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Abstract 
This paper presents flight condition recognition (FCR) algorithms for rotorcraft health and usage monitoring 
systems (HUMS), which are developed by using the clustering techniques of machine learning.  Training and 
validation dataset are generated by using a generic nonlinear helicopter simulator and several flight data are 
obtained to train the algorithm. Gaussian Mixture Model (GMM), Neural Networks (NN) and Logistical 
Regression (LR) algorithms are implemented to perform FCR analyses. Validation and comparison studies are 
performed and results are compared in terms of accuracy, execution and training time. Finally, a detailed flight 
report about the flight is provided with percentages of performed flight conditions, which is used to provide 
feedback for health and usage monitoring systems to predict the life of the aircraft components. 
 
 
 
1. INTRODUCTION 

There is an increasing demand for rotorcrafts to 
perform several roles and missions, which leads them 
to be operated differently than they designed [1]. 
They may operate several different flight condition 
which may result in an increased level of structural 
fatigue. Therefore, it is crucial to monitor how the 
rotorcrafts are being flown and to enable efficient 
usage of sub-components. 

Health and Usage Monitoring Systems (HUMS) are 
developed to determine the usage characteristics of 
the helicopters to predict the future damage on 
several components of the rotorcrafts. Furthermore, 
monitoring the health of a helicopter prevents 
possible failures of the components. HUMS, which is 
a widely-used system by the world-wide operators, 
reduces the maintenance costs and helps to monitor 
the fatigue critical helicopter components to increase 
the safe flying hours [2]. 

One of the fundamental operations of a standard 
HUMS is the flight condition monitoring. Flight 
condition monitoring, simply maneuver/regime 
monitoring, provide usage spectrum for further 
structural health analyses for a helicopter. 
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In order to monitor the flight, several types of 
methodologies are implemented to identify the 
distinct flight conditions (i.e. maneuvers) which may 
be related to helicopter’s life to provide a usage 
spectrum. Usage spectrum gives information about 
how the helicopter is flown according to pilot’s flying 
style, environment, operational requirements and 
payload. Therefore, every helicopter may undergo 
different structural failures according to the pilot 
usage.  

In this work, clustering based flight condition 
recognition algorithms are developed. Determination 
of flight conditions is a simple numerical classification 
problem, however; similar maneuvers are not 
uniquely being performed for each helicopter. 
Therefore, it is desired to implement machine learning 
techniques for adaptation, comparison and validation. 
In this work, Gaussian Mixture Models (GMM), Neural 
Network (NN) and Logistical Regression (LR) based 
classification algorithms are employed. Learning 
algorithms require; 

 training data to generate the parametrized 
models of the clustering problem,  

 test data to test the accuracy of the 
algorithms, 

 data to be clustered (i.e. flight data) 

Training dataset is generated to cover all gross 
weight, temperature, altitude, wind, engine, mass and 
payload configuration by using several flight data 
belonging to different helicopters and mathematical 
simulation models [3].  Total number of maneuvers 
are determined to predict the required set of 
maneuvers for health and usage management 
systems. Reduced and extended set flight conditions 
are utilized. GMM, NN and LR algorithms are 
implemented and compared in terms of accuracy, 
training and execution time cost and complexity. 
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2. METHODOLOGY 

Flowchart of the applied methodology is provided in 
Figure 1. It starts with the generation of training 
dataset by the help of comprehensive mathematical 
models, flight simulator and real flight experience. 
Once a proper training set is generated, trained 
models for each algorithm is generated to perform 
flight condition recognition. Real flight or full flight 
simulator data is used to classify the flight conditions. 
Identified regimes, flight report and usage spectrum 
is provided to evaluate the usage  

 

Figure 1. Flow Chart of the FCR 

Clustering methodology applied in this work starts 
with a reduced set of maneuvers that includes 21 
different flight regimes. Training, testing and flight 
condition recognition functions are performed 
successively. However, there are several other 
transition and detailed maneuver definitions for 
HUMS related analyses that ends up having 57 
different flight conditions. 

