sw r r R  , 

where r is the distance to the axis of rotation of the 
rotor. The outside channel radius is 1.25 m, while the 
inside channel radius in the plane of rotation of the 
rotor is 0.605 m, which corresponds to a 5 mm gap 
between the blade end and the inside surface of the 
channel (Fig. 2b). We consider the rotor rotation 
regime at a frequency of 19.44 Hz, which 

corresponds to the angular velocity = 122.17 rad/s 

and the linear velocity of the blade end Vblade = R = 

73.3 m/s; the angle of pitch of the blade can take the 

values of 10
o
, 15

o
, 20

o
, 30

o
, and 40

o
. The Reynolds 

number is determined as Re = 0Vblade b/0 and takes 

the value Re = 6.28 × 10
5
 for the values 

0 = 1.2041 kg/m
3
 and 0 = 1.827 × 10

-5
 Ns/m

2
 

corresponding to the air density and dynamic viscosity 
at the temperature of 20

o
 C. 

1.2. Main rotor case 

The geometry of the second case is also based on an 
actual experimental setup  representing model main 
rotor. The blade of the four-blade rotor surface based 
on the set of TsAGI airfiols with linear twist and the 
swept tip. The rotor radius is R = 1.952 m and the 
blade chord b = 0.18 m (Fig. 3). 

 
Fig. 3. Main rotor blade. 

We consider the rotor rotation regime at a frequency 
of 11.14 Hz (668.4 RPM), which corresponds to the 

angular velocity = 70 rad/s and the linear velocity of 

the blade end Vblade = R = 136.63 m/s; the angle of 

pitch of the blade can take the values of 5
o
, 10

o
, 15

o
 

and 20
o
. The Reynolds number is determined as Re = 

0Vblade b/0 and takes the value Re = 1.6 × 10
6
 for the 

values 0 = 1.2041 kg/m
3
 and 0 = 1.827 × 10

-5
 Ns/m

2
 

corresponding to the air density and dynamic viscosity 
at the temperature of 17

o
 C. 

 

2. THE PROBLEM CHARACTERISTICS UNDER 

STUDY 

 

2.1. Aerodynamic forces of the rotor 

In the problems of the type described above the 
main parameters characterizing the properties of the 
configuration under study are the coefficients of 
aerodynamic forces, namely, the thrust and torque 
coefficients.  

We will determine the aerodynamic forces of the blade 
and the segment of the surrounding ring following the 
book [4]. For this purpose, we will consider two 
reference frames (Fig. 4), namely, the fixed coordinate 

system  , ,x y z  and a coordinate system  , ,x y z    

fitted to the rotatable blade and obtained by rotation 

of the fixed coordinate system by an angle ( ) 2t   , 

where the angle ( )t  is determined by the angular 

velocity of blade rotation: ( )t t  . 

Since the calculations are made in the rotatable 
coordinate system, including the case of stationary 

solution (the dependence on the azimuthal angle  is 
absent), the axes of the fixed and rotatable coordinate 
systems can be identified. 



 

 

Fig. 4. Fixed and rotatable coordinate systems. 

Let  , ,p x y z  be the pressure distribution over the 

blade surface S and xn , yn , and zn  be the 

components of the unit normal outward with respect to 

the surface S. Then the N-bladed rotor thrust rotT  is 

composed of the forces 
blade

yT  normal to the plane of 

rotation and acting on single blades 
 

(2.1)                   .rot blade

y y

S

T NT N pn ds    

The rotor force moment is determined by the force 
projections on the axes of the fixed coordinate system 
and the radius-vector (lever) of the blade coordinates 

in the rotatable coordinate system  0, 0, z r

 0, 0, z  

  .
S

N p ds M r n  

Hence there follows the expression for the 
aerodynamic torque of the rotor 

.rot

k y x

S

M M N zpn ds    

In the case of the stationary solution the averaging 
over the azimuthal angle is not made in the above 
expressions for the thrust and the torque.  

Let now  , ,p x y z  be the pressure distribution over 

the surface of a ring sector with the angle of 2/N. 
This pressure distribution corresponds to the fixed 
blade position near the ring at a certain moment of 
time (the pressure distribution in the rotatable 
coordinate system). For this reason, to determine the 
pressure distribution in the fixed coordinate system 
requires averaging the pressure over the azimuthal 

angle . 

