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Nomenclature

A , B ,C : Continuous system matrices
Ad , Bd : Discrete system matrices

b : Sensor bias
E : Vector of error between commanded and

 predicted output over the prediction horizon
Hp : Prediction horizon (number of time steps)
k CA , kCAB : Model predictive control 'gain' matrices

Q1,Q 2: Cost function weighting matrices

u : Control vector
U : Vector of velocity commands over the

 prediction horizon
vx , c , v y , c , v z , c : Commanded velocities in x, y,

V max : Maximum aircraft velocity

w : Sensor noise
x , ̇x : State vector
x k i : Predicted state at time step i
y: Output vector
Y : Vector of predicted outputs
Y c : Vector of commanded outputs

 s : Integration step size in arclength
 : Potential field
 : Standard deviation of sensor noise
x ,x ,x : Time constant of first order
   lag response to velocity commands
   and z directions

Introduction

Military applications of unmanned rotorcraft often require 
an aggressive flight profile, using some combination of high 
speed and nap-of-the-earth (NOE) flight to achieve stealth, 
avoid  attacks,  and  provide  support  to  rapidly  moving 
military  operations.  To  date,  unmanned  rotorcraft  have 
mostly  been constrained to  flight  at  altitudes well  above 
ground-based  obstacles,  limited  by  the  ability  of  the 
onboard controller  or  a remote pilot  to sense and avoid. 
Unfortunately, the major benefit  of rotorcraft lies in their 
ability to fly low and slow in the midst of an obstacle-rich 
environment.   In  order for unmanned rotorcraft  to reach 
their potential, new methods for guidance, navigation, and 
control must be created that include the effect of a complex 
array of obstacles that are dynamically changing.

Fortunately, there is a rich literature emerging in the area of 
guidance  and  control  techniques  for  air  vehicle  obstacle 
avoidance,  including  rotary-wing  air  vehicles.   There  are 
generally  three  categories  of  algorithms:  geometric, 
optimization-based,  and  potential-field  based.   An  early 
example of a geometric approach is from Cheng and Sridhar 
[1].  They found a gap in the obstacle field closest  to the 
direction of travel  that is wide enough for the aircraft  to 
traverse. Frew and Sengupta [2] approached the problem 
by calculating “safe” and “unsafe” sets with layered control 
scheme.  The  method  is  extended  to   include  the  error 
model for camera-based vision and formations of multiple 
aircraft.  Geometric  approaches  typically  require  low 
computational  cost  but  sacrifice  a  guaranteed  flight 
trajectory solution.

The second category of algorithms select a trajectory which 
optimizes  a  constrained  cost  function,  usually  some 
combination of obstacle distance, path length, and control 
input.  An  early  approach  by  Gilbert  explored  the  use  of 
distance functions in the optimal control problem [3].  Lapp 
and Singh used a model predictive controller that optimizes 
a cost function over a finite prediction horizon, subject to 
hard constraints corresponding to obstacles [4 – 6]. Moon 
and Prasad [7] demonstrate a 2-D optimal control approach 
with  hard  constraints  for  both  the obstacles  and specific 
aircraft  dynamic  constraints,  such  as  flapping  angle  and 
power.  

One of the most common approaches to the problem is to 
model the operating area as a potential field. Early research 
on  these  methods  was  centered  in  the  ground  vehicle 
robotic  community bu has expanded to many application 
areas, including air vehicles [8] [9] [10] [11] [12] [13]. The 
research has progressed to address basic problems, such as 
local minima, and apply the technique to practical problems 
[14] [15] [16].  A good example for rotorcraft is the work of, 
Scherer,  et  al  [17]  who  demonstrated   navigation  of 
unmanned  rotorcraft  at  high  speeds  and  low  altitudes 
among obstacles using a global path planning algorithm.

