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Abstract: The whirl flutter phenomenon is induced by excessive inplane hub forces, and im-
poses a serious limit on the forward speed in tiltrotor aircraft. Therefore, it is necessary to 
investigate the whirl flutter instability to increase the maximum aircraft speed. In this paper, 
based on Greenberg model, quasi-steady and unsteady aerodynamic forces are formulated to 
examine the whirl flutter stability for a three-bladed rotor without flexible wing modes. Nu-
merical results are obtained in both time and frequency domain. Among them, generalized 
eigenvalue is utilized to estimate whirl flutter stability in frequency domain, and Runge Kutta 
method is used to analyze in time domain. The effects of varying the pylon spring stiffness 
and the swashplate geometric control coupling upon the flutter boundary are also investigated. 
 
 
 
1 INTRODUCTION 

Since the phenomenon of whirl flutter was discovered in the early 1960s for the first time, 
quite a few investigations have been conducted because the whirl flutter instability, which is 
induced by excessive inplane hub forces, imposes a limit on the forward speed in the tiltrotor 
aircrafts. Investigation of the whirl flutter instability is therefore necessary to increase the 
maximum aircraft speed. However the problem has not been clearly solved yet. Whirl flutter 
involves two modes of the tiltrotor aircrafts, which are a rotor and a pylon mode. The rotor 
mode is the backward whirl mode which occurs at low frequencies while the pylon mode is 
the forward whirl mode whose flutter frequencies are near the natural frequencies of the air-
craft system. Flutter frequencies of the pylon mode are higher than those associated with flut-
ter in the rotor mode. There exists a significant difference between the two flutter mechanisms. 
In the pylon mode the precession is in the same direction as the rotor blade rotation. On the 
other hand, the precession of the rotor mode is in the opposite direction. It has been found that 
the whirl flutter instability occurs more frequently in the rotor mode because of the low fre-
quencies.1,2

 
The whirl flutter does not occur at low inflow condition. However, it becomes a serious issue 
at high inflow condition, such as an airplane-mode cruise flight in tiltrotor aircrafts. The aero-
dynamic forces and moments of the rotor blade are generated according to the local angle of 
attack change on each blade element. It causes precession of the whole rotor blade, which in 
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turn provides the mechanism for instability. The mechanism of the whirl flutter is illustrated 
in Figure 1 for a two-bladed rotor. Under the high inflow condition, the angle of attack at a 
representative 75% spanwise location, ,αΔ  has a negative value at Blade No. 2 instantane-
ously. The lift component, ,LΔ  appears perpendicular to the control plane. This lift compo-
nent is divided into a thrust, and a H-force component, ,TΔ .HΔ Precession of the rotor blade 
is created by the H-force components both in Blade Nos. 1 and 2, because these forces act in 
the same direction. At the same time, high transient flapping is caused by the thrust compo-
nent, because these forces act in the opposite direction. Due to these aerodynamic forces 
and moments, whirl flutter instability occurs in tiltrotor aircrafts.

,TΔ
1 

 

Figure 1: Mechanism of the whirl flutter 
 
To improve the stability boundary in tiltrotor aircrafts, Hall examined some passive control 
methodologies analytically, such as pitch-flap coupling and the pylon stiffness parameters.1 
Stability of the proprotor pylon system was affected to a certain degree by these control 
methods. Active control with an optimal algorithm was investigated analytically to improve 
tiltrotor gust response by Johnson.3 A feedback controller based on a linear system was de-
signed to minimize a quadratic performance index. The actuation strategies were applied on 
the active flaperon in that study, which were effective in improving the gust response.  In Ref. 
4, Higher Harmonic Control (HHC) was experimentally employed at both the rotor swash-
plate and the wing flaperon to reduce vibrations induced in airplane mode. The effectiveness 
of the swashplate and the wing flaperon acting either in single or combination mode was 
demonstrated in reducing 1/rev and 3/rev wing vibration. In 1990’s Generalized Predictive 
Control (GPC), which is a digital time domain multi-input multi-output predictive control 
method, was experimentally investigated to evaluate the effectiveness of an adaptive control 
algorithm. Active control was introduced into fixed-system swashplate using three high-
frequency servo-controlled hydraulic actuators mounted aft of the swashplate inside the pylon 
fairing.5,6 The GPC algorithm was highly effective in increasing the stability in the critical 
wing mode of the model tested. However it turned out to be a very complex algorithm, there-
fore it was not attractive. More recently, another active control algorithm employed via actua-
tion of the wing flaperon and the rotor swashplate was examined for whirl flutter stability and 
robustness augmentation.5 Full state feedback, which was composed of Linear Quadratic 
Regulator (LQR) optimal control and wing state feedback control, was used in that investiga-
tion. 
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From the survey described above, it is observed that the previous analytical investigations 
have not considered two important phenomena. First, unsteady aerodynamic formulation 
needs to be included in order to represent more realistic aerodynamic environment generated 
in tiltrotor aircrafts. Second, interference between the rotor blades and the wing has to be 
taken into account because it is a principal source of the rotor induced airframe vibration. By 
including these two effects, it is possible to establish a more complete analytical model, which 
is capable of a quite accurate prediction. An immediate goal of the present paper is to develop 
an analytical framework with these factors included and validate it against other analytical or 
experimental results. 
 
