
 
 

 

SURROGATE MODELS FOR HELICOPTER LOADS 
 

Alain Struzik1, Evgeny Burnaev2,3,4 and Pavel Prikhodko2,3,4 
With contributions of J-C. Auzet1, A. Mayan1, S. Morozov2,4, S. Alestra2, C. Brand2 

 

(1) EUROCOPTER:  
 alain.struzik@eurocopter.com 
 jean-christian.auzet@eurocopter.com 
 aurelien.mayan@eurocopter.com 
 
(2) DATADVANCE: 
 evgeny.burnaev@datadvance.net 
 pavel.prikhodko@datadvance.net 
 sergey.morozov@datadvance.net 
 stephane.alestra@datadvance.net 
 christophe.brand@datadvance.net 
 
(3) PreMoLab: Moscow Institute of Physics and Technology 
 
(4) Institute for Information Transmission Problems 

 
 

Abstract 
 
 
One of the activities of the EUROCOPTER flight test department is to measure loads for different components 
(through load gauges) and flight configurations. In this paper, a flight configuration includes both the 
manoeuvre and general information about the helicopter itself (helicopter weights, longitudinal/lateral centre of 
gravity locations, altitudes) and the air characteristics in which the helicopter is flying (Outside Air 
Temperature). A flight configuration is described by the Flight Configuration Parameters (FCP). Information, 
obtained from this activity, is stored in a specific database. 
 
In the scope of CHAMALO (acronym of Calculation of Helicopter Approximated MAcros LOads) project, 
EUROCOPTER is interested in building surrogate models from the existing load database to estimate missing 
loads from FCP. 
 
Both the objective and challenge is to automatically build accurate and robust surrogate models from the load 
database, which explain the relations between the input FCP and the output static and dynamic loads. 
 
MACROS tool (developed by DATADVANCE) is used for surrogate modelling. This tool includes a wide range 
of well-known techniques (e.g., Splines, Linear Regression, Gaussian Process Regression), original 
techniques (e.g., HDA - High Dimensional Approximation), an automatic selection of the appropriate 
approximation type based on built-in decision tree and data properties, and a flexible support for accelerated 
training, smoothing, handling multiple output components, etc. 
 
Once the best surrogate models for each load gauge (66 in total) and manoeuvre family (32 in total) were 
constructed, CHAMALO software was developed by DATADVANCE for automatic prediction of helicopter 
static and dynamic loads as a function of FCP. 
 
It is concluded that EUROCOPTER considers this approach to be very promising. In fact, about 50% of 
missing loads, which need to be estimated, may be calculated by CHAMALO with a sufficient accuracy, 
drastically reducing the time and manpower needed for such analysis. Further studies are planned to increase 
this percentage. 
 



 
 

1. INTRODUCTION AND MOTIVATION 
 
In the helicopter industry, for each PSE1 appropriate 
inspections and retirement time2 must be 
established according to airworthiness requirement 
CS or FAR 29.571 (cf. [1] and [2]). 
 
Both these regulations require: 
a) In-flight measurements to determine the 
fatigue loads or stresses in all critical conditions 
throughout the range of design limitations required in 
CS/FAR 29.309 (including altitude effects), except 
that manoeuvring load factors need not exceed the 
maximum values expected in operations. 
b) Loading spectra as severe as those 
expected in operations, including external load 
operations, if applicable, and other high frequency 
power cycle operations. 
c) A determination of the fatigue tolerance 
characteristics that supports the inspections and 
retirement times, or other approved equivalent 
means. 
 
Once the helicopter type is certified, the flight 
envelope enhancement and more specifically the 
increase of Weight-longitudinal/lateral Centre of 
Gravity diagram may be requested for customer 
satisfaction. 
In the short term, preliminary studies are performed 
to estimate the influence on inspections and 
retirement time for each PSE, and to list PSEs which 
need to be re-designed to cope with this new flight 
envelope. 
At the end of this process, in-flight measurements 
are performed for the certification to comply with 
CS/FAR29.571. 
 