In the case of steady flow the angle-average pressure 
is the same for any of N segments. Then, passing to 

the cylindrical coordinates  , ,r z  we can calculate 

the azimuthal-angle-average pressure 

   
2

0

, , , .p r z p r z d



    

The ring thrust is calculated from the formula 
analogous to (2.1) 

,ring

y

S

T N p n ds   

where S is the ring surface and xn , 
yn , and zn  are the 

components of the unit normal outward with respect to 
the ring surface. The ring torque is determined by the 
force projections on the axes of the fixed coordinate 
system and the radius-vector of the ring coordinates in 

the fixed coordinate system  , ,x y zr  

  .ring

k x z

S

M N p zn xn ds   

The thrust coefficient Tc  and the aerodynamic torque 

coefficient km  are determined by nondimensionalizing 

the thrust and torque values by the quantities 

 
2

0 2A R   and  
2

0 2RA R  , respectively 

   
2 2

0 0

22
, ,

rot ringrot ring
rot ring rot ring k
T k

MT
c m

A R RA R
 
   

 

where 0   is the undisturbed flow density, 
2A R   is 

the blade disk area, R is the blade radius, and  is the 
absolute value of the angular velocity of the blade. 
The values of the calculated force coefficients are 
compared with those obtained in the full-scale 
experiments. 
 

3. MATHEMATICAL MODEL 

 

3.1. Navier–Stokes equations in a noninertial 

coordinate system 

Flow around the rotatable shrouded blade is calculated 
from the system of Navier–Stokes equations for a 
compressible gas written in the noninertial rotatable 
coordinate system in which the blade in a gas flow is 
fixed, while the shroud (ring) rotates.  

We will denote the absolute velocity vector in the 
original fixed coordinate system by u and introduce a 
movable coordinate system rotating at a constant 

angular velocity = ( , , )T

x y z  ω  about an axis fixed 

in the original coordinate system.  

We will define the relative velocity vector as follows: 

' = u u V , = .V ω r  

We will point out two important properties of the vector 
of the linear velocity of rotation. 
1) The vector V gradient, that is, the dyadic product 



 

of the vector operator and the vector V is the 
skew-symmetric tensor 

0

= 0 .

0

z y

z x

y x

  
 

     
   

V V  

From this expression it follows that 

(3.1)             
1

div = 0, curl ,
2

V ω V  

while its symmetric part is zero 

(3.2)                  
1

= 0.
2

ji

j i

VV

x x

 
 

   

 

2) It can easily be seen that the vector V satisfies the 
following differential relations 

(3.3)      = = , ' = '.     V V ω V ω ω r u V ω u   

The system of Navier–Stokes equations written in the 
rotatable coordinate system in the form of conservation 

laws with respect to the velocity 'u  is as follows (see, 

for example, [5]): 

(3.4)    

 

div 0,

div = div 2 ' ,

div div div ,

t

p
t

E
E p

t


  


 

          



    



u

u
u u S ω ω r ω u

u q Su

 

where 
2 2E   u  is the total energy and  is the 

internal energy of the gas. System (3.4) is closed by 

the equation of state for the perfect gas  1p     . 

In system (3.4) S is the strain rate tensor defined as 

(3.5)           
2

2
3

ji i
ij ij

j i i

uu u
S

x x x

   
     

    

 

and the vector q is the total energy flux
1
 

Pr
i

i

q
x

 

 

 

where the Prandtl number is given by the relation 

Pr pc  ,  is dynamic viscosity of the gas, pc  is 

the specific heat at constant pressure,  is thermal 

conductivity, and is the adiabatic exponent. 
Applying Eqs. (3.3) we will bring the system of 
equations (3.4) into the form using the absolute velocity 
vector u. We note that, in view of Eqs. (3.1) and (3.2), 
the strain rate tensor (3.3) is invariant with respect to 

                                                            
1 We consider a polytropic gas, which means that the specific heat 

cV  is temperature- independent and, therefore, the internal energy 

is the linear function of the temperature: = cV T 

the rotation velocity of the coordinate system and, 
therefore, replacing the relative velocity by the absolute 
velocity does not change the strain rate tensor form 
given by Eq. (3.5).  

Finally, the system of Navier–Stokes equations written 
in the rotatable coordinate system with respect to the 
absolute velocity vector reads as follows: 

(3.6) 

 

   

 

div 0,

div = div ,

div div div div .

t

p
t

E
E p

t


   


 

      



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

u V

u
u V u S ω u

u V u q Su

 

From the standpoint of an observer in the fixed 
coordinate system the system of equations (3.6) 
describes the variation in the conservative variables at 
the expense of their translation in the medium rotating 
at the velocity V, the pressure gradient, and the 

velocity vector rotation by an angle equal to ||t. In 
numerically realizing this system of equations the 
rotation velocity may be interpreted as the movable 
grid velocity. In this form, the system of equations 
was considered, for example, in [6], [7], where the 
calculations were simultaneously conducted in both 
rotatable and fixed domains.  

