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Abstract 

 
The Ornicopter is a single rotor helicopter without a 
reaction torque. By forcing the blades of the 
Ornicopter to flap up and down, both a lifting force 
and an average propulsive force can be generated. 
Because of this average propulsive force the blades 
will propel (i.e. rotate) themselves and there will no 
longer be a need to transfer torque from the 
fuselage to the rotor. If there is no longer a torque 
transferred from the fuselage to the rotor there will 
neither be a reaction torque. 
 
The theory and calculations performed in previous 
publications [1][3][4] were based on the assumption 
of rigid rotor blades. This paper will concentrate on 
the effects that flexible blades will have on the key 
characteristics of the Ornicopter. It will be 
investigated whether any power will be lost due to 
the flexibility of the blades, what the effects of a 
flexible blade are on the required flapping moment, 
the torque about the rotor hub and the vertical 
shear force fluctuations in the root of the blade. 
Additionally the difference between the root angle ε 
of a flexible blade and the flapping angle β of a rigid 
blade will be addressed and to conclude the phase 
difference between the flapping moment and the 
deflection of the flapping mechanism will be 
calculated. 
 

Notations 
 
c Blade chord 

lc  Lift coefficient of a blade element 
clα Derivative of cl with respect to α dcl/dα 
cn Constant of normalization for a particular 

mode shape 
f(n) Generalized moment of inertia, value of the 

integral ∫
R

mn drSmS
0

 for n=m 

k k2=EI/mΩ2R4 

m Mass per unit length 
mfl Non-dimensional flapping moment 
flm̂  Complex amplitude of the non-dimensional 

flapping moment 
r Radius of blade element 
vi Induced velocity 

v0 Non-dimensional vertical shear force in the 
root of the blade 

x Non-dimensional radius of blade element 
r/R 

 
Aij Coefficient of the equations of motion for a 

flexible blade 
Bij Coefficient of the equations of motion for a 

flexible blade 
Cl Lift coefficient of a blade 

Cnm ∫
R

mn drSS
R 0

4
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E Modulus of elasticity 
En Sn’(0) 
F Excitation force 
Fn fn/I 
G Centrifugal force 
I Mass moment of inertia of the rotor blade 

about the rotor hub 
K Spring stiffness 
L Lift 
M Bending moment 
Mfl Mechanical flapping moment 
Pa Power available to drive the rotor 
Peng Engine power, power transmitted by the 

engine to the spring of the mechanical 
flapping mechansim 

Pfl Mechanical flapping power, power exerted 
by the flap forcing mechanism on the blade 

Q Torque about the rotor hub 
Qn Generalized force or moment for the 

generalized coordinate φn 
R Rotor radius 
Sn Mode shape for a particular eigenfrequency 
S'n Derivative of Sn with respect to the azimuth 

angle dSn/dψ 
Sm Mode shape for a particular eigenfrequency 
S'm Derivative of Sm with respect to the azimuth 

angle dSm/dψ 
T Kinetic energy 
U Potential energy 
Ub Strain energy due to bending 
Ucf Strain energy due to the centrifugal force 
Uspring Potential energy due to the deflection of the 

spring 
V0 Vertical shear force in the root of the blade 
Wn Work done in the direction of the 

generalized coordinate φn 



 

 2

Z Vertical displacement of the flexible rotor 
blade 

 
α Angle of attack 
α Deflection angle 
iα̂  Amplitude of the generalized coordinate φi 

nα̂  Amplitude of the generalized coordinate φn 
β Flapping angle of the blade 
β̂  Complex amplitude of the flapping angle 
β' Derivative of β with respect to the azimuth 

angle dβ/dψ 
β'' Second derivative of β with respect to the 

azimuth angle d2β/dψ2 

β&  Derivative of β with respect to time dβ/dt 
β&&  Second derivative of β with respect to time 

