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Abstract 

An Implicit Model-Following Controller is developed in the modal domain to 
attenuate the vibration characteristics of helicopter rotors using adaptive structures. 
The dynamics of the blade in the hover condition is taken as the reference model. The 
results indicate that the linearization of the elastic system in forward flight is 
achieved with relatively low control costs. 

1. Introduction 

The active control of rotary wing systems using the individual-blade-control 
(!BC) concept to achieve vibration reduction may be formulated under two different 
philosophies. According to the first, the aim is to reduce vibration by actuating in one 
individual blade in such a way that the causes of the phenomenon are suppressed: dynamic 
stall, shock, and vortex-blade interaction may be actively controlled by modifying the 
airfoil shape by either changing its camber or using a flap. Among the many actuators 
available, adaptive materials such as piezoelectric sheets or beams may be employed to 

respond to the variations of blade local pressure1
• Since the knowledge of the local 

airflow characteristics is necessary, an excellent model of the rotor aerodynamics is 

obviously required to solve the problem2
. 

Alternatively, the problem may be investigated under a more "aeroelastic 
approach" in which the effects caused by the same aerodynamic loads on the system's 
response are controlled. It was observed that the aeroelastic characteristics of an 
individual blade in the rotating frame strongly contributes to the vibration response of 

the entire rotor/fuselage system at certain frequencies 3
. These frequencies are located 

in the neighborhood of pN/rev, where p is an integer and N is the number of blades. In 
former studies, adaptive materials were employed to construct sensor/actuator 
distributed arrangements that were optimized to achieve independent modal control at a 

determined rotor advance ratio and blade azimuth position 4 '
5

• The approach is feasible 
if fast, adaptive, closed-loop controllers are employed to cope with the variations of 
the system's aeroelastic characteristics with the azimuth angle in real time. 
Nevertheless, the approach requires less sophisticated aerodynamic models of the rotor 
since only global parameters are used in the controller's synthesis. The intrinsic 
assumption is that the cause of higher blade response at certain frequencies is related 
to lower modal damping in the rotating frame. 

The damping of an individual blade mode can be artificially increased by a 
closed-loop feedback controller for which the input is an electrical signal proportional 
to the blade's modal deformation. The signal may be generated by sensors made of 
embedded sheets of piezoelectric material. However, the lack of power and/or bandwidth 
associated with the available adaptive materials remains a problem to use them as 
actuators. An efficient control upon the blade loads developed in the helicopter forward 
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5-8 
flight can only be achieved if more efficient adaptive materials become available 

The present paper extends the previous works that were dedicated to investigate 
the feasibility of using adaptive materials in the vibration control of rotary wings in 
forward flight. In these studies, the periodic aerodynamic loads were linearized at a 

determined azimuth position of the blade5
'
7

'
9

-
10

. This assumption allowed the 
aeroelastic equations of motion to become partial differential equations with constant 
coefficients, and the simple tools from the Optimum Control Theory could be employed in 
the controller's synthesis. As a result, fast, real -time, but also very demanding 
controller characteristics were necessary to cope with the variations of the aeroelastic 
modes with respect to the azimuth angle. Extra modal damping can only be provided at 

very low control costs which result in saturation of the adaptive material
5

. It is 
expected that a controller which is intrinsically periodic can be less demanding on the 
adaptive material properties since it can actuate during an entire revolution of the 
blade. In the present paper, this procedure is accomplished by using the Model-Following 

Technique, which has been studied by several authors 11 -
14

, extended to periodic systems 

b N. h' 11 d . I I I' d . b M K'll' 13- 14 
y 1s 1mura , an part1cu ar y app 1e to rotary wmgs y c 1 tp . 

2.Periodic Model-Following MQQill. Controller 

The mathematical model of a single rotating blade including only the elastic 
flatwise bending (slope tp) and torsion (angle e) degrees of freedom was developed in 

. k 7,10 prevwus wor s . 
loop system with 

The aeroelastic dimensionless differential equations of the 
a single input E3 (voltage applied through the electrodes 

open­
of a 

piezoelectric material divided by the saturation voltage E*J are integrated in space by 
the integrating-matrix method, resulting in a system of 4n first-order equations in the 
time domain (n is the number of discretizing points taken along the blade) . 