We will rewrite system (3.6) in the pseudovector flux 
form: 

(3.7)  

 

= ,

= , , , , ,

= 0, , , , 0

I NI VI NI VI NI V
y y yx x xz z z

T

T

z y z x y x

t x y z x y z x y z

u v w E

v w u w u v
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        

         


   


          



F F FF F FF F FQ
H

Q

H

 

where 
I

xF , 
I

yF ,  and 
I

zF , are the convective fluxes of 

the system of Navier–Stokes equations in the inertial 

(fixed) coordinate system, 
NI

x xVF Q , 
NI

y yVF Q , and 

NI

z zVF Q  are the additions to the fluxes determined 

by the noninertial coordinate system or the grid motion 

velocity, and 
V

xF  , 
V

yF  , and 
V

zF  , are the viscous fluxes 

of the system of Navier–Stokes equations determined 
by the gradients of the absolute velocity vector and 
the heat flux.  

The Jacobi matrices of the convective flux initiated by 
the rotation velocity have the diagonal form: 

, , , , .V

x y z x y zV  F Q I  

Therefore, the Jacobi matrices of the total convective 
flux can be written in the form: 



 

 
 

, , , , 1

, , , , , , , ,diag ,

1, ,5

I NI

x y z x y z i

x y z x y z x y z x y zV

i


 

  




F F
S S

Q   

are the eigenvalues , ,

i

x y z  and 
, ,x y zS (

1

, ,x y z


S ) are the 

matrices of the right (left) eigenvectors of the Jacobi 

matrices  , , , ,

I NI

x y z x y z  F F Q  of the corresponding 

convective fluxes of the Navier–Stokes equations in 
the inertial coordinate system. Thus, the difference of 
system (3.7) from that of Navier–Stokes equations 
written in the fixed coordinate system is only in the 
variation in the characteristic velocities and the 
presence of the source term on the right side. For this 
reason, in numerically realizing system (3.7) by means 
of the Godunov-type schemes the approximation 
methods remain the same as in solving the equations in 
the fixed coordinate system. 
 

3.2. Boundary conditions 

For the system of Navier–Stokes equations the 
boundary no-slip conditions are imposed on solid 
boundaries. These consist in equating the relative 
velocities (in the rotating noninertial coordinate 
system) at the boundaries to zero. In the case of 
employing the system of equations (3.6) written with 
respect to the absolute velocity vector (in the fixed 
coordinate system) the no-slip conditions are written as 
follows: 

0 u V  

for the rotating blade, where V is the linear velocity of 
the surface rotation, and 

0u  

for the fixed shroud (ring).  

Since the numerical simulation of the problem is 
performed in a bounded region, some artificial boundary 
conditions must be imposed on the computation 
domain boundary.  

These boundary conditions are determined by splitting 
the fluxes relating the values of the gasdynamic 

parameters i , iU , and ip  within the computation 

domain and their values in the distant flow  , U , 

and p  in the directions of the characteristic 

velocities. The latter values are determined by the 
characteristic relations for an isentropic gas

1/

0

1/2 1/2

,

2
,

1

i

i

i
i

i

p
p p

p

p p




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




 
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 

    
         

       

U U n

  

where 0p  is the constant pressure of the undisturbed 

gas and n is the vector of the unit outward normal to 
the computation domain boundary. 
 

4. NUMERICAL METHOD 

 

4.1. Numerical method for calculating the near 

flowfield 

The method of calculating the near flowfield is based 
on the solution of the system of Navier–Stokes 
equations in the noninertial coordinate system (3.7). 
The spatial approximation of the convective fluxes of 
this system on tetrahedral grids is realized using a 
scheme based on the quasi-one-dimensional 
reconstruction of the variables along a grid edge (EBR 
scheme). This class of schemes is described in detail 
in [1], [2], [8]. We note that the spatial discretization is 
based on the vertex-centered formulation, which 
means that all the unknown variables are determined 
at gridpoints surrounded by computation cells (dual 
grid).  