2.1. Flight Data and Training Dataset 

Training dataset consists of similar flight conditions 
for the selected set of maneuvers. Dataset is 
generated by a previously performed flights by flight 
simulator, validated generic nonlinear rotorcraft 
simulator and the previous experience [3] [4]. In the 
training set the input vector 𝒙⃗⃗ 𝒕 is provided for the 
related flight condition for different altitude, air 
temperature, center of gravity, weight and helicopters 
to simulate the possible scatter of the data. Input 
vector  𝒙⃗⃗ 𝒕 is the array of numeric flight data which can 
be measured by a sensing system during the flight of 
the rotorcraft. The set of monitored flight data for our 
problem is provided in Table 1. Presented flight data 
is being monitored and recorded during the flight and 
filtered to provide the frequency of 20 Hertz; 
therefore, a total flight data is an array of 19xN size 
that starts with ground run, take-off, and flight, landing 
and shut down. Training flight data is divided into 
segments which belongs to the trained maneuver 
type for supervised learning. During the compilation 
of training dataset, only the limited amount of flight 
condition datasets is used in order to keep the 
complexity in an acceptable level to employ and 
compare different methodologies. 

Table 1 Names of the General Flight Parameters 

ID Parameter Name Units 

1 Weight on Wheel  (1 or 0) 

2 Indicated Airspeed  knots 

3 Roll Attitude deg 

4 Pitch Attitude deg 

5 Radio Altitude Ft 

6 Rate of Climb ft/min 

7 Roll Rate deg/sec 

8 Pitch Rate deg/sec 

9 Yaw Rate deg/sec 

10 Longitudinal Acc. m/s2 

11 Lateral Acc. m/s2 

12 Normal Acc. (Nz) g 

13 Engine 1 Torque % 

14 Engine 2 Torque % 

15 Angle of attack deg 

16 Heading deg 

17 Ground Speed knots 

18 Latitude deg 

19 Longitude deg 

According to the listed 19 numbers of flight data all 
flight conditions can be determined. However, 
reduced dimension of data is used for the 
determination of the maneuvers as described in the 
next chapter. Sample training data for twin-engine 
Hover condition with critical flight parameters is 
plotted in Figure 2.  

 
Figure 2 Training dataset for HIGE condition 
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In this work, flight data set is reduced to a minimum 
possible set covering the largest set of flight 
conditions is determined to increase the training 
speed and keep the complexity in an acceptable 
level. Therefore, all ground idle and taxi conditions, 
acceleration and deceleration flight conditions, one 
engine inoperative conditions and autorotational flight 
conditions are excluded. Reduced dimension dataset 
includes the variables; 

 𝑥𝑡[1] : Indicated Airspeed  

 𝑥𝑡[2] : Rate of Climb 

 𝑥𝑡[3] : Roll Attitude 

 𝑥𝑡[4] : Pitch Attitude 

 𝑥𝑡[5] : Radio Altitude 

 𝑥𝑡[6] : Pitch Rate 

 𝑥𝑡[7] : Yaw Rate 

 𝑥𝑡[8] : Sideslip Angle 

Training dataset obtained from the rotorcraft 
simulation software and simulators are not noisy and 
can easily be used. However, real flight data is noisy 
and some filtering pre-process is required to train the 
model. 

2.2. Definition of Flight Conditions 

Reduced and extended set of flight conditions to be 
clustered are labeled and classified. Reduced set of 
flight conditions are given in Table 2. In the reduced 
dataset, algorithms are evaluated and compared with 
a generated test dataset.  

Table 2 Reduced set of Flight Conditions 

ID Maneuver Name 
1 Hover 

2 Forward Flight @ 20 knots 

3 Forward Flight @ 40 knots 

4 Forward Flight @ 60 knots 

5 Forward Flight @ 80 knots 

6 Forward Flight @ 100 knots 

7 Forward Flight @ 120 knots 

8 Forward Flight @ 140 knots 

9 Forward Flight @ 160 knots 

10 Vertical Climb 

11 Vertical Descent 

12 Oblique Climb @ 60 knots 

13 Oblique Climb @ 120 knots 

14 Oblique Descent @ 60 knots 

15 Oblique Descent @ 120 knots 

16 Spot Turn Right 

17 Spot Turn Left 

18 CT. Right @ 60 knots 

19 CT. Right @ 120 knots 

20 CT. Left @ 60 knots 

21 CT. Left @ 120 knots 

Extended set of flight conditions are given in Table 3 
that includes 57 number of different maneuvers 
including steady flight conditions and maneuvering 
flight conditions such as pull-up and push-over 
maneuvers. 