d2β/dt2 
δ Deflection of the mechanical flapping 

mechanism 
δ&  Derivative of δ with respect to time dδ/dt 
ε Angle between the horizontal and the line 

tangent to the blade curvature at the blade  
 root, or ε = dZ(r=0)/dr 
ε&  Derivative of ε with respect to time dε/dt 
ε̂  Complex amplitude of the angle between 

the horizontal and the line tangent to the 
blade  curvature at the blade root 

γ Lock number ρClαcR4/I 
γi i-th displacement function 
γ'i Derivative of the displacement function with 

respect to the radius dγi/dr 
γ''i Second derivative of the displacement 

function with respect to the radius d2γi/dr2 

ϕ Inflow angle 
ϕ Angle of rotation of the flexible rotor blade 
φi Generalized coordinate for a displacement 

function 
φ'i Derivative of the generalized coordinate for 

a displacement function with respect to the 
azimuth angle dφi/dψ 

φ''i Second derivative of the generalized 
coordinate for a displacement function with 
respect to  the azimuth angle d2φi/dψ2 

φn Generalized coordinate for an mode shape 
φ'n Derivative of the generalized coordinate for 

an mode shape with respect to the azimuth 
angle dφi/dψ 

φ''n Second derivative of the generalized 
coordinate for an mode shape with respect 
to  the  azimuth angle d2φi/dψ2 

nφ&  Derivative of the generalized coordinate for 
an mode shape with respect to time dφi/dt 

nφ&&  Second derivative of the generalized 
coordinate for an mode shape with respect 
to time d2φi/dt2 

κ K/IΩ2 
λi Non-dimensional induced velocity vi/ΩR 
λn Non-dimensional n-th eigenfrequency ωn/Ω 
θ Pitch angle 
ρ Air density 
ψ Azimuth angle 
ωn Eigenfrequency  
Ω Rotational speed of the rotor 
 
Subscripts 
 
Rigid For a rigid rotor blade 
Flex For a flexible rotor blade 
 

Introduction 
 
A short introduction into the basic principles of the 
Ornicopter is given in an accompanying paper (Ref 
1). The theory and calculations that have been 
presented in previous publications (Ref 2, 3, 4, and 
5) were all based on the assumption of rigid rotor 
blades. The question this paper will provide an 
answer to is whether the introduction of flexible 
blades will have an effect on any of the key 
characteristics of the Ornicopter. 
 
To be able to do so the equations of motion for a 
flexible blade during forced vibration by the forced 
flapping mechanism (Ref 1) will have to be derived. 
This will be done by using Lagrange's equations 
based on the theory as explained in (Ref 6). The 
following section will start with the derivation of the 
potential and kinetic energy of a blade in free 
vibration. Using these expressions the equations of 
motion for a blade in free vibration will be derived in 
the next section. Subsequently the excitation force 
will be added to the equation which will result both 
in the equations of motion for a blade during forced 
vibration by the flapping mechanism and in the 
bending function for a blade during forced vibration. 
This bending function will then be used to analyse 
the effects that flexible blades have on the 
characteristics of the Ornicopter. 

 
Potential and kinetic energy of a blade in free 

vibration 
 

The lift force acting on the blade will bend the 
blade, for example in the way that is shown in figure 
1. The differential angle of rotation (dϕ) of an 
element of the blade with length dr can be 
expressed as: 
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EI
Mdrd =ϕ  (1) 

 
In which M is the bending moment and EI is the 
flexural rigidity of the blade (E the modulus of 
elasticity and I the area moment of inertia of the 
cross sectional shape). 

