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Abstract 

     Betz and Prandtl (1919) presented the optimum velocity distribution for a rotor in axial flow having an 
infinite number of blades.  Goldstein (1929) derived an expression for the circulation that would give the 
ideal inflow of Betz-Prandtl.  Goldstein offered an elegant, numerical solution to this equation in order to find 
the optimum circulation to give Betz induced flow.  He presented solutions for two blades at a number of 
inflow ratios and for four blades at one particular inflow ratio.  The objective of this work is to develop a more 
computationally accurate and robust method of finding the optimum circulation for the ideal propeller.  We 
look for a solution that would be taken to any desired accuracy and applied for any number of blades and 
any tip-speed ratio. With such a solution, one can have benchmarks against which to compare other 
methodologies.  In addition, an accurate solution will allow computation of induced power efficiency for the 
Goldstein optimum such that other blade designs can be measured against it. 

 

Nomenclature 
 
            constant part of     

            Goldstein derivative matrix  

            part of      due to        

            forcing factor of particular solution 

            coefficients of particular solution  

            coefficients of homogenious solution  

            focing function of homogenius  solution 

              Prandtl tip-correction function 

             Galerkin stiffness matrix 

           velocity potential expansions 

            homogenius part of    

              matrix of boundary conditions  

            correction functions 

               summation index 

               modified Bessel function 

             induced power efficiency 

               summation index 

               harmonic number, 

              ⁄    ⁄⁄  

            modified Bessel function o f y 



            derivative of   with respect to   

(    ⁄   

               harmonic number,                

            forcing function for boundary 

              number of   terms 

             number of the terms in Galerkin function 

            Legendre polynomials 

              number of blades 

               radial coordinate,   

              blade radius,   

            either sin( ) or cos( ) 

             induced velocity at disk normal to vortex 

sheet,     ⁄  

              climb rate,     ⁄      

               mapping coordinate,      ⁄    , 

        

               axial coordinate, m 

            nondimensional normalized circulation, 

    ⁄  

              nondimensional circulation per blade, 

     ⁄  

 ̅             corrected circulation 

 ̂             Galerkin optimum circulation 

            normalized nominal circulation, uncorrected, 

     ⁄  

            total circulation per blade,      ⁄  

              correction factor 

               nondimensional screw coordinate, 

     ⁄  

               angle of screw surface,     

             nondimensional induced velocity 

downstream,       

              radial coordinate,    ⁄          

             value of   at blade tip,    ⁄  

            nondimensional induced velocity at disk, 

     ⁄   

              inflow angle,           ⁄    

          velocity potential, normalized on    ⁄  

             admissible functions of  either        

              rotor speed,        

 

Introduction 

 

 

     Betz and Prandtl, Ref. [1], found the optimum 
velocity distribution (i.e., for minimum power) for a 
rotor in axial flow. Although they were unable to 
find an exact solution for the circulation 
distribution that would result in such a velocity 
distribution, they were able to find this optimum 
circulation for a rotor with an infinite number of 
blades and offered an approximate tip correction 
that would account for the effect of blade number. 
Although the Prandtl correction factor is based on 
a two-dimensional inflow model, it is quite 
accurate and is used extensively in rotorcraft 
analysis to account for blade number. 
     It fell to Goldstein, Ref. [2], to find the exact 
solution for the optimal circulation on a propeller 
with a finite number of blades. He treated both 
two-bladed and four-bladed rotors at various 
inflow angles. The results agree nicely with 

computations based on Prandtl’s equation, as 
shown in Fig. (1)––taken from Ref. [2]––where 
the condition chosen is       , which is a fairly 
high climb rate. 
     For four blades, the two solutions are quite 
close, although there is a small discrepancy that 
occurs near the root of the blade. For the two-
bladed rotor, this discrepancy is more pro-
nounced. The behavior of the Prandtl 
approximation at small   is nearly identical for all 
 , but the Goldstein solution increasingly differs 

from the Prandtl solution (at small  ) as   
decreases. 