In this paper, a gimballed stiff-inplane three-bladed rotor system is used to investigate its 
whirl flutter stability and the related stability boundary. An assessment tool on passive control 
methodologies for whirl flutter stability in tiltrotor aircrafts is also developed. Numerical re-
sults are obtained using the present tool in time and frequency domain. Generalized eigen-
value solution is used to estimate whirl flutter instability in frequency domain, while Runge 
Kutta method is used to analyze in time domain. 
 
 
2 DESCRIPTION OF THE MODEL   

2.1 Structural Dynamic Model  
The structural model, which is shown in Fig. 2, is developed based on Ref. 7. The present 
model consists of four degrees of freedom, which are two rotor blade flapping angles 
( 1Cβ and 1Sβ ), and pitch and yaw angles ( yα and xα ) of the pylon. Positive direction of the flap-
ping motion is defined for forward displacement of the blade tip from the disk plane. Positive 
direction of the pitch angle for the pylon and yaw are defined for upward and left rotation of 
the hub, respectively. A flapping motion of the rotor is assumed to be composed of the totally 
rigid three blades. 
 
Using the forces and moments equilibrium, equations of the structural inertia, damping, and 
stiffness are obtained as follows.  
 

( ) ( )( )2 2 cos 2 sin
mb m m y x m x y m FI Mββ ν β α α ψ α α ψ+ − − Ω + + Ω =  (1) 

x x x x x x xI C K M hYα α α+ + = −  (2) 

y y y y y y yI C K M hHα α α+ + = +  (3) 
 
Eqs. (1), (2), and (3) are respectively flap, yaw, and pitch moment equilibrium equations. 
Employing the Fourier coordinate transformation, it is possible to convert these into the equa-
tions in the nonrotating frame. These equations are dimensionless with ρ , , ,Ω R bI , γ ,σ , 
and . The equations of motion for four degrees of freedom can be represented as a ma-
trix form as in Eq. (4). 

( / 2)bI N
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The structural dynamic and aerodynamic parts are organized in the right hand side (RHS) and 
left hand side (LHS) in Eq. (4), respectively. 
 

 
Figure 2: Totally rigid bladed rotor system 

2.2 Aerodynamic Model  
The rotor is assumed to be operating in a purely axial flow in the equilibrium. When evaluat-
ing the blade forces and moments, each velocity component has a trim and a perturbation 
component. However, only perturbation component is considered to evaluate whirl flutter 
stability in this paper. Trim state is assumed to be established already and the perturbation 
from it is considered for flutter analysis. 
 
The rotor aerodynamic forces and moments are presented in the RHS of Eq. (4). Three differ-
ent kinds of aerodynamic models, which are two quasi-steady and an unsteady aerodynamic 
model, are now developed to predict whirl flutter stability both in time and frequency domain. 
The first aerodynamic model is widely used and is quoted as a normal quasi-steady aerody-
namics in this paper. This aerodynamic model is developed based on Ref. 7, and, is described 
in Eq. (5). The second quasi-steady aerodynamic model is presented in Eq. (6). It is equiva-
lent to replacing  by 1 in Greenberg’s aerodynamic model.( )C k 8,9 In Eq. (6), noncirculatory 
part is ignored because the most terms are eliminated by the coordinate transformation and the 
effects of the remaining terms are very small. This model is quoted as Greenberg’s quasi-
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steady aerodynamics in this paper. For a full unsteady aerodynamic representation, Greenberg 
's two-dimensional unsteady aerodynamic model,9 which is extended to account for time-
varying incoming airspeed, is used.10 Its expression is presented in Eq. (7).  
 