Fig. 1: Bending of and forces acting on a 
rotating flexible blade 
 
The strain energy that is stored in this element is 
given by: 
 

ϕMddUb 2
1=  (2) 

 
Which, using equation (1) can also be written as: 
 

dr
dr
dEI

EI
drMdUb

22

2
1

2
1







== ϕ

 (3) 

Fig. 2: Relation between the vertical 
displacement and the angle of rotation 
 
Assuming small angles (see figure 2): 
 

dr
dZ=≈ ϕϕtan  (4) 

Substitution of equation (4) into equation (3) and 
integration yields a general expression for the total 
strain energy due to bending as a result of the lift 
force that is acting on the blade: 
 

∫ 







∂
∂=

R

b dr
r
ZEIU

0

2

2

2

2
1

 (5) 

 
The centrifugal force (G) that is acting on the blade 
also causes potential energy. The magnitude of the 
moment that is caused by the centrifugal force can 
be calculated using figure 1: 

GdZdZdGGdZM ≈+=
2 ∫ Ω=

R

r

drdZmr 2  (6) 

 
Where m denotes the mass per unit length and Ω 
the rotational velocity. The potential energy of the 
entire blade due to the centrifugal force can be 
calculated as: 
 

∫∫ 







∂
∂==

R

r

R

r
cf dr

r
ZGMU

2

2
1

2
1 α  (7) 

 
The total potential energy is now obtained by 
summing equation (5) and (7): 
 

∫∫ 







∂
∂+








∂
∂=

RR

total dr
r
ZEIdr

r
ZGU

0

2

2

2

0

2

2
1

2
1

 (8) 

 
To conclude the total kinetic energy of a flexible 
blade due to bending is equal to: 
 

∫ 







∂
∂=

R

dr
t
ZmT

0

2

2
1

 (9) 

 
Equations of motion for a blade in free vibration 

 
As a starting point to derive the actual bending of 
the flexible blade the displacement of the blade is 
expressed as a function of both the distance to the 
rotor hub and time: 
 

( ) ( ) ( )∑=
i

ii trtrZ φγ,  for ( ),...2,1,0=i  (10)

 
In this equation γi are functions used to approximate 
the blade shape and φi is the normal coordinate. 
The normal coordinates φi determine in which 
proportions the functions γi have to be summed to 
arrive at the actual bending of the blade.  

α 

x 

G 

M 

Ω 

dϕ G+dG 

Z 

dr 

dZ 

Z+dZ
Z 

ϕ 

dϕ 

ϕ+dϕ 

dr

Z 

r 
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Using the displacement function (equation (10)) and 
the expressions for the potential and kinetic energy 
(8) and (9), the equations of motion for a bending 
blade will be derived. Substitution of equation (10) 
into equation (8) yields the potential energy: 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]∑∑ ∫ ′′′′′+′′=
i j

R

jijiji drrrEIrrGttU
02

1 γγγγφφ  

 (11)
With: 
 

( )
dr
dr i

i
γγ =′   (12)

( ) 2

2

dr
dr i

i
γγ =′′  (13)

 
In which j obviously has the same properties as i. 
The kinetic energy is obtained by substitution of 
equation (10) into equation (9): 
 

( ) ( ) ( ) ( )∑∑ ∫=
i j

R

jiji drrrmttT
02

1 γγφφ &&  (14)

 
The equations of motion can be derived by using 
Lagrange's equations and equations (11) and (14): 
 

( ) ( ) ( ) +=∑ ∫
j

R

jij drrrmt
0

0 γγφ&&  

( ) ( ) ( ) ( ) ( )[ ]∑ ∫ ′′′′+′′+
j

R

jijij drrrEIrrGt
0

γγγγφ  (15)

 
Equation (15) can be simplified by defining: 
 

( ) ( )∫=
R

jiij drrrmA
0

γγ   (16)

( ) ( ) ( ) ( )[ ]∫ ′′′′′+′′=
R

jijiij drrrEIrrGB
0

γγγγ   (17)

 
Which results in the following equations of motion 
for free vibration: 
 

( ) ( )( ) 0=+∑
j

ijjijj BtAt φφ&&  for ( ),...2,1,0=i  (18)

 
To solve the equations of motion the following 
harmonic function is adopted: 
 

( )jjj t εωαφ += cosˆ   (19)
 