Table 3 Extended set of Flight Conditions 

ID Maneuver Name 
1 Hover HIGE - TW 

2 Hover HIGE – Right Taxi 

3 Hover HIGE – Left Taxi 

4 Hover HIGE – Back Taxi 

5 Hover HOGE -TW 

6 Hover HOGE - Right Taxi 

7 Hover HOGE - Left Taxi 

8 Hover HOGE - Back Taxi 

9 Forward Flight @ 20 knots 

10 Forward Flight @ 40 knots 

11 Forward Flight @ 50 knots 

12 Forward Flight @ 70 knots 

13 Forward Flight @ 90 knots 

14 Forward Flight @ 120 knots 

15 Forward Flight @ 130 knots 

16 Forward Flight @ 140 knots 

17 Climb Vertical 

18 Climb Oblique 

19 Climb Oblique –Right Turn 

20 Climb Oblique -Left Turn 

21 Descent Vertical 

22 Descent Tween Engine 

23 Descent TE- Right Turn 

24 Descent TE- Left Turn 

25 CT. Right @ <60 kts 

26 CT. Right @ 30° >120 kts 

27 CT. Right @ 45° >80 kts 

28 CT. Right @ 60° >60 kts 

29 CT. Left @ <60 kts 

30 CT. Left @ 30° >120 kts 

31 CT. Left @ 45° >80 kts 

32 CT. Left @ 60° >60 kts 

33 Bank Turn Right 30° 

34 Bank Turn Right 45° 

35 Bank Turn Right 60° 

36 Bank Turn Left 30° 

37 Bank Turn Left 45° 

38 Bank Turn Left 60° 

39 Spot Turn Right 20°/sec 

40 Spot Turn Left 20°/sec 

41 Spot Turn Right Max°/sec 

42 Spot Turn Left Max°/sec 

43 Take-Off TW 

44 Take-Off Banked-RIGHT M 

45 Take-Off Banked-RIGHT H 

46 Take-Off Banked-LEFT M 

47 Take-Off Banked-LEFT H 

48 Take-Off Pitch UP M 

49 Take-Off Pitch UP H 

50 Take-Off Pitch DOWN M 

51 Take-Off Pitch DOWN H 

52 Pull Up Standard 

53 Pull Up Right Roll 

54 Pull Up Left Roll 

55 Push Over Standard 

56 Push Over Right Roll 

57 Push Over Left Roll 
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3. METHOD 

In this work, one reduced and one extended set of 
flight conditions are implemented into the clustering 
algorithms to assess the performance of different 
techniques. First technique uses Gaussian Mixture 
Model (GMM) for classification from the generated 
supervised training flight data set. Second technique 
utilizes the Regularized Logistic Regression and third 
method employs the Neural Network approach for the 
classification of the flight conditions.  

For the limited dataset, unsupervised learning 
approaches are investigated and utilized with the 
training data in order to observe the applicability. 
Although training datasets are fully supervised (i.e. 
every maneuver is known), k-means clustering 
algorithm is implemented. Parameter k is selected as 
21 for the reduced flight condition set to check 
whether the algorithm will cluster the similar 
algorithms that are previously identified by 
supervision. The results are similar about 60% of the 
maneuvers. The other maneuvers whose variables 
are close to each other are merged. Therefore, it is 
decided to perform supervised learning algorithms 
with the training dataset. Implementation is done to 
observe the advantages, disadvantages and 
applicability of the methods. Results are assessed in 
terms of training time, execution time and accuracy.  

Same training datasets are used for all algorithms 
and assessments are performed by using the same 
dataset.  

3.1. Gaussian Mixture Model 

In this methodology, it is assumed that the flight 
variables 𝒙𝒕 are locally Gaussian distributed [5]. This 
assumption defines the Gaussian mixture over the 
whole flight, and priors are defined according to the 
available usage spectrum data for the Gaussian 
components in order to have it Bayesian estimation. 
Gaussian Mixture Model (GMM) is estimated by using 
an Expectation Minimization (EM) algorithm. In the 
implemented GMM there are M (number of 
maneuvers) number of different Gaussian distribution 
with their mean and variance matrices having [1x8] 
and [8x8] dimensions. 