where 

. 
F X + G X = H E3• 

T 

q = [l'Pl!xn lel!xn] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The matrices Ll' L 2 and L3 in Eqs. 2-4 (which are closely related to the "basic", nxn, 
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integrating matrix L) are defined according to the se ected oun ary con 1t10ns . 
Integrating matrices provide a semianalytical closed solution to the problem. All terms 
of Eq. 1 are treated collectively, without the need of approximations such as the one 
introduced by the modal superposition method. In the previous equations, 

v = mRrl2R4/(EI)R is a rotation parameter, r is the Lock number, Ib is the total moment 

of inertia of the blade in flapping, and 1 and 0 are the unit and null matrices, 
respectively, with the dimensions in subscript. Matrix A 2 contains the system's inertia 

parameters, Matrix Z the geometric stiffening terms, matrices A0 and A1 the aerodynamic 

coefficients (dependent on the advance ratio 11 and the azimuth angle 1/J = ml, and Vector 
h the actuator's geometric and adaptive material characteristics. As opposed to the 

previous works
7

'
10

, here the dimensionless time is counted in blade revs, t = ljJ/(2rr), in 
order to set the fundamental period equal to one. 

Next, Eq. 1 may be transformed into the corresponding modal form using bi­
orthogonal relationships among the left and right complex eigenvectors of the non-self­
adjoint system at a fixed 11 and 1/J (Eq. 7a-b): 

X = ur l); l) = ul X (7a) 

ulur = lm; U1A Ur= '/\ -1 

' 
(7b) 

where 

A [" ,, o'c l = 11 11 11 12 • 

lzn Ozn 

(8) 

Therefore, 

l) = 'II lJ + 73 E3 , (9) 

where 

73 = 'II-1U1B, (10) 

and 'II is the matrix of complex-conjugate eigenvalues - the superscript '( ) represents 
a diagonal matrix and Ur and U1 are the "right" and "left" modal matrices, 

respectively. If the nonlinear terms are included, the modal decomposition must be 
performed at each instant of time, and Eqs. 9-10 take a more general form: 

(9a) 

(lOa) 

The Model-Following technique is extended in the present work to complex­
coefficient systems such as the one represented by the non-linear, periodic, 
differential equations which govern the amplitude displacements of the aeroelastic modes 
of a single blade in the rotating frame (Eqs. 9a-10a). In the forward flight the complex 
coefficients change from one azimuth angle to another and, hence, the modes themselves 
change their characteristics (frequency and damping). Since the non-linearity of the 
system is basically generated by the aerodynamics at 11 * 0, 

F• = -(r2 + 11 r sin¢)/2 
f3 

F f3 = -(11 r cos¢ + 11Zsin¢ cosljJ)/2 
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(llc) 

the "hover modes" (11 = 0) are invariant (in Eqs. lla-c, r is the radial coordinate, F•, 
{3 

F /3 and F 
9 

are the unsteady aerodynamic coefficients). Therefore, the latter modes seem 

to be a natural choice to use as a basis for the modal decomposition. They also 
represent a good dynamic "reference" for the Model-Following technique because it is 
well-known that the hover condition is characterized by low rotor vibration. For this 
reason, the periodic nature of the elastic system may be considered a nuisance, a 
characteristic which could be eliminated or at least reduced through the feedback 
control. The Model-Following to be pursued in the present investigation is formulated to 
penalize the difference between the time derivatives of the "actual" modal state vector 

~ (Eq. 9a) and the model 

(12) 

where 'A collects the complex eigenvalues of the blade at the hover condition. Note that 
this is an implicit formulation because the model response 11m is constructed using the 

actual system's state 1'). Therefore, the cost function penalizing the deviation of the 
actual blade dynamics in the forward flight from its hover (and linear) condition is 

(13) 

where Q is a weighting matrix and the superscript H stands for the Hermitian transpose. 
This representation assumes that a full-state feedback is available. Alternatively, a 
regulator driven by the current generated through the electrodes of a sensor made from 
piezoelectric material may be used (Fig. 1). The output current is proportional to the 
modal amplitude: 

(14) 

Likewise for the model: 

(15) 

Substitution of Eqs. 14 and 15 into Eq. 13 yields a cost function that penalizes the 
time derivative of the output current generated in forward flight from the current that 
would be generated in the hover condition. The expression resembles Eq. 13, replacing 11 
and 'T)m by L and "m• respectively, and noting that the weighting matrix has now a 

determined character: 

Q = ~H~. (16) 

The only design parameter in Eq. 13 becomes the scalar p, which represents the relative 
cost of the controller output to linearize the blade dynamic response characteristics. 