In which ω is the eigenfrequency. Substitution of 
expression (19) into the equations of motion for 
every generalized coordinate as given by equation 
(18) gives: 
 

( ) 0ˆ2 =+−∑
j

jijij BA αω  for ( ),...2,1,0=i  (20)

 
Arranging the equations in matrix notation and 
putting the determinant to zero will give the values 
for the eigenfrequencies of the system. With the 
eigenfrequencies known, the relative values of iα)  
can be determined: 
 

0
0

ˆ
ˆ
ˆ

ˆ α
α
αα

n

i
i 








=   (21)

 
Using equations (10), (19) and (21) this will result in 
the following displacement for a particular 
eigenfrequency: 
 

( )∑ +







=

i
nn

n

i
in tZ εωα

α
αγ cosˆ
ˆ
ˆ

0
0

  (22)

 
Introducing the constant of normalization cn gives: 
 

( )∑ +







=

i
nnnn

n

i
in tcZ εωα

α
αγ cosˆ
ˆ
ˆ

0

  (23)

 
Define a new generalized coordinate φn: 
 

( )εωαφ += tnnn cosˆ   (24)
 
And define the normalized mode shape for a 
particular eigenfrequency as: 
 

∑ 







=

i n

i
inn cS

0ˆ
ˆ

α
αγ   (25)

 
Combining equations (23), (24) and (25) yields the 
normalized displacement of a blade for one 
eigenfrequency: 
 

nnn SZ φ=   (26)
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And the complete solution for the bending of the 
blade in free vibration for all eigenfrequencies is 
given as: 
 

( ) ( )∑=
n

nn rStZ φ   (27)

 
An important characteristic of mode shapes is that 
they are orthogonal which means that: 
 

0
0

=∫
R

nm drSmS               if mn ≠  (28)

( )nfdrSmS
R

nm =∫
0

        if mn =  (29)

 
The equations of motion can now also be derived in 
terms of the mode shapes, instead of in terms of 
the functions used to approximate the blade shape 
(γi). The potential energy due to the bending of the 
blade, the potential energy due to the centrifugal 
force and the kinetic energy of the flexible blade 
can be expressed in terms of the mode shapes by 
using equations (5), (7), (8), (9) and (29) and by 
using the orthogonality of the mode shapes 
(equations (28) and (29): 
 

∑∑ ∫ ′′′′=
n m

R

mnmnb drSSEIU
02

1 φφ   (30)

∑∑ ∫ ′′=
n m

R

mnmncf drSSGU
02

1 φφ   (31)

( )∑=
n

nntotal nfU 22

2
1 ωφ   (31)

( )∑=
n

n nfT 2

2
1 φ&   (32)

 
Using Lagrange's equations, the following 
equations of motion for free vibration in terms of the 
mode shapes result: 
 
( ) ( ) 02 =+ nfnnn ωφφ&&  (32)

 
Equations of motion for a blade during forced 

vibration by the flapping mechanism 
 
A general expression for the generalized force or 
moment per blade element (dQn) for each 
generalized coordinate is given by: 

n

n
n

dW
dQ

δφ
δ

=
n

nn

n

n
dr

r
FSdFZ

δφ

δφ

δφ
δ ∂

∂

==  (33)

 
In which Wn is the work done in the direction of the 
generalized coordinate φn. Integration yields the 
generalized force or moment caused by the entire 
rotor blade: 
 

∫ ∂
∂=

R

o
nn dr
r
FSQ  (34)

 
A specific expression for the generalized forces that 
occur due to the flapping of the blade can be 
derived by using the formula for the total lift on a 
blade element (see also figure 3): 
 

( ) cdrr
r
RcdL i

l
2

2
1 Ω



 ′−−= ρβλθ

α
 (35)

 

 
Fig. 3: Aerodynamic forces and velocities on a 
blade element at distance r from the rotor hub 

 
With β' the derivative of the flapping angle with 
respect to the azimuth angle and the non-
dimensional induced velocity (λi) given by: 
 

r
vi

i Ω
=λ  (36)

 
This equation is valid for a rigid blade. If the term β' 

is replaced by 
r

dt
dZ

Ω
 (since a displacement of the 

air downwards with rβ&  corresponds with an 
upwards displacement of the blade element with 
dZ/dt, see figures 3 and 4) this expression would be 
valid for a flexible blade. The influences of pitch 
angle and induced velocity will be neglected since 

θ

ϕ

α

Cl=0

vi+βr 
. 