Initial conditions for the EM algorithm of Gaussian 
Mixture Models are parametrized by a mean vector μ 
and a covariance matrix Σ to represent the normal 
probability distribution by using the training dataset.  

Training state is performed for all class by using the 
MLE estimators of the mean vector 𝝁̂ and a 

covariance matrix 𝚺̂ as follows; 

𝜇𝑖 =
∑ 𝑥𝑖

𝑡𝑁
𝑡=1

𝑁
, 𝑖 = 1,2. . 𝑛 

And estimator Σ ̂ is the sample covariance matrix with 
entries; 

𝑠𝑖
2 =

∑ (𝑥𝑖
𝑡 − 𝜇𝑖)

2𝑁
𝑡=1

𝑁
 

𝑠𝑖𝑗 =
∑ (𝑥𝑖

𝑡 − 𝜇𝑖)(𝑥𝑗
𝑡 − 𝜇𝑗)

𝑁
𝑡=1

𝑁
 

Then, these conditions are provided into the EM 
algorithm to optimize the GMM model for the provided 
prior probabilities. After the training is finished there 
are two matrices for variables and classes as follows; 

𝜇̂ = [8𝑥𝑀] and 𝜎̂ = [8𝑥8𝑥𝑀] 

Afterwards, the algorithm classifies the flight 
conditions by taking the flight condition which 
maximizes the GMM probability density function. 
Since it is a multivariate case, multivariate probability 
density function is utilized [5]. Classification algorithm 
implemented in this method is described as given in 
Table 4. 

Table 4 GMM FCR Algorithm definition 

Initialize with the trained parameters of 𝝁̂ 𝑎𝑛𝑑 𝛔̂ 

    For all 𝑥𝑡 ∈ 𝑋 

       For all Maneuvers 𝐶𝑗 

            Select 𝐼𝐷𝑖𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑥𝑖|𝐶𝑗)) 

3.2. Regularized Logistic Regression 

Logistic Regression is another methodology that is 
used as a supervised learning method for FCR. 
Sigmoid function is used for the hypothesis hϴ 
(estimated probability) as shown in Figure 3. 

ℎ𝜃(𝑥) = 𝑔(𝑧) =
1

1 + 𝑒−𝑧
 

𝑧 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛     
𝑛: # 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑔(𝑧) = 𝑔(𝜃𝑇𝑥)
1

1 + 𝑒−𝜃𝑇𝑥
 

 
Figure 3 Sigmoid Function Used for the Hypothesis 

In the training part, theta values are obtained which 
minimizes the cost function given below. 

𝐽(𝜃) =
1

𝑚
∑[−𝑦(𝑖) log (ℎ𝜃(𝑥

(𝑖))) − (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥
(𝑖)))]

𝑚

𝑖=1

 

𝒊: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 
𝒎: 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 

𝒚(𝒊): 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 

In order to obtain simpler hypothesis and less prone 
to overfitting, cost function 𝐽(𝛳) defined is regularized 
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as shown below. Note that choosing λ too big results 
in under fitting (finding 𝛳1 to 𝛳𝑛 as zero); therefore, 
λ=0.1 is used in regime recognition solution. 

𝐽𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑(𝜃) =  𝐽(𝜃) +
𝜆

2𝑚
∑𝜃𝑗

2

𝑛

𝑗=1

 

One-vs-All multiclass classification is used with the 
regularized logistic regression. During the kth class 
training, one-vs-all approach sets y=1 for class k and 
sets 0 for the all other classes. After that 𝐽𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 is 

minimized to find the theta coefficients. After one-vs-
all classifier trained, it is used to predict the regime 
recognition. One-vs-All prediction function picks the 
class for which highest probability occurs.  

3.3. Neural Networks 

The method is inspired from the principle working 
logic of the neurons of human beings and is a 
nonlinear learning algorithm [5]. By using this 
algorithm, complex relationships between the inputs 
and outputs can be obtained. Schematic 
representation of the neural network is shown in 
Figure 4. Input layer nodes are the flight parameters. 
Flight conditions to be classified are called classes 
(output layer nodes) shown in Table 2.  

 
Figure 4 Representation of Neural Networks 

The goal is to predict the output layer and problem is 
to find the 𝛳 values. Therefore, function given below 
is used as objective function and 𝛳’s which minimizes 
the objective function are found.  