On the tetrahedral grids, for which the dual grid has 
computation cells of the same shape (analogue of the 
uniform Cartesian grid), the scheme based on the 
quasi-one-dimensional reconstruction along a grid 
edge can be of as high as fifth and even sixth order in 
space at the corresponding reconstruction of the flux 
variables [2], [8]. In the case of an arbitrary 
unstructured tetrahedral grid and the same 
reconstruction the approximation order is formally 
only second. However, this scheme ensures a higher 
accuracy (from the standpoint of the difference 
between the numerical and exact solutions with 
respect to the grid norm) than the other second-order 
schemes [2].  

The spatial approximation of the viscous terms in the 
system of Navier–Stokes equations is realized using 
the finite-element Galerkin method with linear basis 
functions.  

The time integration is performed using an implicit 
three-layer second-order scheme followed by the 
Newtonian linearization of the finite-difference (in 
space) system of equations. At each Newtonian 
iteration stage the method of biconjugate gradients 
(BiCGSTAB) [9] is applied for solving the system of 
linear equations. The method is realized in the 
NOISEtte software package [3]. 

 

4.2. Computation grid 

As mentioned in Sect. 1, the computation domain of 
the problem is a sector containing one blade. The 
outer boundary of the computation domain is so 



 

constructed that it describes the flow region produced 
by the rotor both directly beneath it (along the axis of 
rotation) and where it is formed above the rotor. The 
computation domain dimensions outside the ring are 
so chosen that it is possible to analyze the flow 
parameters outside the ring and to construct a control 
surface whose size would be sufficient to analyze the 
acoustic properties of the shrouded rotor (Fig. 5a). 

 

Fig. 5. General view of the computation grid for shrouded 
rotor; longitudinal section (a) and grid near the blade (b). 

An unstructured tetrahedral grid is constructed in the 
computation domain. It is refined in the regions, 
where the detailed modeling of the aerodynamic 
effects is required. Thus, the most detailed grid is 
constructed on the leading and trailing (along the 
airfoil chord) regions of the blade surface and on the 
blade tip. On the surfaces of the blade, the central 
body, and the ring the grid is refined in the normal-to- 
surface directions in order to resolve the boundary 
layer. 
Computation grid dimensions for different pitch angles for the 
shrouded rotor case 

 Pitch angle 
,deg 

Mesh nodes 
number 

Number of 
elements 

10 2326941 13589791 

15 2371707 13859009 

20 2511582 14669900 

30 2555652 14936402 

40 2592469 15154418 

Then the surface and volume grids are constructed 
using the advancing front technique, so that the grid 
element dimensions vary smoothly (Fig. 5). The most 
detailed grid is constructed in the gap region between 
the blade endface and the inside surface of the ring. 
Constraints from above on maximum dimensions of the 
elements near the blade and the central body are also 
introduced.  

On the solid surfaces of the rotor, the central body, and 
the ring the grid is refined in order to resolve the 
boundary layer, in accordance with the Reynolds 

number so that not less than ten cells fall on the 
boundary layer thickness.  

As a result, five computation grids for the blade pitch 
angles of 10, 15, 20, 30, and 40

o were constructed; 
their dimensions are given in table.  

For the main rotor case four meshes were constructed 
for each blade pitch angle. The mesh structure was 
similar to the first case (Fig. 6). 

 

  
Fig. 6. General view of the computation grid for model 

main rotor. 

Mesh sizes represented in the table below: 
Computation grid dimensions for different pitch angles for the 
model main rotor case 

 Pitch angle 
,deg 

Mesh nodes 
number 

Number of 
elements 

5 4145399 24137856 

10 4146578 24180511 

15 4144917 24134870 

20 4144431 24132036 

The computation grids were constructed using the 
ICEM CFD program from the ANSYS software package 
[10]. 
 

5. RESULTS OF THE CALCULATIONS 

 

5.1. General flow pattern 

In the calculations a stationary, that is, independent of 

the angle of rotation , solution was obtained.  

In Fig. 7 the flow pattern is presented in the fixed 
coordinate system for the configuration with the blade 
pitch angle of 30

o
. In plotting this figure the complete 

flow pattern was obtained by continuing the solution 
obtained for a single sector with the appropriate 
rotation of the coordinates of each sector and the 

velocity vector in the sector by an angle 2k/4, where 



 

k varied from 0 to 3.  