Following the steps of McKillip's derivations
13

-
14

, 

substituted in Eq. 13, yielding: 

J = 1/2 I: [1')HW1?1?1? + 21')HW1?EE3 + WEEE;] dt, 
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where 

Th 
. d . I4 e optimum control problem is governe by the time-varying Riccati equation , 

where 

(!Sa) 

(18b) 

(18c) 

(19) 

(20a) 

(20b) 

(ZOe) 

Nishimura" determined that the periodic solution of Eq. 19 may be obtained by spectral 
factorization. It is necessary to compute the state transition matrix defined by: 

dlll/dt = QJ(t) lll(t,s) (21) 
with 

lll(s,s) = I; 1 ~ t ?:; s ~ 0, 

where the matrix QJ is constructed appending the system's direct 1) and adjoint X = 
states (note that here the fundamental period is one). 

[
'D -8] QJ = H 
-'!f -'JJ 

(22) 

p 1) 

(23) 

The solution starts by obtaining the fundamental transition matrix of Eq. 21, 11'(1,0). 
Next, the eigenvalues Ak= ak+iwk and the corresponding eigenvectors 'l<k of the 

fundamental transition matrix are computed and grouped according to stable As and 

unstable Au modes, as determined by the real parts of ak (ak< 0 corresponds to a stable 

mode). 
(24a) 

(24b) 

The fundamental transition matrix is then factored as: 

(25) 
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The periodic solution of the Riccati equation at any time instant is finally found 
according to 

(26) 

where the columns of the transition matrices <l>(t,O) are arranged to match the same 
factorization provided for <!>(1,0). The closed-loop gain is also obtained at any time 
instant: 

H H 
K(t) = (1/WEE)(W'T)E + :8 P(t)). (27) 

Hence, the input voltage generated by the periodic regulator is determined: 

(28) 

Equation 28 is substituted into Eq. 9a, leading to the closed-loop system's equations of 
motion: 

11 = [A(t) - :B(t) K(t)] 11 (29a) 

t = I;' 1). (29b) 

3.Computation of the Transition Matrices 

In the present work the transition matrices were determined using the 
integrating-matrix method. For a given periodic system, 

the solution y(t) 

y = OJ(t) y, 

!5 = y(t+TJ may be expressed as : 

(30) 

(31) 

I where y (t) is the solution of Eq. 30 for the initial conditions y 1(0) = I and all 

remaining yk(O) = 0; /(tJ is the solution for the initial conditions y 2(0) = and all 

remaining yk(O) = 0, etc. The matrix collecting these independent solutions (left-hand 

side of Eq. 31) is identified to the transition matrix <l>(t,O). In particular, at t = T 
(the fundamental period) the fundamental transition matrix is obtained. 

Thus, both the transition matrices and the fundamental transition matrix may be 
calculated by an algebraic expression (Eq. 32). T = I is mandatory because the 
integrating matrices are normalized for the unity interval. In Eq. 32 m is the number of 
states, and (n-1) is the number of time intervals in which the period is discretized. 

The individual transition matrices are obtained by successively collecting the rows of 
the discretized [<I>], which correspond to integrations from t = 0 up to t :s I. The 
discretized initial-condition vectors in Eq. 32 have the form 
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(33) 

where the unit vector is at the kth position. The matrix inversion must be performed 
• just once since it is only dependent on the integrating-matrix operator L (a block-

diagonal matrix composed of as many nxn L's as the number of states) and the discretized 
version of QJ (a matrix [QJ] for which each element is transformed into a diagonal nxn 
matrix of repeated values). 

The method achieved outstanding performance in both accuracy and computation time 
if compared to a numerical integration of the system using a traditional Range-Kutta 
algorithm based on second and third order formulas. In a modal formulation the number of 
states is never very high, which makes the matrix inversion of Eq. 32 very attractive. 
The discretization level of [QJ] was considered satisfactory when the poles of <1>(1,0) 
kept the double symmetry around the origin in the complex plane. Figure 2 depicts an 
example where both a "good" and a "bad" convergence of the method were obtained. 
Whenever a "bad" convergence is achieved, it is surely improved by increasing either the 
order of the integrating polynomial which defines L or the number of time intervals. The 
former solution is always preferred since it does not cause an increase in the size of 
the matrices involved in the inversion. 