𝐽(𝜃) =
1

𝑚
∑∑[−𝑦𝑘

(𝑖)
log (ℎ𝜃(𝑥

(𝑖))
𝑘
)

𝐾

𝑘=1

𝑚

𝑖=1

− (1 − 𝑦𝑘
(𝑖)

)𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥
(𝑖))

𝑘
)]

+
𝜆

2𝑚
[ ∑ ∑ (𝜃𝑗,𝑘

(1)
)
2

# 𝑖𝑛𝑝 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒

𝑘=1

# ℎ𝑖𝑑 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒

𝑗=1

+ ∑ ∑ (𝜃𝑗,𝑘
(2)

)
2

# 𝑖𝑛𝑝 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒

𝑘=1

𝐾

𝑗=1

] 

𝑲: 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

Implemented algorithm is provided as follows: 

Table 5 NN FCR algorithm definition 

1. Randomly initialize the 𝛳 values 

For each training example : 

2. Perform feedforward propagation for a(2), a(3) 

𝑎(1) =  𝑥 ∶ 𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 

𝑎(2) = 𝑔(𝜃1 ∗ 𝑎(1)) ∶ ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 

𝑎(3) = 𝑔(𝜃2 ∗ 𝑎(2)) = ℎ𝜃(𝑥) ∶ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 

3. For each output in layer 3 obtain δk
(3) = ak

(3)-yk  

4. For layer 2: δk
(2) = (𝛳(2))T* δk

(3).*g|(z(2)) 

5. Δ(l) = Δ(l) + δ(l+1)(a(l))T 

Obtain gradient of the cost function as: 

6. Dij
(l) = 1/m* Δij

(l) + λ/m* 𝛳ij
(l)     for j>2 

Dij
(l) = 1/m* Δij

(l)                                       for j=1 

7. Use an optimization method for 𝑚𝑖𝑛 𝐽(𝛳), 

therefore; 𝛳 values are found. 

Neural Network algorithm is applied for the FCR 
problem and runs are performed. A single hidden 
layer is used in the analyses. For 80k iteration of 
optimization, it is seen that hidden layer node number 
50 gives the best result because both cost function is 
minimum and training accuracy is maximum as can 
be seen from Figure 5 and  Figure 6. Furthermore, 
training for 80k iterations takes the shortest time for 
hidden layer node number 50 as can be seen from 
Figure 7. It was an expected result because learning 
is deeply modelled and as a result optimization 
performed more accurately and faster. 

  
Figure 5 Neural Network Cost Function Minimization 

for Different Hidden Layer numbers 
 

 
 Figure 6 Neural Network Training Accuracy for 

Different Hidden Layer numbers 
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Figure 7 Neural Network Training Time for 

Different Hidden Layer numbers 

After finding the training coefficients, estimation of the 
flight condition is obtained by using feedforward 
propagation.  

4. RESULTS 

In the results part, methodologies are compared in 
terms of training time, execution time and accuracy. 
Accuracy evaluation metric is defined as the ratio of 
successively identified flight condition duration to 
whole flight duration. Two sets of flight conditions are 
used as reduced and extended set of maneuver 
definitions. Results are obtained for both generated 
test flight data and a piloted flight from a training 
simulator.  

After training and validation part for the reduced 
maneuver set, sample mission profile is generated. 
Results of each method is compared and flight 
summary is reported. In Figure 8, GMM and NN 
predictions are better than the LR according to regime 
based comparison. There is a slight difference 
between GMM and NN. Both of them identifies the 
maneuvers in an acceptable manner. On the other 
hand, LR decreases its accuracy %70 for some 
maneuvers. 

According to Table 6, training time for the NN 
algorithm is much higher than other two. However, 
the execution time of NN algorithm is much lower than 
the other methods. This brings the advantage of using 
NN for real time applications such as “in-flight 
onboard” FCR. GMM and LR cannot be used for real 
time problems but can be used for huge training 
datasets with desktop applications which requires 
less training time and has high prediction accuracy. 
The least accurate algorithm in this case is the logical 
regression having 84% of accuracy. 