The work reported here employs a potential field method 
for  autonomous  rotorcraft  navigation  in  an  obstacle  rich 
environment.  While potential theory methods for vehicle 
navigation are by no means new, the work reported here 
proposes  a  set  of  modifications  to  uniquely  tailor  the 
algorithm  to  autonomous  rotorcraft  navigation.   A 
technique  to  allow  both  velocity  and  acceleration 
constraints  to  be  satisfied  by  shaping  the  speed  profile 
along a spatial path is detailed.  A mission objective dial is  
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defined which enables the operator to smoothly vary the 
computed  path  from  one  extreme  of  maximum  aircraft 
masking to another extreme of maximum speed to the end 
destination.  The characteristics of the proposed algorithm 
are shown through a set of simulated missions in realistic 
urban  obstacle  fields  using  practical  sensor  suite 
configurations.  The paper begins with a discussion of the 
mathematical  representation  of  the  aircraft,  which  is 
followed  by  a  description  of  the  obstacle  field  mapping 
solution along with the associated path generation scheme. 
Example results are subsequently presented followed by a 
discussion of the results and conclusions.

Aircraft Dynamic Model

The work reported here is predominantly concerned with 
outer  loop  control  of  autonomous  rotorcraft  in  an  an 
obstacle field.   It  is  assumed that an  autopilot  allows an 
aircraft to respond to velocity commands with a first order 
lag [18] (see Figures 1 and 2).  Therefore, in formulating this 
problem the aircraft is modeled as a particle responding in 
the same way, with the standard state-space representation 
of the system as given in equations (1) through (3).

Ẋ=A XBU (1)

A=[
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 − 1
x

0 0

0 0 0 0 − 1
y

0

0 0 0 0 0 −
1
z

]
 

(2)

B=[
0 0 0
0 0 0
0 0 0
1
x

0 0

0 1
 y

0

0 0 1
z

]  (3)

In Equation 1,  the state vector contains the position and 
velocity  of  the  mass  center  of  the  aircraft 
X=[x , y , z , v x , v y , v z ]

T  while  the  control  vector 
contains  velocity  commands  U=[v xc , v yc , v zc]

T .  In 
equations  2  and  3,  each  τ represents  the  time  constant 
corresponding to the lag response in the each direction.

A  model  predictive  controller  (MPC)  is  constructed  to 
minimize  the  error  between  predicted  trajectory  and 
commanded trajectory for this work.  However, any tracking 
flight control system can be used.

Path Planning

A critical part of obstacle field navigation is the ability to 
dynamically locate obstacles  in  the local  area around the 
aircraft.   Moreover,  as  obstacles  are  detected  a  map  of 
obstacles  in  a  three-dimensional  environment  must  be 
constructed.  This task is accomplished by defining a 3D grid 
around  the  aircraft  as  a  map  of  the  surrounding  terrain 
features.  The airspace around the aircraft is discretized and 
mapped to the array.  Each element of the array is binary: 1 
representing  an  occupied  space,  and  0  representing  an 
empty space.  Figures 3 and 4 represent a two-dimensional 
example of this type of grid, called an occupancy grid.  Each 
set of sensor measurements are used to update this array. 
This  approach  has  the  advantage  that  the  size  of  the 
obstacle  map  is  independent  of  sensor  type  and  the 
number of sensor readings accumulated.  Also, redundant 
sensor readings do not take extra space. This is a simplified 
version of the evidence grid technique shown in [17].

The  purpose  of  the  path  planner  is  to  find  a  smooth, 
continuous  obstacle-free  path  from  the  aircraft's  current 
location  to  a  desired  waypoint.   The  mathematical 
machinery of potential theory provides a means to this end. 
In  particular,  the  velocity  field  of  an  inviscid  fluid  flow 
around a body in the study of  aerodynamics holds these 
characteristics, and can be represented as the gradient of a 
scalar potential function, φ.

V=∇  (4)

Generally  speaking,  artificial  potential  field  techniques 
formulate this  problem by representing the goal point and 
obstacles as known spatial boundary conditions.  The goal 
point Dirchlet condition on the potential function is set at -1 
and the obstacles and space boundaries at 0.

The continuity equation,  ∇⋅V=0 , reduces equation (4) 
to Laplace's equation:

∇ 2=∂2
∂ x2 

∂2
∂ y2

∂2
∂ z2 =0  (5)

A  finite  difference  approximation  is  applied  to  Laplace's 
equation  to  form  a  discrete  potential  field  algebraic 
equation:

∂2
∂ x 2≈

i1, j , k−2i , j , ki−1, j , k

 x2  (6)

Substituting (6) and similar approximations in the y and z 
directions  into  (5),  assuming  an  evenly  spaced  grid 

( x= y= z ) , and solving for i , j , k  obtains

i , j ,k=
i1, j , ki−1, j, ki, j1, ki , j−1,ki , j ,k1i , j ,k−1

6
 (7)



In  other  words,  the  value  of  each  point  in  the  discrete 
potential  field  is  equal  to  the  average  of  the  six  points  
around it.