     The objective of this work is to develop a more 
computationally accurate and robust method of 
finding the optimum circulation for the ideal 
propeller.  We look for a solution that would be 



taken to any desired accuracy and applied for any 
number of blades and any tip-speed ratio. 
      For formulating the problem, we will follow the 
general outline of Ref. [2] but proceed along what 
we believe is a more direct and compact 
approach. To begin, note that the pressure and 
velocity around a propeller in axial flow are 
governed by the following velocity potential: 
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where      is some nominal circulation,   is the 

nondimensional radial co-ordinate, and   is the 

number of blades. (Note that   is also the 
cotangent of the inflow angle  .) 
     The first term in Eq. (1) is the nominal velocity 
potential that is chosen to give a nondimensional 
velocity distribution                  ⁄   The 
second part of Eq. (1), involving      , is a 
correction term. (The summation is taken over 
appropriate  ’s as will be defined later.) 
     The total velocity potential (nominal plus 
correction) must satisfy Laplace’s equation in 
helical coordinates. 
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This implies that the correction functions       are 

related to a set of basic functions      that are 
governed by a differential equation that follows 

from Eqs. (1) and (2)namely: 
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(we will demonstrate the relationship between    

and    later.) 

     The resultant circulation per blade       and 

the resultant velocity distribution in the wake      
can be given in terms of the total velocity 
potential: 
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Therefore, once        and       are determined, 
the circulation and velocity can be found; and that 
is the focus of what is to follow. 
     Now, consider the case in which we are given the 
velocity distribution     , and want to find the 

applied circulation       that would produce it. In 

order to preserve the desired velocity      from Eq. 

(4), we take                   in the summation of 
Eq. (1) with           ⁄     ⁄      ⁄  This 

ensures that the derivative of   will be zero at the 

boundary. It is then convenient to expand    ⁄     
in cosine terms summed over these same  ’s. 
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     The nominal circulation to obtain the desired 
velocity is: 
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and this becomes the forcing function for the 
correction terms in Eq.(3). When Eq. (1) and Eq. 
(5) are placed into Eq. (2), it is clear that one must 

define the relation                   ⁄  in 
order to obtain the standard form of Eq. (3).  
     It follows that the total circulation distribution 
per blade is given from Eq. (4) as: 
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For the above summation over   in Eq. (7),           

   ⁄     ⁄     ⁄     ⁄   etc. Notice that the 
circulation is increased due to positive          
  
 

Numerical Computation 
 
     Now we need to formulate a numerical solution 
to the correction function. The general solution to 
Eq. (3) would be the sum of the particular solution 
and the homogenous solution.   
     To find the particular solution with boundary 
conditions                   we take Eq. (3) 

and expand the unknown       in a Galerkin 
series of admissible functions        . 
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We then use a change of variable to map the 
domain onto         
 

            
 

  

                    

 



This change of variable allows admissible and 
comparison functions to be chosen on a more 
convenient interval,       . 
     For test functions, we chose the combination 
of Legendre polynomials that have been applied 
to the p-version finite element method, Ref. [5], 
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Substituting Eq.(8) into Eq.(3), multiplying by the 
comparison functions       ⁄  and integrating 
from zero to   , one obtains: 
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     The first integral in Eq. (11) can be written in 
the form: 
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Similarly the integral on the right hand side of Eq. 
(11), can be written in the form: 
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As a result, Eq. (11) can be rewritten in the form: 
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Taking: 
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one can write Eq. (14) in the form: 
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and: 
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      The procedure for finding the homogeneous 
solution is similar to that used for finding the 
particular solution. For the homogenous case, the 
boundary conditions are                      
 , and the differential equation that follows from 
Eq. (3) is: 
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     For the homogenous boundary conditions we 
use the change of variable: 
 
                             
(19) 
                                               
 
So, Eq. (18), can be written in the form: 
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     We take Eq. (20) and expand       in a 

Galerkin series of admissible functions        . 
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Once again, we map the domain onto       , 
and choose a combination of Legendre 
polynomials for our test functions: 
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     Substituting Eq.(21) into Eq.(20), multiplying 
by the comparison functions       ⁄   and 

integrating from zero to   , yields: 
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Taking: 
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Eq. (23) becomes: 
 

                    {  
 }      

 
and: 
 

            {  
 }               

 
     The total solution for h is then the sum of the 
particular solution and the homogenous solution. 
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     With the above, we can find the solution to the 
potential problem. It is not difficult to see that the 
conditions of the problem are such that   is an 

odd function of   (or 
 

 
   ). Furthermore,   is a 

single-valued function of position, continuous for 
          .  Therefore, it can be expanded, 
for    , in a series of even multiples of  . 
Taking this expansion, differentiating term by 
term, and then substituting in Eq. (2), we find that 
the coefficients of         must be a linear 

functions of    ⁄      and       , where    ⁄  and 

   ⁄  are the modified Bessel functions.  