During these preliminary studies, in-flight 
measurements for the critical conditions of this new 
flight envelope are not yet performed. To date, 
analyses are carried out through models based on 
Physics (combining aerodynamic and mechanical 
laws) to estimate the missing loads. 
 
In the scope of CHAMALO3 project, EUROCOPTER 
is interested in building surrogate models from the 
existing load database to estimate missing loads 
from the Flight Configuration Parameters. 
These surrogate models are obtained by MACROS 
(software developed by DATADVANCE4). 
 

                                                           
1 PSE = Principal Structural Element, the failure of which could 
have catastrophic effects for the helicopter. 
2 Also named safe-life or replacement time. 
3 CHAMALO is the acronym of Calculation of Helicopter 
Approximated MAcros Loads. 
4 DATADVANCE llc is an EADS Company (for more information 
please visit www.datadvance.net). 

The objective of this paper is to present and 
evaluate this new methodology. 
 
2. METHOD AND TOOLS 
 
2.1. Load database 
 
One of the activities of the EUROCOPTER flight test 
department is to measure loads for different 
components (through load gauges) and flight 
configurations. In this paper, a flight configuration 
includes both the manoeuvre and general 
information about the helicopter itself (helicopter 
weights, longitudinal/lateral centre of gravity 
locations, altitudes) and the air characteristics in 
which the helicopter is flying (Outside Air 
Temperature). A flight configuration is described by 
the Flight Configuration Parameters (FCP). 
 
For each flight configuration, the measured loads 
versus time are post-treated to derive static and 
dynamic loads per revolution versus time, and then, 
to calculate maximum/mean/minimum static loads, 
rainflow matrixes and maximum dynamic load per 
configuration. 
All these values are stored in a huge load database. 
 
In the scope of CHAMALO project, medium class 
twin-engine helicopter EC225 (see fig 1) was 
selected. 
 

 
 

Figure 1: EC225 
(Photo EUROCOPTER – Patrick Penna) 

 
EC225 database contains 66 loads (Main Rotor 
shaft bending, Main Rotor pitch rod load, …) with 2 
available outputs (Maximum signed static and 
dynamic loads), and many flight configurations 
regrouped into 32 manoeuvre families (Forward 
flight, turn, spot turn, climb, descent,….). 
 



 
 

In total there are 66 X 2 X 32 = 4 224 cases for 
which the possibility to build surrogate models from 
training samples5 should be investigated. 
 
2.2. Split of load database 
 
For DATADVANCE, both the objective and 
challenge is to automatically build the models with 
the highest predictive power for each of the 4 224 
cases. However in case if the sample size is low 
compared to complexity of the function we want to 
approximate, it can happen that the constructed 
surrogate model will be not enough accurate and 
robust. 
 
Screening the EC225 load data base, it appears 
that: 
• 72 cases have a training sample size equals 
to zero (no data at all), so obviously no models could 
be constructed. 
• 196 cases have a training sample size 
equals to one, meaning that only model with 
constant model can be provided, based on the 
single value from the corresponding sample. 
• 1 608 cases have a training sample size less 
than the number of parameters describing the flight 
configuration; so at best only highly penalized linear 
model could be created. If the accuracy is not good 
enough, a constant model is provided, based on the 
average of data from the corresponding sample. 
 
• 1 354 cases have a training sample size still 
quite small, however, non-trivial surrogate models 
may be built but the accuracy may be an issue. If the 
accuracy is not good enough, either constant or 
linear model is provided. 
• 994 cases have an appropriate training 
sample size; so non-trivial surrogate models may be 
built with expected good accuracy. However, if the 
accuracy is not good enough, either constant or 
linear model is provided. 
 
Consequently, the selection of the best models 
should be performed for each of 3 956 cases. 
 