22 ( ) (L U t b )tπρ α=  (5) 
12 ( ) [( ( ) ( ) ( )) ( ) ( )
2 h refL U t b h t U t t b a tπρ θ θ= + + − ]  (6) 

 ( )

2

12 ( ) ( )[( ( ) ( ) ( )) ( ) ( ) ]
2

                                                                   [( ( ) ( ) ( )) ( ) ]
C

h ref

Circulatory part L

h ref

Noncir

L U t bC k h t U t t b a t

b h t U t t ba t

πρ θ θ

πρ θ θ

= + + −

+ + −
 ( )NCculatory part L

 (7) 

 
The aerodynamic environment of the rotor blade typical section is shown in Fig. 3. All the 
velocities and forces are estimated with respect to the hub plane, which is used as a reference 
frame. The aerodynamic forces on the blade typical section are lift (L), and drag (D). 
 
According to Fig. 3, total forces in x and z direction can be obtained as follows. 
 

cos sinzF L D
ac ac ac

φ φ= −  (8) 

sin cosxF L D
ac ac ac

φ φ= +  (9) 

 

where, 
( )

sin
( )

pu
U

ψ
φ

ψ
= , and ( )cos

( )
Tu

U
ψφ
ψ

= . L and D are the modified factors of L  and which 

are divided by  These factors will be dimensionless, therefore Eqs. (8) and (9) describe 
dimensionless quantities. 

,D

2 3.RρΩ

 
Drag forces can be neglected because they are relatively small compared to the lift forces. 
Then Eqs. (8) and (9) can be simplified as follows. 

 

 
Figure 3: Resultant velocity and inflow velocity on the typical blade section 
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( )
( )

z TF uL
ac ac U

ψ
ψ

=  (10) 

( )
( )

x PF uL
ac ac U

ψ
ψ

=  (11) 

2
dr z

R
CF FUu

ac a ac ac
β β= − − zF  (12) 

 
Above equations can be used for the two quasi-steady aerodynamic models. However, it is 
impossible to obtain the forces and moments by using the above equations in the full unsteady 
aerodynamic model, because there are certainly two parts in the expression, which are noncir-
culatory and circulatory part. These parts are clearly presented in Eq. (7).  The lift deficiency 
function, can be represented only in frequency domain as in Eq. (7). Therefore Jones’ 
approximation

( ),C k
11,12 is utilized as follows. 

 
2

2

0.5 0.2808 0.01365( )
0.3455 0.01365

s sC k
s s

⎡ ⎤+ +
= ⎢ + +⎣ ⎦

⎥  (13) 

where 
0

.bRs s
U

=  

 
By substituting Eq. (13) into Eq. (7), a state space equation is obtained as follows.  
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where, 1( ) ( ( ) ( ) ( )) ( ) ( )
2 h refQ t h t U t t b a tα θ⎡ ⎤= + + −⎢ ⎥⎣ ⎦

, 0
11 0.3455 Ua

bR
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

,
2

0
12 0.0137 Ua

bR
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From Eq. (14), new state space equations for the augmented state variables and circulatory 
part of the lift can be formulated as follows. 
 

{ }

1 11 12 1

22

1 2

1
( )

1 0 0

2 ( ) 0.5 ( )c

X a a X
Q

XX

L bU CX DX Q

ψ

π ψ ψ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪ = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭⎩ ⎭⎪ ⎪⎩ ⎭

= + +

 (15) 

where, 1 1 2,  ,R
2X RX X X= =

Ω
 and .

t ψ
∂ ∂
= Ω

∂ ∂
 

 
Eq. (15) can be used to replace the circulatory part in Eq. (7). Noncirculatory part is not con-
sidered anymore. Therefore an updated lift expression is obtained as follows, which can be 
computed only in time domain.  
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{ }1 22 ( ) 0.5 ( )

CL

L bU CX DX Qπ ψ= + + ψ  (16) 

 
In Eq. (16), the augmented state variables, 1X and 2X , are governed by a system of ordinary 
differential equations, and associated with a downwash velocity at the three quarter chord 
location.13 These augmented states are driven by the time history of ( )Q ψ  at each spanwise 
location. However, the augmented state variables of the typical section at ¾ span location are 
utilized as an averaged value in this paper. A Fourier coordinate transformation may be ap-
plied to express, ( )Q ψ , 1X , and 2X  in the nonrotating coordinate system: 
 