Once the array specifying  φ is found, then the same finite 
difference  approximation  can  be  used  to  calculate  the 
gradient  vector  at  each  discrete  point  in  the  field.   The 
streamline  is  then  calculated  from  the  vehicle's  starting 
position by 4th order Runge-Kutta integration of the gradient 
vector field using linear interpolation. The trajectory follows 
the gradient to the point of lowest potential, the goal.  Note 
that this algorithm only produces a path in space and does 
not address the speed at which to fly.

The  solution  to  this  boundary  value  problem  requires  a 
starting  guess  and  an  iterative  process.   As  each  cell  is 
updated, its new value is in turn used to update subsequent 
cells.  The order of update is alternated from iteration to 
iteration  in  order  to  prevent  a  bias  from  entering  the 
potential  field.   The  number  of  iterations  required  to 
converge depends upon the size of the array, the quality of  
the  starting  guess,  and  the  convergence  criteria  used  to 
terminate the algorithm.  The algorithm can be significantly 
sped by using  techniques detailed  by Scherer,  et  al  [17], 
including multi-grid, iterating only until the solution has no 
local minima, and setting the starting guess as a previous 
solution to the obstacle field.

An  example  two-dimensional  potential  field  with  two-
dimensional obstacles is shown in Figure 5.

Speed Shaping

As  stated  above,  the  artificial  potential  field  method 
provides  only  a  path  through  the  obstacle  field  but  no 
details how to fly it.

Given  a  general  twisting  and  turning  obstacle  free  path, 
movement along this path at a constant velocity will cause 
changes  in  acceleration  due  to  path  curvature.   In 
determining the speed to fly a particular  path, maximum 
speed  and  acceleration  limits  must  be  satisfied.   These 
limits  may  be basic  aircraft  limits,  limits  fed  back  to  the 
algorithm  from  the  inner-loop  flight  controller,  or  limits 
imposed by an operator based on a given mission scenario. 
It  may  be  desirable  to  traverse  a  commanded  trajectory 
slowly  for  a  given  mission  (for  example,  overwatch  of  a 
ground-based element) while very rapidly for another (for 
example, solo reconnaissance.)  Here, it is assumed that the 
aircraft's  dynamic  constraints,  such as  maximum flapping 
angle, power output,  etc.  can be mapped to a maximum 
velocity and a maximum acceleration of the vehicle.  These 
values  are  known  prior  to  start  of  flight  or  fed  to  the 
algorithm by the underlying flight controller.

Given  the  geometric  path,  the  speed  shaping  algorithm 
seeks to find a speed profile that traverses the path in the 
shortest  time without violating dynamic constraints.   The 
first step is to parameterize each coordinate by pathlength, 
s (equations 8 and 9), 

 si=∥r i−r i−1∥  (8)

si=si−1s i  (9)

where  s0=0 . The unit tangent and unit normal vectors 
to the curve as well as the curvature are found as a function 
of s using finite difference approximations (10)-(12).

t i=

r i1−r i−1

2⋅ s i

∥r i1−r i−1

2⋅ s i ∥
 (10)

ni=t i1−t i−1

2⋅ s i   (11)

= 1

∥t i1−t i−1

2⋅ s i ∥  (12)

To  compute  the  speed  profile,  the  algorithm  makes  an 
initial guess for speed as a function of pathlength, typically  
just greater than zero to ensure that initial guess does not 
violate  any  dynamic  constraint.   Using  that  initial  guess, 
time is found as a function of pathlength (13)-(15).

 s i=
v iv i−1

2
⋅t i (13)

 ti=2⋅ 1
viv i−1⋅ s i  (14)

t i=∑
j=1

i

t j (15)

Finally, the acceleration over the curve is found (16).

ai=
 v i

t i
⋅t i

vi
2

i
⋅nig  (16)