2.3. Surrogate model building 
 
All of the 3 956 best models were built using the 
“Generic Tool for Approximation (GT Approx)” 
module of the MACROS software, developed by 
DATADVANCE. “GT Approx” is used for 
construction, evaluation and analysis of 
approximation and interpolation response surfaces. 
Among the features of the tool are a wide range of 

                                                           
5 The training sample is a matrix. One column is the output (load), 
and the other columns are the inputs (Flight Configuration 
Parameters). 

well-known techniques (e.g., Splines in Tension, 
Linear Regression, Gaussian Process Regression) 
and original techniques (e.g., HDA – High 
Dimensional Approximation), an automatic selection 
of the appropriate approximation type based on 
built-in decision tree and data properties, a flexible 
support for accelerated training, smoothing, handling 
multiple output components, etc. 
 
Another challenge in model building was the 
selection of the best model for each case. As the 
training sample size may be very limited to check 
the ability of the model to predict outputs in the new 
input points, cross validation error fit check was 
performed using “GT Approx” built in Internal 
Validation functionality. 
 
Cross validation is a common approach to estimate 
model predictive power: one object (data point) is 
removed from the sample, model is built with all 
other objects and fit quality is checked on the 
removed object, the procedure is repeated for all the 
objects in the sample thus giving the average model 
prediction accuracy on the training sample. This 
approach is preferred over computing residuals for 
the data points the model were fit to directly because 
cross validation approach allows to avoid over fitting 
to the training data [3]. 
 
The requirements for the models were to be 
accurate and robust, and in cases it’s not possible to 
achieve, (for example, due to very small sample 
size) constant models were selected, and a report 
that no trustworthy results are available is 
generated, avoiding misleading predictions 
(CHAMALO program warns the user that the 
constant model is used). 
 
The following main types of models were considered 
(if not constant). 
 
2.3.1. Response Surface Models (RSM) 
 
RSM is the simplest model available in “GT Approx”, 
suited for the cases when dependency is not too 
complex or only small sample is available. It is 
assumed that the training data set is generated by 
the linear model. 
 
(1) � � �� � � 
 
where � is a vector of unknown model parameters, � 
is a vector generated by white noise process, 
modeling the real noise in the data. Here � is an 
extended design matrix containing input features �	 
and their cross terms �	�
. Procedure, realized in 
“GT Approx”, estimates coefficients � using ridge 
regression approach [3]. After the coefficients  �� are 



 
 

estimated, output prediction for the new input � is 
calculated by the formula: 
 
(2) 
 � ��� 
Also a number of stepwise techniques are 
implemented in “GT Approx” that allow selecting 
only subset of input features with the highest 
predictive power, thus potentially increasing models 
quality especially in case when sample size is small. 
 
2.3.2. Gaussian Processes (GP) 
 
Gaussian Processes (GPs) are one of the most 
convenient ways to define distribution on the space 
of functions (see [6] for details). GP ���� is fully 
determined by its mean function ���� 	� 	����� and 
covariance function ��������, ������ 	� 	���, ��� 	�
������� 	� 	����������� 	� 	�������. 
 
It is assumed that the training data � � ��, �) was 
generated by some GP ���� 
 
(3) 
	 	� 	
��	� � 	���	� �  	, !	 � 	1,2, … , |�| 
 
where |�| is a sample size, the noise   is modeled 
by gaussian white noise process with zero mean 
and variance &'(.  Also, it is assumed that GP ���� 
has zero mean function ���� 	� 	������� 	� 	0 and 
covariance function ���, ���, belonging to some 
parametric class of covariance functions ���, ��|*�, 
where * is a vector of unknown parameters.  
 