0

0

0 1 1
1

1 1 1 1
1

2 2 2 2
1

( ) cos sin

cos sin

cos sin
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cn sn
n

NH

cn sn
n
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cn sn
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Q Q Q n Q n

X X X n X n

X X X n X n

ψ ψ ψ

ψ ψ

ψ ψ

=
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∑

∑

∑

 (17) 

 
By substituting Eq. (17) into Eq. (16), it is possible to obtain the lift in the full unsteady aero-
dynamic model for an analysis in time domain. According to Fig. 3, total forces in each direc-
tion are obtained as in Eqs. (10) and (11). 
 
Figure 4 shows the inplane forces, which are H and Y forces on each blade.  
 
From Fig. 4, the inplane forces can be expressed as follows.  
 

 force sin  cos
 force cos  sin

x m r m

x m r

H F F
Y F F m

ψ ψ
ψ ψ

= +
= − +

 (18) 

 
 

Figure 4: H and Y forces on the blade 
 
The net rotor aerodynamic forces and moments are obtained by integrating the section forces 
and moments over the span of the blade and summing over all the three blades.  
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The pitch and yaw moments of the hub due to the rotor are now formulated. The source of the 
hub moment is the bending moment at the blade rotor due to the flapping, 2( 1) m

m b
M I

β
ν β= − . 

Therefore, the rotor lateral and longitudinal moment coefficients are formulated as follows.  
 

2

1

2 1My
c

C
a

βν β
σ γ

−
= −  (20) 

2

1

12 Mx
s

C
a

βν β
σ γ

−
=  (21) 

 

2.3 Governing Equations  
After obtaining the rotor forces and moments as in Eqs. (19), (20), and (21), these quantities 
are substituted into the RHS in Eq. (4). The governing equation is obtained for the four de-
grees of freedom. In this paper, three different kinds of aerodynamic models are used, thus the 
three different governing equations are obtained as follows.  

I. Two Quasi-steady Aerodynamic Models  
Putting the forces and moments of the rotor, which are expressed in Eqs. (5) and (6), into the 
RHS of Eq. (4) gives the following expression. 
 

a aRHS C y K y= +  (22) 
where ( 1 1

T
C S y xy )β β α α=  and the subscript a means an aerodynamic part. 

 
The governing equation can be obtained as follows.  
 

s s s a aM y C y K y C y K y+ + = +  (23) 
 
where the subscript s means a structural part and all elements of matrices are dimensionless 
quantities.  
 
For simplicity, Eq. (23) can be rearranged as  
 

1 1 1 1

( ) ( )

         ( ) ( ) ( ) ( )
s s a s a

s s a s s a

M y C C y K K y

y M C C y M K K y M C y M K y Ay B− − − −

= − − − −

∴ = − − − − = − − = − − y
 (24) 

 
where, 1( ),  ( ),  ( ),s a s aC C C K K K A M C−= − = − =  and 1( ).B M K−=  
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Converting Eq. (24) into a state space form gives 
 

8 18 8

0 I y
Y

B A y
××

⎡ ⎤ ⎧ ⎫
= ⎨ ⎬⎢ ⎥− −⎣ ⎦ ⎩ ⎭

 (25) 

where { }.TY y y≡  
 

II. Full Unsteady Aerodynamic Models  
 
The method for deriving the governing equation is similar to that for quasi-steady aerody-
namic models. However, the present governing equation needs to include an ordinary differ-
ential equation for the augmented state variables, in addition to Eq. (4). 
 
Substituting the rotor forces and moment, which are obtained at the hub frame, into the aero-
dynamic part in Eq. (4), a state space equation is obtained as follows.  
 

4 1
8 1 8 48 8

0 0I y
Y

B A y C
X
×

× ××

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (26) 

where ( )1 1 2 2 .T
C S C SX X X X X=  

 
Eqs. (26) and (15) can be simplified to be 
 

* *

8 8 8 1 4 18 4

4 4 4 1 4 8 8 1

Y T Y S X

X E X D Y
× × × ×

× × × ×

= +

= +
 (27) 

 

where 11 12 1 1

8 48 8

0 0 1
,  ,  ,  ,  ( ),  ( ),

1 0 0
I a a

T S E D A M C B
B A C

∗ ∗ −

××

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
= = = = = =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

M K−  

1 ( ),  ( ),  ( ),a s a sC M Z M M M C C C−= = − = a− and ( )s aK K K= −  
 
Combining each quantity in Eq. (27), the following governing equation, which enables analy-
sis both in time and frequency domain, is obtained in a state space form.  
 