 

 
Figure 8 Comparison of all methods by a testing  

10500x8 dataset 

Table 6 Comparison of FCR algorithms  
for reduced set 

 GMM NN LR 

Training Time [sec] 2.5 76000 64 

Test Time [sec] 150 0.007 1.8 

Accuracy [%] 98.15 96.36 84.38 

 
In this part a generated sample helicopter flight is 
clustered with the available algorithms. Performed 
flight conditions are summarized in Table 7 and small 
transition maneuvers exist between two identified 
flight conditions.  
 
Table 7 Sample 58 minutes of Generated Test Flight 

Leg Duration Maneuver Name 

1 5 min Hover 

2 2 min Transition 

3 10 min Forward Flight @ 60 knots 

4 1 min Transition 

5 3 min Oblique Climb @ 60 knots 

6 2 min Transition 

7 15 min Forward Flight @ 120 knots 

8 1 min Transition 

9 4 min Oblique Descent @ 120 knots 

10 2 min Transition 

11 2 min Turn Right @ 60 knots 

12 2 min  Transition 

13 3 min Forward Flight @ 20 knots 

14 1 min Transition 

15 5 min Vertical Descent 

Total 58 min  

Figure 9 illustrates the flight conditions at each flight 
leg except transitions.  
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Figure 9 Mission Profile Actual Maneuver Data 

All methods are compared for the flight data and 
Figure 10, Figure 11 and Figure 12 are plotted to 
present the results of the algorithms. Each algorithm 
determines almost all labeled conditions with high 
accuracy. Scattered data belongs to the 
instantaneous flight conditions during the transition 
maneuver from on labeled flight condition to another. 
Total flight duration is about 58 minutes of time 
dependent data. Accuracy of the algorithms GMM, 
NN and LR are 98.15%, 96.36% and 84.38% 
respectively for 21 flight conditions. As expected from 
the training results, the most accurate methodology is 
the GMM and it is followed by NN and LR.  

 
Figure 10 GMM Mission Profile FCR 

 
Figure 11 NN Mission Profile FCR 

 
Figure 12 LR Mission Profile FCR 

Detailed flight summary is one of the key outputs of 
these algorithms which will be used to generate 
usage spectrum of the helicopter when whole flight 
usage details are accumulated during the life of the 
helicopter. Flight summary of 21 flight cases is 
provided in Table 8 for all algorithms. 
 

Table 8 Flight summary and performed flight 
condition percentages 

TEST 

[%] 

GMM 

[%] 

NN 

[%] 

LR 

[%] 
Maneuver Name 

8.62 8.78 8.62 6.43 Hover 

5.17 6.19 7.17 8.43 FWD @ 20  

0.00 1.31 1.72 6.45 FWD @ 40  

17.24 17.79 17.93 14.93 FWD @ 60  

25.86 25.98 25.67 26.10 FWD @ 120 knots 

0.00 0.02 0.28 2.03 FWD @ 140 knots 

0.00 3.19 0.91 0.86 Vertical Climb 

8.62 9.97 8.62 8.28 Vertical Descent 

5.17 7.53 8.17 6.21 Climb @ 60  

0.00 1.55 1.67 0.21 Climb @ 120  

0.00 0.41 0.52 1.07 Descent @ 60  

6.90 9.60 10.03 8.19 Descent @ 120  

0.00 0.24 0.50 0.95 Spot Turn Right 

0.00 0.21 0.38 0.98 Spot Turn Left 

3.45 6.72 6.71 6.36 CT Right @ 60  

After performing the reduced dataset, the same 
training procedures are done for the 57 different 
maneuvers and it is seen that the estimation 
accuracies are decreased which is an expected 
situation since the problem domain is extended and 
there are similar flight conditions which may easily be 
confused. According to the results, GMM, NN and LR 
accuracies are 91.47%, 69.2% and 55.2% 
respectively for 57 flight condition.  Detailed accuracy 
results for each flight condition is plotted in Figure 13. 
It can be observed that GMM provides an accuracy 
greater than 80% almost all flight conditions. 
However, NN requires more time for training or 
increased number of hidden layers. As the number of 
maneuvers increased, accuracy of the applied NN 
model is reduced. 
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Figure 13 Percentage of accuracy chart for all 
methodologies for 57 different flight conditions 

In the last part, full flight data from take-off is clustered 
by using the trained models for 57 flight conditions. 
Flight data belongs to the training flight simulator and 
flown by the pilots. Flight summary in terms of flight 
variables vs. time is provided in Figure 14.  