Under such assumptions the data sample (�, �) is 
modeled by GP with zero mean and covariance 
function ����
���, 
����� 	� 	���, ��� 	� &'(+�� � �′�, 
where +��� is a delta function. Thus, a posteriori 
(with respect to the given training sample) mean 
value of the process for some test point �∗, used as 
a prediction, takes the form 
 
(4) �.��∗� � 	�∗	�/	 � &'(0�12	� 
 
where 0|3|4|3	| is an identity matrix, �∗ � ���∗, �� �
5���∗, �
�, 6	 � 	1, … , |�|7,  
and /	 � 	8��, �� 	� 	 5���	 , �
�, !, 6	 � 	1, … , |�|7. 
 
When processing the real data, parameters of 
covariance function * are not known, so specially 
developed tuning algorithm, based on maximum 
likelihood maximization, is used for estimation of *. 
 
2.3.3. High Dimensional Approximation (HDA) 
 
HDA is an original technique implemented inside 
“GT Approx”. HDA approximation �.��� (see also [4] 
for details) consists in several basic approximations 
9	���, ! � 1,2, …, which are iteratively constructed 
and integrated into �.��� using specially elaborated 

boosting algorithm, until the error of HDA 
approximation stop to decrease, see [5] for details. 
 
In turn basic approximations 9:���, � � 1,2, … , ; are 
represented as some average 
 
(5) 9:��� � 	 2

<=
∑ ?:,@���

<=
	A2 , � � 1,2, … , ; 

 
of elementary approximations 
 
(6) ?:,@���, B � 1,… ,C:, � � 1,2, … , ; 
 
obtained using multistart on their parameters. The 
value of C: is estimated by the training algorithm of 
HDA.  
 
As elementary approximation model in HDA linear 
expansion in parametric functions from the 
dictionary is used, i.e. functions ?:,@���, B � 1,… ,C:, 
� � 1,2, … , ; have the following form. 
 
(7) ?��� 	� 	∑ �
D
���

E

A2  

 
where D
���, 6	 � 	1, … , F are some parametric 
functions. 
 
Three main types of parametric functions are used 
(justification of use of such basis functions can be 
found in [3]), namely: 
 
a) Sigmoid basis functions: 
 
(8) D
��� � &�∑ G	
�	 � GH


I	JK
	A2 � 

 

where �	 � 	 ��2, … , �I	JK	�, &�L� 	� 	 M
N12

MNO2
 

 
b) Gaussian functions 
 

(9) D
��� 	� 		 P 	�1QK1IRQS
S
/UR

S� 
 
c) Linear basis functions  
 
(10) D
��� 	� 	 �
 
 
where 6 � 1,2, … , V!��, �	 � 	 ��2, … , �I	JK	�. 
 
In order to fit the model �.��� to the data, the number 
of functions F, their type and the values of their 
parameters should be estimated. This is done by 
minimizing the mean-square-error on the training 
data set with penalties on smoothness of the 
approximation. 
  



 
 

 
2.3.4. Number of times each model type was 
selected 
 
Table 1 provides the number of times and 
percentage each model was selected. It can be seen 
that for many cases RSM models were selected due 
to very small size of the training samples. 
 

Model type Static load Dynamic load Percentage 

No model 36 36 1.7 

Constant 
model 1 271 1 606 68.1 

RSM 514 263 18.4 

GP 261 179 10.4 

HDA 30 28 1.4 

 
Table 1. Number of times each model type was 

selected 
 
2.4. CHAMALO Software 
 
Developed by DATADVANCE, CHAMALO software 
was implemented as Windows executable with user 
friendly graphical interface. The purpose of this 
software is to estimate the static and dynamic loads 
for a given set of FCP using the appropriate models. 

 
The software was designed with a view that new 
helicopters, load types, maneuvers and/or surrogate 
models could be easily added or updated. 
 
Excel file of specific format is used as a software 
input that allows the user to fill input data 
automatically as well as filling the input data form by 
hand. 
 
The input may be specified in two ways: 
• Directly as FCP values, 
• Through a 8-letter Flight Configuration Code 
for which exact values of the FCP may be extracted 
through transcription procedure. 
 