Ωr dDp

dL
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we are only interested in the fluctuating part of the 
lift force. 

 
Fig. 4: Schematic representation of a flexible 
blade with forced flapping mechanism 
 
The expression for the part of the lift on a blade 
element due to the flapping of the blade becomes: 
 

( ) cdrr
r
t
Z

CdL l
2

2
1 Ω

Ω
∂
∂

−= ρ
α

 
(36)

 
The minus sign is due to the fact that a positive 
displacement Z results in a difference in lift which is 
directed downwards. With reference to equation 
(34) it can be stated that: 
 

( ) cdrr
r
t
Z

CdLdr
r
F

l
2

2
1 Ω

Ω
∂
∂

−==
∂
∂ ρ

α
 

(37)

 
Using the Lock number (γ) the mass moment of 
inertia (I=1/3mR3) and substituting equation (27) for 
the displacement Z yields: 
 

rdrS
R
Idr

r
F

m
mm∑Ω−=

∂
∂ φγ &

42
 (38)

 
The reason that equation (38) is summed over m 
instead of over n has to do with the fact that 
equation (38) will be substituted into equation (34). 
This equation already contains the variable n which 
denotes that this is the generalized force or moment 
for the generalized coordinate φn. If equation (38) 
would be summed over n and would be substituted 
into equation (34), this would imply that the mode 

shape Sn already present in equation (34) would 
also be summed over n, which is not correct. 
 
Note that since the excitation forces are included, 
this implies that the mode shapes are now forced to 
vibrate with the excitation frequency. This means 
that the generalized coordinate for each mode 
shape is from now on given by: 
 

( )nnn t εωαφ += cosˆ  (39)
 
In which ω is the excitation frequency. Substitution 
of equation (38) into equation (34) yields the 
generalized force or moment due to the damping 
effect of the lift for a flexible rotor blade: 
 

∑ ∫
Ω−=

m

R

mnmn rdrSS
R
IQ

0
42

φγ &  (40)

 
Now the flap forcing mechanism will be included in 
the equations of motion, an additional potential 
energy term emerges due to the torsion spring that 
is part of the flapping mechanism (see figure 4):  
 

( )2

2
1 εδ −= KUspring  (41)

2

02
1









∂
∂−=

=r
spring r

ZKU δ  (42)

( )
2

0
2
1








 ′−= ∑
n

nnspring SKU φδ  (43)

( ) ( ) ( )






 ′′+′−= ∑∑∑
n m

mnmn
n

nnspring SSSKU 0002
2
1 2 φφφδδ

 (44) 
  
In which K is the spring stiffness. For Lagrange's 
equations it is necessary to calculate: 
 

( ) ( )00 n
m

mm
n

spring SSK
U

′






 ′−−=
∂

∂
∑φδ

φ
 (45)

 
The equations of motion for a flexible blade in terms 
of the mode shapes including the excitation forces 
in terms of the mechanical flapping mechanism can 
now be composed by incorporating the effects of 
the spring (equation (45)) and the general 
expression for the generalized forces and moments 
(equation (40)) in equation (32): 

( ) ( ) ( ) ( ) =′






 ′−−+ ∑ 002
n

m
mmnnn SSKnf φδωφφ&&  

Ω 

Z 

δ 

ε−  

Mfl 

r 

0=

=
rdr

dZε

dZ 
 dt 
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∑ ∫
Ω−

m

R

mnm rdrSS
R
I

0
42

φγ &    for ( ),...2,1,0=n (46)