The guess values for v(s) are considered point by point using 
the following logic:  Is the point fixed?  If yes, do nothing. 
Does  the  point  meet  or  exceed  specified  constraint 
conditions (i.e.  end points)? If  yes, slightly reduce and fix 
the velocity at that point and move on to the next point.  
Does the point meet or exceed the overall velocity limit? If 
yes  slightly  reduce and fix  the velocity  at  that  point  and 
move on to  the next  point.  Does  ∥ai∥  or  ∥ai−1∥  
exceed acceleration limits?  If yes slightly reduce and fix the 



velocity at that point and move on to the next point. If the 
answers  to  the  previous  four  questions  are  no,  then 
increment the velocity of the point upward and move to the 
next point.

Once all the points on the velocity profile have been fixed, 
then every point in the velocity profile has met a constraint 
and the optimum has been found. Figure 6 and 7 show an 
example solution.

Since this  method produces a  set  of  reference positions, 
velocities, and accelerations and a corresponding time for 
each, the results can be interpolated to find a sequence of 
commands to fly the entire route.

Vehicle Masking

An  operator  supervising  the  aircraft  requires  a 
straightforward way to balance the competing desires to fly 
fast  and to fly low based upon mission requirements.   A 
straightforward  approach  to  this  problem  is  to  impose 
phantom obstacles in the form of an artificial  ceiling and 
floor into the potential field.  With the artificial ceiling or 
floor, it is possible to cut off all paths from start point to 
goal (see Figure 8).  The solution to this problem is to create 
a  “blanket”  region  around  obstacles  which  overrides  the 
imposed ceiling or floor.  The aircraft is always left with a 
path over any obstacle if no lateral path exists.

The masking factor (κ) is set by the operator with a value 
between 0 to 1, 0 being no masking and 1 being maximum 
masking.  From this parameter, a ceiling height is selected 
using equation (17), where hC is the ceiling height and hG is 
the average height of the ground.  Note that because of the 
boundary conditions in the path planning algorithm, there 
is always a ceiling at the top of the flight area, here denoted 
at hFA.  

hC=hFA−hFA−hG  (17)

The  blanket  area  is  calculated  by  starting  with  the 
occupancy  grid  and  propagating  the  occupancy  grid  one 
grid  square/cube  at  a  time  until  sufficient  clearance  has 
been achieved.  The blanket must extend out at least twice 
the desired standoff  distance from an obstacle,  since the 
streamline  will  be  halfway  between  the  ceiling  and  the 
obstacle.

Finally, the blanketed volume is subtracted from the ceiling 
to produce a modified ceiling.  This ceiling is added to the 
obstacle map and is otherwise treated as an obstacle.  See 
figures 9 through 10 for example.

Note that masking is inversely related to speed; a masked 
path  will  tend  to  produce  sharper  bends  in  the  planned 
path, and the velocity planner accordingly slows the aircraft 
to accomplish such turns.

While the potential theory based path planning algorithm 
produces smooth trajectories for a given set of boundary 

conditions,  there  is  no  guarantee  that  the  new  path  is 
smoothly joined to the previous one when new boundary 
conditions are imposed based on new information.  In fact, 
at times very sharp cusps can be formed (see Figure 11). 
Normally  this  happens  when  a  sufficiently  large  obstacle 
comes  into  sensor  range  which  the  path  planner  had 
previously  determined  to  fly  through.   To  remedy  this 
situation,  the potential  field  is  modified  directly  allowing 
smooth  transition  from  one  computed  path  to  another. 
This option is called the “chase” boundary condition.  The 
chase  condition  is  defined  so  that  a  phantom  obstacle 
chases the aircraft through the obstacle field.  If an obstacle 
appears which would normally cause the aircraft to reverse 
direction  abruptly,  the  chase  obstacle  provides  a 
counteracting  force  in  the  potential  field  (see  Figures  12 
and 13).  The resultant trajectory, while still not necessarily 
smooth, is at a much shallower angle.