Software has a large built-in dictionary to form a 
code, but also allows the user to add new code 
words through the user transcription file. 
 
To warn the user if prediction is unreliable, 
CHAMALO software shows pop up window with 
warning that results may be unstable and writes 
detailed warning message in the listing file. 
 
 
 
 
 

Warnings are given in cases: 
• There is no model, 
• The model is the constant prediction model, 
• The model accuracy is low so the 
predictions may be unreliable and user should treat 
predictions with cautious, 
• The user wants to compute loads at points 
laying outside the training sample range. 
 
Since the calculated values may be unreliable for 
some cases, a filtering mechanism was introduced 
to allow the user to specify which level of reliability 
he would like to have. With high filtering the user 
only has the prediction if the model is accurate, 
whereas with no filtering, the user always has the 
prediction (good or bad). 
 
3. RESULT EVALUATION 
 
For all static and dynamic loads, predictions were 
compared6 by EUROCOPTER to measurements for 
each manoeuvre family and for all or filtered flight 
configurations. 
Extrapolated loads around existing flight 
configurations were also investigated. 
 
3.1. Prediction/measurement comparison (per 
manoeuvre family) 
 
3 cases could be observed: 
 
3.1.1. Model with high accuracy 
 
Figures 2a and 2b show excellent predictions. 
 

 
 

Figure 2a: Static Main Rotor pitch rod loads (Turn) 
 

                                                           
6 For helping the reading of plots, the same relative scale is used. 
1 corresponds to max measured static (in tension) or dynamic 
load. 
x-axis is predictive load; y-axis is measured load. 



 
 

 
 

Figure 2b: Dynamic Main Rotor pitch rod loads 
(Turn) 

 
In this case, the surrogate model was built with high 
accuracy. 
 
3.1.2. Model with low accuracy 
 
Figure 3a shows a typical example of scattered 
predictions for static loads, despite the good sample 
size, whereas figure 3b shows good predictions. 
 

 
Figure 3a: Static Main Rotor pitch rod loads 

(Descent) 
 

  
 

Figure 3b: Dynamic Main Rotor pitch rod loads 
(Descent) 

 
For this manoeuvre family, the static loads 
themselves are rather scattered, and of course, the 
surrogate model cannot avoid this intrinsic 
variability. In other words, the model is only as good 
as the data it is based on. 
 
3.1.3. Constant surrogate model 
 
Figures 4a and 4b show typical results when no 
surrogate model could have been built. The 
manoeuver family “Approach” is split into 4 groups. 
For each group, the mean (constant) value of the 
training sample is used. 
 

 

 
 

Figure 4a: Static Main Rotor pitch rod loads 
(Approach) 

 



 
 

 
 

Figure 4: Dynamic Main Rotor pitch rod loads 
(Approach) 

 
3.2. Prediction/measurement comparison (all 
flight configurations) 
 
Figure 5a and 5b show typical results when all7 flight 
configurations are considered. 
 

 
 

Figure 5a: Static Main Rotor pitch rod loads 
(All flight configurations) 

                                                           
7 This means that the results of good, scattered and constant 
surrogate models are plotted. 

 
 

Figure 5b: Dynamic Main Rotor pitch rod loads 
(All flight configurations) 

 
For dynamic loads, respectively 71% and 86% of 
predictions have a precision better than ±10% and 
±20 %. 
 
It is noteworthy to remember that constant surrogate 
models (see vertical red ellipses) decrease the 
general accuracy of the prediction. 
 
3.3. Prediction/measurement comparison 
(filtered flight configurations) 
 
Figure 6a and 6b show typical results when only 
filtered8 flight configurations are considered. 
Filtered flight configurations represent about 50% of 
all flight configurations for this load. 
 