4.Results: 

The rotor parameters are shown in Table 1, and the aeroelastic modes at the hover 
condition are summarized in Table 2. These aeroelastic modes were used to perform the 
modal decomposition of Eqs .. 7a-b at 11 = 0.32 and all discretized t within the 
fundamental period, determining the periodic matrices in Eqs. 9a-l0a. They also 
characterize the reference model in Eq. 12. The integrating-matrix method was used to 
obtain both <l>(t,O) and an additional solution with the arbitrary initial condition 
'1)(0) = lmx!> which will serve as a reference value to evaluate the performance of the 

controller (m is the number of modes, including the complex-conjugates). The system has 
a transient behavior in superposition to its periodic characteristics, since no external 
command is incorporated into the blade dynamics. 

In the first simulations a full-state feedback is assumed, with Q = lm. Figures 

Ja-b depict the results using the first four complex-conjugate modes. Figure 3a shows 
the time evolution of both the output c and the input E3 when compared to the open-loop 

situation. It is clear that even at the lowest control cost (p = 0) the performance of 
the controller is satisfactory, not reaching values of E3 beyond the saturation level. 

Figure 3b presents a plot of the gain vector components along the period, indicating 
that a periodic controller was synthesized. Figures 4a-b are 
but including the first six aeroelastic modes. In Fig. 4a 
performance of the closed-loop system is not improved in terms 
a unity Q penalizes the relative performance of modes 3 and 4 
and 6 which have a much lower damping ratio. As a result, £ 3 

level in Fig. Ja. However, when the shape of the peaks of 
compared, it is clear that a much more linear response of the 
this type of controller. 

equivalent to F'igs. Ja-b, 
it is observed that the 
of modal damping because 
in comparison to modes S 
achieves a fraction of its 

both plots in Fig. S are 
system was achieved with 

Next, a modal filter, as introduced in a previous stud/, is employed. The 
adaptive material is shaped according to the shape functions of Fig. 6 in order to 
generate both a distributed actuator and a distributed sensor that can selectively 
control the modal amplitudes associated with modes S and 6 (considered critical at 4/rev 
for a four-blade rotor). Here, these shape functions represent optimal distributions of 
the adaptive material along the complete period because they are constructed using the 
invariant "hover modes". The performance of such a controller is depicted in Figs. 7 and 
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8. In Fig. 7 it can be observed that at a very low cost (p = 0. OOl) the saturation of 
the adaptive material is achieved, but the output response is greatly suppressed. In 
particular, the mode at 4/rev is entirely suppressed (Fig. 8). However, if the present 
levels of saturation of the adaptive material are compared to their counterparts found 

in a former stud/, it becomes clear that the periodic controller is much less demanding 
from the actuator's performance, and hence more suitable to be introduced in the so­
called "smart" rotors. 

Table 1· Rotor Parameters 

definition parameter value units definition 

number blades N 4 moment of inertia 

rotor radius R 4.926 m blade chord 
rotor frequency Q 44.4 rad/s aero center offset 

bend compliance * (EI)RD 11/R [Ilnxl blade thickness 

bend/tors cmpl. * (El)RD13/R [O]nxl piezo coeff (axial) 

tors compliance (El)RD;3/R [I. 756]nxl piezo coeff (shear) 

ref stiffness (El)R 6.89x!O 
4 

N.m 2 saturation field 

mass m/mR [l]nxl piezo coeff (axial) 

ref mass mR 5.5 kg/m piezo coeff (shear) 

radius gyration k
6

/R [.03]nxl saturation field 

lift coeff a 2rr distance btw layers 

air density 1.225 kg/m 
3 

actuator thickness p 

Lock-number '( 5.654 sensor distance ... 

rotation param v 92.66 from blade midplane 

t actuator (PZT = piezoceramic adaptive material) 

:t: sensor (PVDF = piezopolymer adaptive material) 

5. Conclusions 

Table 2: Open-loop Aeroelastic Modes 
(hover) 

mode no. w/Q i;IQ description 

I -1.0765 -.4043 1st bending 
2 +1.0765 -.4043 1st bending 
3 -3.3436 -.7213 2nd bending 
4 +3.3436 -.7213 2nd bending 
5 -4.4756 -.1346 1st torsion 
6 +4.4756 -.1346 1st torsion 

parameter value units 

3 
lb/(mRR ) .333 

c/R .0555 
x.;c . I 

tic .12 

e3x(PZT) 12.16 C/m 
2 

e35(PZT) 4.602 C/m 
2 

E*(PZT) t 381 V/m 

e3x(PVDF) .05396 C/m 
2 

e35(PVDF) .01500 C/m 
2 

E*rpvon* 6350 V/m 

d,fc .09 

t./c .015 

z
5
/c .06 

I) In the present study, periodic Model-Following controllers were synthesized, 
aiming at helicopter rotor vibration attenuation employing adaptive materials as both 
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sensors and actuators. The 
reference to be followed 
that the approach leads 
requirements. 