  

Figure 14 Simulator sample flight data 

In Table 9 flight summary and percentages of the 
performed flight conditions are provided. Most of the 
flight conditions are clustered consistently by all the 
algorithms. However, there are some algorithms such 
as vertical climb and oblique climb that provides 
different usage percentage. Usage spectrum is 
obtained by collecting similar usage data for all flights.  

Table 9 Flight summary and performed flight 
condition percentages 

GMM 

[%] 
NN 

[%] 
LR 

[%] 
Maneuver Name 

13.3 16.2 16.1 Hover HIGE - TW 

0.0 0.0 0.0 Hover HIGE – Right Taxi 

0.8 0.0 0.0 Hover HIGE – Left Taxi 

2.0 0.0 0.7 Hover HIGE – Back Taxi 

0.0 0.0 0.3 Forward Flight @ 20 knots 

0.0 0.0 0.0 Forward Flight @ 40 knots 

0.0 0.0 0.0 Forward Flight @ 50 knots 

0.4 0.0 2.2 Forward Flight @ 70 knots 

1.1 0.9 0.7 Forward Flight @ 90 knots 

0.4 0.7 0.9 Forward Flight @ 120 knots 

2.3 1.5 1.2 Forward Flight @ 130 knots 

1.6 4.6 1.9 Forward Flight @ 140 knots 

20.9 7.9 19.3 Climb Vertical 

6.4 1.0 18.1 Climb Oblique 

5.4 5.0 6.3 Climb Oblique –Right Turn 

0.0 8.7 0.4 Climb Oblique -Left Turn 

0.8 0.9 0.4 Descent Vertical 

15.5 19.0 17.7 Descent Tween Engine 

8.3 8.2 0.3 Descent TE- Right Turn 

1.0 1.5 0.0 CT. Turn Right @ 30° >120 kts 

0.1 0.0 0.0 CT. Turn Right @ 45° >80 kts 

8.8 10.9 10.2 Bank Turn Right 30° 

3.0 2.8 0.0 Bank Turn Right 45° 

0.0 0.7 0.0 Spot Turn Left 20°/sec 

0.0 0.0 0.0 Spot Turn Right Max°/sec 

0.0 3.1 0.0 Take-Off Pitch DOWN M 

4.0 1.9 0.2 Take-Off Pitch DOWN H 

0.0 0.0 0.0 Pull Up Standard 

0.0 0.0 0.0 Push Over Standard 

Categorized usage percentage is plotted in Figure 15 
to identify that whether the differently classified 
manuevers are among the similar manuevers or not.  

 

Figure 15 Reduced flight conditions and 
percentages 
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It is observed that forward flight and climb cases have 
the most variation between the clustering algorithms. 
Finally, 57 flight condition is trained and training and 
execution times are presented in Table 10.  
 
Table 10 Training and Execution time comparison of 

57 FCR algorithms for a simulator flight data 

 GMM NN LR 

Training Time [sec] 104  1 week 600  

Test Time [sec] 1621  0.1  10  

 

5. CONCLUSION 

In conclusion, three different methodologies which 
are NN, GMM and LR are implemented to the regime 
recognition problem. It is seen that for 21 flight 
maneuvers, GMM and NN has 98.15% and 96.36% 
prediction accuracy respectively whereas LR has 
84.37%. When the number of flight maneuvers are 
increased to 57, prediction accuracies of all the 
methods decrease. GMM, NN and LR accuracies 
become 91.47%, 69.2% and 55.2% respectively.  
 
NN can be accepted as the most suitable algorithm to 
identify the flight conditions in real time for on-board 
HUMS systems since it has the fastest execution 
speed. However, NN and GMM gives almost the 
same prediction accuracy when trained with proper 
training dataset. Therefore, if the prediction time is not 
important GMM can also be used for the ground 
based applications. Furthermore, training time of the 
GMM algorithm is relatively low when compared with 
the other algorithms and can be useful with the 
massive training data. 
 
As a future work, NN can be trained for multiple 
number of hidden layers and for different hidden node 
numbers. Sensitivity analysis should be done for the 
FCR problem defined and training accuracy can be 
improved.  
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