* *

8 8 8 4

4 8 4 4 12 1
12 12

T S
YY
XX D E

× ×

× × ×
×

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 (28) 

 
where all elements of matrices are dimensionless quantities. 
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3 NUMERICAL RESULTS 

Numerical investigation is conducted in order to obtain whirl flutter stability boundary in time 
and frequency domain based on each aerodynamic model. Two passive control algorithms, 
which are variation of the pylon stiffness and the pitch-flap coupling, are also attempted to 
evaluate whirl flutter stability boundary in both domain analyses. 
 
It is assumed that the trim state is already established, therefore only perturbation effects are 
considered to obtain the results regarding whirl flutter stability analysis in this paper. Any 
other control pitch input and gust effects are not included. The perturbation velocities are de-
fined as follows.  
 

0 0

0 0

T p
T

u u
U u

U U puδ δ= + δ  (29) 

( cos sin )
Bp y m x mu r r uδ β α ψ α ψ δ= − + = p  (30) 

( sin cos ) ( )( sin cos )T y m x m y m x mu h V vδ α ψ α ψ α ψ α ψ= − + + + +  (31) 
 
In order to investigate whirl flutter stability, aircraft flight velocity is increased and its stabil-
ity is evaluated while keeping the same structural parameters, such as 0.261h = , 3.83γ = , 

1.02βν = , 0.04ξ = , 458 ,RPMΩ =  and 0.047,b =  which are dimensionless quantities. All 
the structural and aerodynamic quantities in this paper are dimensionless values. Among them, 
structural parameters are based on those in Johnson’s work.7  

I. Normal Quasi-steady Aerodynamic Models  
 
This section presents the results of the normal quasi-steady aerodynamic model in which the 
lift is expressed as in Eq. (5). Figure 5 illustrates the results of the stability analysis in time 
and frequency domain while increasing aircraft speed from 276 to 306 ft/sec. Figure 5(a) 
shows the results of time domain analysis while increasing aircraft speed. It is shown that the 
system is stable at V =276 ft/sec. However, the current system becomes unstable when in-
creasing the aircraft speed to 306 ft/sec. Figure 5(b) explains the results of the frequency do-
main analysis at the same aircraft speed range. In this aerodynamic model, it is observed that 
stability boundary is approximately 296 ft/sec, which is considered to be a realistic whirl flut-
ter boundary in the present tiltrotor aircraft. 
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Figure 5: Time and frequency domain analysis using the normal quasi-steady aerodynamics 
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Passive control algorithms are applied such as variation of the pylon stiffness and the pitch-
flap coupling ( 3δ ). Figure 6 shows the results of the pylon stiffness variation in time domain. 
The nominal aircraft speed is 296 ft/sec, which is obtained as the flutter boundary by time 
domain analysis as above. The flutter velocity can be improved by increasing the pylon stiff-
ness. Figure 6 indicates that the flutter boundary is almost linearly increased by the increment 
of the pylon stiffness until 20% relative to the nominal value. Figure 7 shows whirl flutter 
stability variation of the pitch-flap coupling from -15 to 30° in the rotor system. It is observed 
that there is an effective range of the pitch-flap coupling which can improve flutter stability 
boundary. In this aerodynamic model, an optimum pitch-flap coupling is approximately 10°. 
When it is lower or upper than 10°, the system stability may be decreased.  
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Figure 6: Results with respect to the pylon stiffness at V=296(ft/sec) 
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II. Greenberg’s Quasi-steady Aerodynamic Models  
This aerodynamic model has a similar formulation with that in the normal quasi-steady aero-
dynamics. However, the lift formulation has a few different terms. According to Eq. (6), the 
first-order time derivative terms, which are  andh ,refθ  are newly included in Greenberg’s 
quasi-steady aerodynamics. Here,  is velocity of the flapping motion, which is h Puδ− , while 

refθ is angular velocity of the pitch motion with respect to the inertial frame.  
 