Results

To  explore  the  capabilities  of  the  above  path  planning 
algorithm, a set of simulation results have been generated 
for an example aircraft  responding to velocity commands 
with  a  first  order  lag.   The  aircraft  which  the simulation 
approximates is  the GTMax, a testbed aircraft  at  Georgia 
Tech  (see  Figure  15).   This  aircraft  has  a  10.2  ft  rotor 
diameter, 205 lb gross weight, a 21 hp powerplant, and 2 
onboard computers which operate autopilot.  In the lateral 
directions, the aircraft reacts to velocity commands with a 
time constant of 0.8 seconds, and in the vertical direction 
with a time constant of 1.2 seconds (see equations 2 and 3).

First, a set of cases are shown where the path planner has 
perfect  or  near-perfect  information  about  the  obstacle 
field.   The  masking  factor  is  varied  from  0  to  0.9.   The 
terrain is loosely based upon McKenna Urban Training Site 
at Ft. Benning, Georgia, USA (Figure 16), with additions and 
variations  to  show  the  planning  algorithm's  avoidance 
capabilties.   Note  that  the planned  path  for  no  masking 
follows a benign curve where the aircraft  initially climbs, 
then follows a relatively straight path over the top of the 
obstacle field before descending to the waypoint.  In each 
successively greater case of masking, the path is closer to 
the  ground  and  much  curvier  (Figures  17  through  20). 
Interestingly, in the case of greatest masking, the planner 
selects  an  entirely  different  route  through  the  obstacle 
field.

Further  study  included  the  simulation  of  the  aircraft 
gathering sensor data, then updating the path planned.  For 
this work a notional two-axis scanning laser rangefinder is 
used.  The sensor has sufficient mobility that it is capable of  
aligning itself with the aircraft's velocity vector (Figure 13). 
During a single laser scan a set of pulses is fired at different  
azimuths  and  radii.   For  each  pulse  fired,  a  return  is 
generated  that  provides  an  estimate  of  the  range  to  an 
obstacle.

This  sensor is  modeled in simulation by representing the 
obstacle field as a group of planes, which are stored as a 
rotation matrix  (TPI),  a  corner  position,  and  a  length  and 



width.  During simulation, the virtual sensor solves a vector 
algebra problem, as shown in (18), for the distance from the 
sensor to the point where the laser strikes a plane.  Error is 
placed on the distance reading according to equation (19). 
The inertial position of the point of strike is then solved for 
using equation (20).  This process is repeated for all planes 
in the obstacle field and across of the sensor's field of view 
(see Figure 14).

ℂ I [r HP ]ℂ I [r P A]=ℂ I [r H A]
ℂH [rH A]=d⋅ℂ I [n lidar]

d actual=
[1 0 0 ]⋅T PI

T ⋅rOP−rOH 
[1 0 0 ]⋅T PI

T T HIℂH [nlidar ]

 (18)

dmeasured=dactual⋅1⋅wb  (19)

rO A=rOHdmeasured⋅ℂI [n lidar ]  (20)

For the results shown, the laser rangefinder has a maximum 
range of 80 meters resolved to 1 meter and field of view of 
160 degrees, resolved to roughly 1 degree.  The laser was 
simulated with no noise or bias.

The tracking controller used is a standard model predictive 
controller with a prediction horizon of 3 seconds and equal 
weighting on tracking error and control input terms.  The 
controller generates velocity commands at 10 Hz.

In order to quantitatively compare flights, a metric of some 
kind is  required.   There are three possible metrics  which 
seem to be the most straightforward way to measure how 
fast  and  how  low  the  aircraft  flies:   time  of  flight,  the 
maximum altitude of flight, and the average altitude over 
the time of flight (which roughly measures the amount of 
time exposed, Equation 21).

∑
i
zi⋅ ti  (21)

To  generate  the  following  results,  the  path  planner  and 
obstacle map were composed of 128x128x64 arrays, with 
each cell in the array representing a 2 m x 2 m x 1 m space.

Three sets of case studies are examined.  First, the change 
in performance while varying masking factor from 0 to 1 is 
examined.   Second  and  third,  maximum  velocity  and 
maximum acceleration are examined.