 
 

Figure 6a: Static Main Rotor pitch rod loads 
(Filtered flight configurations) 

 

                                                           
8 This means that only the results of good surrogate models are 
plotted. 



 
 

 
 

Figure 6b: Dynamic Main Rotor pitch rod loads 
(Filtered flight configurations) 

 
For dynamic loads, respectively 89% and 98% of 
predictions have an accuracy better than ±10% and 
±20 %. 
 
3.4. Extrapolated loads around a flight 
configuration 
 
The selected flight configuration for which 
extrapolated static and dynamic loads are calculated 
by CHAMALO is a level flight at 125 kt, (see Table 
2). This flight configuration depends on 9 FCPs. 

 
W1 W2 NR 

(%MCP9) (%MCP) (RPM10) 
60 60 265 

BETAI MASS CGX 
(deg) (kg) (m) 

0 10 000 4.6711 
CGY ZP OAT 
(cm) (ft) (°C) 

0 0 15 
 

Table 2: Flight Configuration Parameters12  
for level flight 

 
Depending on the sample, the extrapolated loads 
may be correct or not, when compared with models 

                                                           
9 MCP= Maximum Continuous Power 

10 RPM = Rotation Per Minute 

11 CGX=4.67 m corresponds to longitudinal neutral centring. 

12 W1=W2 (engine power in percentage of MCP) - NR (Main 
Rotor rotation speed in RPM) – BETAI (side slip angle in deg) – 
MASS (mass of helicopter in kg) – CGX (longitudinal centre of 
gravity in m) – CGY (lateral centre of gravity in cm) – ZP (altitude 
in ft)- OAT (Outside Air Temperature in Celsius degree) 

based on physical laws (EUROCOPTER HOST 
software (cf. [7]) used for this analysis). 
 
Figure 7 gives the static and dynamic Main Rotor 
pitch rod loads (y-axis) versus side slip angle 
(BETAI) (x-axis). 
 
It shows good behaviour of static loads (in blue) of 
CHAMALO model compared to HOST model. 
Dynamic loads (in red) behaviour is more variable. 
 

 
 

Figure 7: Static and dynamic Main Rotor pitch rod 
loads versus side slip angle (BETAI) 

 
Figure 8 gives the static and dynamic Main Rotor 
pitch rod loads (y-axis) versus Main Rotor rotation 
speed (NR) (x-axis).  
 
It shows a problem for dynamic load (in red) versus 
NR variation (x-axis), when prediction is requested 
out of the training sample range.  
The static load (in blue) is rather good, but this 
should be considered as a stroke of luck. 
 

 
 

Figure 8: Static and dynamic Main Rotor pitch rod 
loads versus Main Rotor rotation speed (NR) 

 
In the training samples used to build the static and 
dynamic surrogate models, NR was nearly constant 
and equal to 265 RPM. Extrapolations up to 280 
RPM or down to 250 RPM cannot be reliable, if no 
physical laws are implemented. 
 
It can be concluded that extrapolations out of the 
training sample range have to be carefully analysed 
by the user. Implementation of physical laws during 
modelling should drastically improve this situation. 



 
 

4. CONCLUSION AND FUTURE WORKS 
 
In the scope of CHAMALO project, EUROCOPTER 
was interested in extracting surrogate models from 
the existing load database to estimate missing loads 
from the parameters describing the flight 
configurations. 
 
In general, it is found that surrogate models built by 
MACROS are consistent across many runs. When 
the surrogate models cannot be predicted, this is 
due to either too small sample sizes or to samples 
with inherent scatter. 
 
EUROCOPTER consider this approach very 
promising. In fact, about 50% of missing loads (with 
high filtering), which need to be estimated, may be 
calculated by CHAMALO with a sufficient accuracy 
(< ± 20 %.), drastically reducing  the  time and 
manpower needed for such analysis. 
 
Further investigations are planned to increase the 
reliability of the surrogate models for some 
manoeuver families and loads, either by improving 
the load database (by adding new flight load data) 
and/or by implementing physical laws. 
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