The perturbation terms are only utilized in this model as in the normal quasi-steady aerody-
namics. Therefore, the perturbation term of refθ  is organized as follow.  
 

cos sinref p y xKδθ β α ψ α= − + + ψ  (32) 
 
Substituting Eqs. (29)-(32) into (7), the lift forces can be obtained, and then all the forces and 
moments acting at hub are obtained in the hub reference frame.  
 
Figure 8 shows the results of whirl flutter stability in time and frequency domain using 
Greenberg’s quasi-steady aerodynamics. According to Fig. 8(a), which is a time domain 
analysis result, the flutter boundary is V=294 ft/sec. It is possible to check the flutter stability 
also by frequency domain analysis, as in Fig. 8(b). When the aircraft speed is 294 ft/sec, the 
system poles are located on imaginary axis. There is a slight discrepancy between the normal 
and Greenberg’s aerodynamic model. The present Greenberg’s quasi-steady aerodynamics 
gives a little more conservative flutter velocity result than the normal quasi-steady one does.  
 
Under Greenberg’s aerodynamic model, one of the passive control algorithms, which is vary-
ing the pitch-flap coupling, is implemented to improve stability characteristics. Figure 9 illus-
trates the result of the 

3δ effects from -15 to 20° in the frequency domain. According to Fig. 9, 
an optimum 

3δ coupling is obtained to be approximately 0°. 
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Figure 8: Time and frequency domain analysis using Greenberg’s quasi-steady aerodynamics 
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Figure 9: Results with respect to 3δ  at V=294(ft/sec) 

 
 

III. Full Unsteady Aerodynamic Models  
As mentioned previously, quasi-steady aerodynamic model is not capable of describing a real-
istic aerodynamic environment occurred in tiltrotor aircraft. In this section, numerical investi-
gation is presented using Greenberg’s two-dimensional unsteady aerodynamic model. The 
difference between Greenberg’s quasi-steady and the full unsteady aerodynamics is the inclu-
sion of the lift deficiency function in the latter model.  
 
Figure 10 illustrates the time and frequency results of the two-dimensional airfoil while in-
creasing aircraft speed from 349 to 362 ft/sec. According to Fig. 10(a) and (b), the stability 
boundary becomes 359 ft/sec based on the full unsteady aerodynamics. These results are 
much less conservative than those based on the quasi-steady aerodynamic models are. 
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Figure 10: Time and frequency domain analysis using the full unsteady aerodynamics 
 
Figure 11 shows comparison of the whirl flutter stability in time and frequency domain 
among the three aerodynamic models. This comparison clearly shows that the whirl flutter 
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stability is overestimated by the full unsteady aerodynamic model. Between the normal and 
Greenberg’s quasi-steady aerodynamic model, stability boundary is decreased by approxi-
mately 1% by the latter. Moreover, compared with Greenberg’s quasi-steady aerodynamic 
model, flutter boundary is predicted to increase by approximately 20% by the full unsteady 
model.  
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Figure 11: Time domain analysis at the respective flutter condition by each aerodynamic model 
 
Figure 12 shows the result when varying the pylon stiffness under the full unsteady aerody-
namics. The nominal flutter speed is based on the results in Fig. 10. It is very clear that the 
whirl flutter boundary is linearly improved by increasing the pylon stiffness until about 10% 
relative to its nominal value.  
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 Figure 12: Results with respect pylon stiffness based on full unsteady aerodynamics 
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4 CONCLUSION 

Time and frequency domain analyses are conducted using a newly developed assessment tool 
on passive control methodologies for whirl flutter stability in tiltrotor aircraft. The following 
conclusions can be derived from this study.  
 
1. A new assessment tool, which enables evaluation of the passive control methodologies, is 
established to analyze whirl flutter stability in time and frequency domain. 
 
2. The full unsteady aerodynamic theory predicts the whirl flutter instability to occur at a 
higher flight velocity than quasi-steady aerodynamic models do.  
 
3. Passive control algorithms, which are to vary the pylon stiffness and the pitch-flap coupling, 
are examined to improve the whirl flutter stability boundary. From the analysis results, it is 
found that each system has an optimum pitch-flap coupling value. Also, its stability boundary 
is linearly increased in proportion to the pylon stiffness. The stability results by the quasi-
steady aerodynamics are found to be more conservative than those obtained by the full un-
steady aerodynamic model.  
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