As can be seen in Fig. 7, the streamlines in the flow 
ahead of the rotor are directed along the axis inside 
the ring and are gradually curving toward the ring, so 
that the effect of air suction from the ambient at rest 
in the channel formed by the ring is observable. The 
suction velocity diminishes along the ring radius and 
becomes negligibly small on the outside surface of 
the shroud. In a flow behind the rotor the axial flow 
velocity considerably increases on a cylindrical surface 
of the order of the ring radius and the flow is swirled 
in the direction of the rotor rotation.  With decrease in 
the radius and increase in the distance the axial 
velocity diminishes and, as a result, the flow swirling 
increases. The streamline roll-up into a cord is 
particularly clearly visible beneath the central body, 
where the axial velocity is almost zero. This means the 
formation of helical vortices in the lower flow region, in 
the vicinity of the axis of rotation. 

 
Fig. 7. General view of the flow; streamlines in the fixed 

coordinate system and the field of the absolute value of the 
velocity in the meridional section for the blade pitch angle 

of 30
o
. 

Figure 8 presents the streamlines and the fields of 
the absolute value of the absolute velocity in the 
meridional section along the rotor blade axis for 
different blade pitch angles. Clearly that the greatest 
flow velocity can be observable in the jet directly 
beneath the rotor disk, the flow velocity rapidly 
decreasing with the distance from the ring. An 
increase in the velocity and the jet width behind the 
rotor with increase in the blade pitch angle is also 
observable, although the general flow pattern does not 
experience considerable variations: a suction zone is 
formed in the upper half-plane above the ring, a jet 

outflow zone occurs in the lower half-plane, directly 
beneath the rotor disk, and the zone of a cocurrent 
flow induced by the jet flow exists far away from the 
axis of rotation. 

 
Fig. 8. Streamlines and the field of the absolute value of the 
absolute velocity in the meridional section for the blade pitch 

angles of 10
o
(a), 20

o
(b), 30

o
(c), and 40

o
(d). 

 

5.2. Aerodynamic forces 

In Fig. 9 we have plotted the thrust (Fig. 9a) and 
torque (Fig. 9b) coefficients obtained in the 
calculations and in the experiment against the blade 
pitch angle. Obviously, with increase in the pitch 
angle the axial velocity of the expelled air body behind 
the rotor increases, while the pressure in the region 
above the blade reduces. Accordingly, the thrust and 
the torque coefficient increase. It can be seen that 
the calculated coefficients are similar in value with the 
measured ones for all pitch angles for which the 
calculations were carried out. Good agreement with 
the experiment is also observable in Fig. 9c in which 
the rotor polar (thrust coefficient–torque coefficient 
relation) is plotted. Clearly that the calculated data 
well fall on the experimental curve.  

In the Fig. 10 the model main rotor thrust, torque and 
polar compared with the experiment measurements. 



 

Like in previous case the calculated results are close to 
the experiment. 

 

 
Fig. 9. Shrouded rotor torque (a), thrust (b) coefficients and 

polar (c); (1) experiment and (2) calculations. 

The calculations on the above-mentioned grids were 
carried out using the computational structures of the 
Joint Supercomputer Center of the Russian Academy  
of Sciences (MVS-10P cluster [11]). The calculations 
were performed using the NOISEtte software 
package in the parallel regime using 200 to 480 
computational cores with the two-level MPI+OpenMP 
parallelization [3]. The calculations of one 
configuration for a fixed blade pitch angle at a fixed 
rotor rotation velocity took about one day of the 
computer time. 

    

 
Fig. 10. Model main rotor torque (a), thrust (b) coefficients 

and polar (c); (1) experiment and (2) calculations. 

6. SUMMARY 

Viscous gas flow generated around a model shrouded 
tail rotor of a helicopter and model main rotor is 
numerically investigated. The numerical technique 
developed is validated against the numerical and 
experimental data on the aerodynamic characteristics 
of the rotor in the absence of outer flow (hovering 
operation regime). It is shown that implemented 
technique applicable for rotors aerodynamic properties 
prediction.  

It should be noted that the computation grids used in 
this study make it possible to obtain only stationary flow 
and, accordingly, to use a simplified model of the far field 
acoustics which accounts for multiple discrete tones of 
the acoustic field produced by the rotor rotation. At the 
same time, the broadband eddy noise caused by 
vortical interactions and small-scale turbulence remains 
beyond the scope of the study. Later, by means of 
conducting selective calculations on detailed grids we 
are planning to investigate the broadband component 
effect on the acoustic radiation power and its spectral 
composition in the far field. Supposedly, as applied to 
the shrouded rotor configuration considered the 
broadband noise is not particularly noticeable in the far 
field. However, its adequate modeling is of key 
importance in numerically investigating the main 
helicopter rotor and, possibly, actual tail rotor 
configurations. 
  

(c) 
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