     But        cannot occur, since grad   must 
vanish when r, or  , is infinite. Hence we may 
assume: 
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For               , the velocity potential 
can be obtained from Eq. (1). Since the velocity 
potential is a continuous function at   
           it should satisfy the continuity 
conditions: 
 
                                             
 
where the (´) sign implies the derivative with 
respect to  . 

     According to first continuity condition,   from 

Eq. (28) equals   from Eq. (1) at       
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Equation (5) and                   ⁄  can be 
substituted into Eq. (30).  Expanding         in 
sine terms: 
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one can rewrite Eq. (30) in the form: 
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and, as a result:  
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     The second continuity condition implies that: 
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Substituting Eq. (33) in Eq. (34) and simplifying, 
we obtain: 
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On the other hand, from Eq. (27), one obtains an 

expression for   ́: 
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and at      : 
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Taking: 
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one can rewrite Eq. (37) in the form: 
 
                                    
 
     Substituting Eq. (40) in Eq. (35), and dividing 
the whole equation by   (to make the matrices 
better conditioned) one obtains: 
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one can write Eq. (41) in the form: 
 
 
                                 
 
and:  
 
                         

        
 
     Now, that we have     (from Eq. (17)),     
(from Eq. (26)), and        (from Eq. (45)), we 

can calculate the value of       from Eq. (27).  
One may also calculate the Galerkin optimum 
circulation,  ̂  which is actually the expression 
inside the square brackets of Eq. (7). 
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     is the non-dimensional circulation for a case 
with an infinite number of blades, and can be 
calculated from Eq. (6); but since the optimum 

Betz velocity distribution is        √    ⁄ , 

then      would be: 
 

                             
  

    
 

 
     With the Galerkin optimum circulation, one 
obtains the corrected circulation,  ̅, from Eq. (48): 
 
               ̅      ̂      ̂          
 
Where   is the Prandtl correction factor Ref. [1] 
used to make the tip correction, and    are the 
solutions from the Galerkin method.  In order to 
maximize convergence, the Prandtl factor is 
used––but designed only to eliminate the 
residual––not correct the entire function.  We add 
a acceleration factor,  , to account for the fact 
that the residual dies out more quickly as more 
terms are added.  The factor is chosen so as to  
minimize the number of terms required for 
convergence in the matrix formulation.  The 
modified Prandtl function   is therefore of the 

form: 
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The correction factor for optimized convergence 
has been expressed in the following form: 
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     Once the solution for the corrected circulation is 
found, one can define the induced-power efficiency 
(IPE) as the ratio of the Goldstein optimum power 
(for a given number of blades) to the Glauert ideal 
power for an actuator disk: 
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Results 

 
     The present methodology is first used to 
compute cases already found in Goldstein as a 
verification of the convergence and accuracy of 
the method. Next, results, not found in earlier 
work are computed. Figures 2-4 compare the 
corrected circulation (circulation with the tip 
correction), and the Galerkin optimum circulation 
(circulation without the tip correction) for 2, 4 and 
6 bladed rotors. The results are for        and 

       which we found was sufficient for 
convergence in all cases.  Figure 2 shows our 
results in red for  

 
 =5 and    , for which we 

have a known solution from Goldstein.  One can 
see that convergence is slow near the tip in that 
the zero boundary condition has not converged.  
Goldstein noted the same effect with his solution; 
and he mentions in his paper that he adds a 
correction to bring the tip to zero 