Case Study 1: Masking

The first case study provided the most interesting results. 
In  this  study,  six  simulations  were  run  with  differing 
masking factors, from 0 to 1 in increments of 0.2 (see Table 
1  and  Figures  21  and  22).   For  up  to  60%  masking 
(approximately a 25 m ceiling), the aircraft actually flew a 
little  faster  than  with  no  masking  at  all,  in  addition  to 

maintaining a  far  lower  profile.     With  no masking,  the 
space  of  lowest  potential  is  situated  roughly  halfway 
between the ground and the top of the space, so that the 
aircraft  will  initially  climb  before  accelerating  in  the 
horizontal.   Two  conclusions  may  be  drawn.   First,  for 
optimal performance, the base ceiling may need to be set 
to about 50% of its current value or the aircraft may need to 
use a finer potential grid in the vertical direction.  Second, 
the course in simulation was too short to appreciate the full 
range of performance.  In a longer flight, the aircraft can fly 
faster at an altitude of 35 m than it could at 15 or 20 m 
because  the  higher  altitude  would  be  far  freer  of 
obstruction and allow the aircraft to fly in a straight line a 
full speed.

Table 1. Max Velocity = 70; Max Acceleration = 4g; Chase Obstacle On

Masking Factor Time of Flight Max. Altitude
∑
i
z i⋅ t i

0 10 36 244

0.2 10.2 35 243

0.4 9.7 25.8 182

0.6 9.4 21.6 151

0.8 10 17.6 138

1 >20 12
Did not reach 

goal in 
simulation time

Case Studies 2 and 3: Velocity and Acceleration Constraints

The  range  of  velocity  constraints  and  acceleration 
constraints  also  have two notable  features.   First,  in  this 
simulation  set,  top  speed  was  limited  primarily  by  the 
aircraft's ability to accelerate and decelerate.  Even with a 
maximum velocity constraint of 80 m/s, the aircraft didn't 
get  going much faster than 50 m/s.   The second notable 
feature  is  that  an  increase  in  acceleration  constraint 
marginally improves the ability to fly at low altitudes due to 
increased capability to execute sharp turns.

Table 2. Masking Factor = 0.5; Max Acceleration = 4g; Chase Obstacle On

Max Velocity 
(m/s) Time of Flight Max. Altitude

∑
i
z i⋅ t i

30 11.6 22.35 200

40 10 21.9 165

50 9.6 21.7 155

60 9.4 21.6 151

70 9.4 21.6 151

80 9.4 21.6 151



Table 3. Masking Factor = 0.5; Max Velocity = 70; Chase Obstacle On

Max 
Acceleration 

(m/s2) Time of Flight Max. Altitude
∑
i
z i⋅ t i

2g 13.5 22.25 221

2.5g 11.7 22.04 191

3g 10.8 22.02 176

3.5g 9.9 21.8 160

4g 9.4 21.6 151

4.5g 9.1 21.6 146

Conclusions

A potential-field algorithms for obstacle field navigation was 
demonstrated  to  plan  safe  paths  to  a  goal  point  using 
mission criteria to determined altitude and speed of flight. 
The masking function was shown to work well to reduce the 
aircraft's  exposure  to  threat  with  little  or  no  penalty  in 
performance  over  short  distances.   The  adjustments  to 
velocity  and  acceleration  constraints  offer  increases  in 
performance, but only to a point.
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Figure 1.  Autopilot Block Diagram

Figure 2. Dynamic Model Block Diagram

Figure 3. Terrain Superimposed on Occupancy Grid
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Figure 4. Resultant Occupancy Grid

Figure 5. 2D Potential Field Example w. Streamlines

Figure 6. Speed Shaping Example, pathlength domain
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Figure 7. Speed Shaping Example, time domain

Figure 8. Simple Ceiling

Figure 9. Fully Blanketed Terrain

Figure 10. Modified Ceiling

Figure 11. Sharp Cusp with Trajectory Update

Figure 12. Illustration of Sharp Cusp and Counteractive  
Effect of Chase Obstacle

Figure 13. Graphic of Sensor Model
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Figure 14.  Virtual Sensor Geometry

Figure 15: GTMax Research Helicopter  

Figure 16. McKenna Urban Training Site, Fort  
Benning, GA

Figure 17.  Paths Planned with Perfect Information, Oblique View



Figure 18.  Paths Planned with Perfect Information, Top View

Figure 19.  Paths Planned with Perfect Information, Y-Z Plane View



Figure 20.  Paths Planned with Perfect Information, X-Z Plane View

Figure 21.  Simulated Trajectories, Oblique View

Figure 22. Simulated Trajectories, X-Z plane view