model used the blade's dynamics at 
by the controller. Periodic gains 
to more feasible solutions in 

the hover condition as the 
were 

terms 
obtained, indicating 
of control power 

2) The results indicate that the periodic system approaches the linear system 
aeroelastic characteristics with relative low gains, These aeroelastic characteristics 
are recognized to be associated to lower levels of rotor vibration. 

3) Integrating matrices were used to obtain the transition matrices of the 
numerical solution associated with the time-dependent Riccati equation. The method 
presented a superior performance when compared to more traditional step-by-step 
integration methods such as the Range-Kutta. 
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• '§ 

Fig.! Single-Input-Single-Output Controller block-diagram. 
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Fig.2 Fundamental Transition Matrix eigenvalues computed with the integrating matrix 
method: (left) "bad" convergence (n=20); (right) "good" convergence (n=30). 
Results obtained with a Newton, 7th order integrating matrix. Observe the double 
symmetry about the imaginary and real axis obtained with the "good" eigenvalues. 
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Fig.3 Periodic Modal-Following Modal Controller using 4 aeroelastic "hover modes" and 

Q=l (full-state feedback) for 1.1 = 0.32: (3a) c * 1/J; (3b) Re(K) vs. 1/1 and E3/E vs. 

vs. 1/J and lm(K) vs. 1/J. 
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Fig.4 Periodic Modal-Following Modal Controller using 6 aeroelastic "hover modes" and 

Q=l (full-state feedback) for 11 = 0.32: (4a) t vs. op and E3/E* vs. 1/J; (4b) ReCK) 
vs. 1/J and Im(Kl vs. 1/J. 
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Fig.S Power-Spectral-Densities of t for the Open- and Closed-loop (p=O) systems for the 
6-modes controller of Fig. 4. The sharp peak of the 4/rev mode {right) indicates 
that the system presents a much more linear response with the controller on. The 
non-linear system behavior approaches the linear system behavior of the hover 
condition. 

G6- 11 



1 

[ ~how; l 
0 

·~r-;::· (\ 4/conoodo 
osi I \ 

, 04R I \ ;' \ ~ .2o.el , I \ 
io,: ~~~ ~ :It/ ' I / \ 

1 o2i\./ \, \1 \ 
o ,, I I 1 · 

I 4!mvmode 'I \r t/ \ , 

0
. : I. II 11 \0. ~· 
-·---:,-:-----"'

1 
I ' \; \ 

0 !J 5 ~ 0o 0 5 

sensor 

151 I 
4ifevmoda 

1i l 
~· (\ ('; ~ f\ ' \ ' \1· - osj I \ / ' 

j I f v 
0! .) ,f i 
0 0.5 

Fig.6 Modal filters 
4 

for the 4/rev mode. The four shape functions represent the width 
distribution (¢ and e) of the adaptive material along the blade: actuator (left), 
sensor (right): ¢/c (bending component) vs. r and e/c (torsion component) vs. r. 

\,.---------, 
I 
I A ""'" I 

osr I \ 'I' , I , 
II \)\ '\ : 
0.~. 
i ! rh0=.001 1 I ' . I 

~ ' I I 

~·jl ffi""" j 
II I II ffl(,)(jalfllt&r J 

-H) (modtn-5&.5) i 
U I . 

I 
~1.5L---~c-----'' 

0 OJ> 
psi {rev) 

6modes 

mu=32 

modal finer 
{modes 5 & e) 

0.5 
psi (rev) 

Fig.7 Periodic Modal-Following Modal Controller using 6 aeroelastic "hover modes" and 
H , * Q=t:; G' (modal filters of Fig.6) for 11 = 0.32: (left) <. vs. ljJ and (right) E3/E vs . 

.p. Saturation of the adaptive material is reached for p=.OOL 
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Fig.8 Power-Spectral-Densities of c for the Open- and Closed-loop (p=.OOI) systems for 
the 6-modes contl"oller of Fig.7. The 4/rev mode is completely suppressed using 
the modal filters of Fig.6. 

G6- 12 