    From the singularity at the edges the 
convergence may be very slow. The corresponding 
point in the graph may be displaced this amount if 

the curve can thereby be smoothed.  Goldstein 
 
      We similarly smooth the curves at the tip with 
our accelerated Prandtl tip-correction function, 
and that is shown in the blue curve which is 

virtually identical to the Goldstein solution.  Figure 
3 is for       and    , another case for which 
Goldstein gives a solution. Similarly good 
convergence is seen.  Figure 4 is for a six-bladed 
rotor, a result which has not heretofore been 
published. 
       We next compute the induced-power 
efficiency (   ) for these cases.  These are 
plotted versus the Glauert tip-speed ratio    (the 
ratio of tip speed to free-stream velocity) and also 
versus its reciprocal       ⁄  in Fig. 5 for rotors 
with 2, 4 and 6 blades.                                       
      The     decreases with increasing   because 
the local blade lift is perpendicular to the vortex 
sheet and thus tilts––implying energy is lost in 
wake swirl.  Figure 5 also shows how a decrease 
in blade number reduces efficiency because there 
are tip losses associated with upwash at the tip. 
     Figures 6, 7 and 8 compare the     under 
various induced-flow assumptions. The curve 
labeled "Betz Approximation" is the     for the 
infinite-blade case, which includes only the effect 
of lift tilt.  The curve noted as "Prandtl Approx-
imation" is the result of the Prandtl blade-number 
correction applied to the Glauert actuator-disk 
model. It includes only tip effects.  The curve, 
"Betz-Prandtl Approximation" is the methodology 
suggested by Betz and Prandtl (and implemented 
by Goldstein in Fig. 1) in which the Prandtl 
correction is applied to the Betz solution.  The 
final curve, labeled "Goldstein Exact Solution" is 
the result of our analysis which gives the 
complete solution including root losses as well as 
tip losses.  One can see the relative effects of the 
various physical processes on the induced power 
efficiency.                                                                                
       Figures 6-8 reveal the magnitude of the 
various contributions: of lift tilt (the Glauert 
curves), of tip losses (the Prandtl curves), of 
combined tilt and tip losses 9the Betz-Prandtl 
curves), and of root corrections (the exact 
curves).  It is clear that the Prandtl approximation 
gives an almost exact result for the     when      

 > 2.0, and a very good approximation even for 

< 2.0.  This is because the Goldstein correction, 
clearly seen as a large effect in Fig. 1, has both 
positive and negative corrections to the Betz-
Prandtl circulation.  Thus, the net effect on 
efficiency is small.  With the new, numerical 
method for finding the true Goldstein circulation, it 
has been possible for the first time to verify the 
effect of the Betz-Prandtl approximation on 
induced power efficiency (   ). 

 

Summary and Conclusions 
 
     With the use of a Galerkin procedure, we have 
obtained an efficient and accurate method for 



solving the Goldstein optimum circulation 
distribution for propellers with arbitrary blade 
number and tip-speed ratio.  The numerical 
procedure is verified against results given by 
Goldstein for two specific cases, and it is then 
used to compute results not given by Goldstein.  
The results are used in order to find induced 
power efficiency of propellers.  These results 
show that the effect of Goldstein’s root corrections 
on     are quite small such that the Prandtl-Betz 
approximation is generally adequate.  However, 
the optimum circulation is significantly affected by 
Goldstein’s root effect for large wake spacing (i.e., 
for small blade number and small inflow ratio  . 
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Figures 

 

 

       Figure 1. Optimum Circulation for 2-Blades and 4-Blades Rotors 

 

 

 

            Figure 2. Corrected circulation vs. Galerkin optimum circulation for 2-bladed rotor  
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               Figure 3. Corrected circulation vs. Galerkin optimum circulation for 4-bladed rotor 

 

 

                Figure 4. Corrected circulation vs. Galerkin optimum circulation for 6-bladed rotor 
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             Figure 5. Induced power efficiency for 2, 4 and 6 blades rotor by Goldstein’s Solution 
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   Figure 6. Induced power efficiency, Goldstein’s Exact Solution vs. Other approximations, 2 bladed rotor 
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   Figure 7. Induced power efficiency, Goldstein’s Exact Solution vs. Other approximations, 4 bladed rotor 
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     Figure 8. Induced power efficiency, Goldstein’s Exact Solution vs. Other approximations, 6 bladed rotor 

 