 
The displacement of a blade during forced vibration 

by the flapping mechanism 
 
The above means that the complete solution for the 
displacement of the blade during forced vibration is 
now known. Analogous to equation (29) the 
complete solution is given by: 
 

( ) ( )∑=
n

nn rStZ φ  (47)

 
with: 
 

( )nnn t εωαφ += cosˆ  (39)

∑ 







=

i n

i
inn cS

0ˆ
ˆ

α
αγ   (25)

 
• γi is a set of chosen displacement functions  
• ωn is determined by setting the determinant of 

equation (20) equal to zero. 
• With the eigenfrequencies known, the relative 

values of iα)  for each eigenfrequency can be 
determined using equations (20) and (21) 

• cn is the constant of normalization  
• ω is the excitation frequency, equal to Ω 
• nα̂  and εn are calculated using equation (46) 
 
Power balance for flexible blades: is any power lost 

due to the flexibility of the blades? 
 
Now the bending of the blade can be calculated, the 
question this section will provide an answer to is 
whether any power that is provided by the engine is 
lost due to the flapping of the flexible blades or due 
to the transmission of the power to the mechanical 
flapping mechanism. As a consequence this power 
will not be available as a propulsive force to drive 
the rotor. To determine whether or not this is the 
case, the power available to drive the rotor, the 
mechanical flapping power and the power that is 
provided by the engine are calculated and 
compared in the following paragraphs. 
 
The power available to drive the rotor 
 
The power per blade that is available to drive the 
rotor due to the forced flapping of the blade (Pa) is 
equal to the forward component of the lift multiplied 

by Ωr, integrated over the rotor blade and averaged 
over one revolution, see also figures 3 and 4: 
 

∫ ∫ Ω−=
π

ϕψ
π

2

0

sin
2
1 R

o
a rdLdP  (48)

∫ ∫ Ω
Ω
∂
∂

−=
π

ψ
π

2

02
1 R

o
a r

r
t
Z

dLdP  (49)

 
Using equation (47) it follows that: 
 

∫∑∫−=
R

n
nna dLSdP

0

2

02
1 φψ
π

π
&  (50)

 
Combining equations (46) (37) and (38) gives: 
 

( ) ( )∫ ++=
R

nnnn nfdLS
0

2ωφφ&&  

( ) ( )00 n
m

mm SSK ′






 ′−− ∑φδ  (51)

 
Which can be simplified by introducing the following 
relation for the flapping moment Mfl (figure 4): 
 

( )






 ′−= ∑
m

mmfl SKM 0φδ  (52)

 
Substitution of equation (52) into equation (51), and 
subsequent substitution in equation (50) yields: 
 

( )[∫ ∑ +′−−=
π

φψ
π

2

0

0
2
1

n
nflna SMdP &  

( ) ( )]nfnnn
2ωφφ ++ &&  (53)

 
The second part of the integral in equation (53) is 
equal to zero, which yields: 
 

( )∫ ∑ ′=
π

ψφ
π

2

0

0
2
1 dSMP

n
nnfla

&  (54)

 
Looking at figure 4 the following can be derived for 
the flexible blade root angle ε: 
 

( ) ( )∑ ′===
n

nnSdr
rdZ 00 φε  (55)
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( )∑ ′=
n

nnS 0φε &&  (56)

 
Substitution of equation (56) into equation (54) 
gives the final expression for the average available 
power: 
 

∫=
π

ψε
π

2

02
1 dMP fla &  (57)

 
The flapping power: the power transmitted by the 
spring to the root of the blade 
 
The average flapping power (the average power 
transmitted by the spring to the root of the blade) 
can be derived from figure 4 and the fact that power 
is equal to moment times angular velocity: 
 

ψε
π

π

dMP flfl ∫=
2

02
1

&  (58)

 
Comparing equations (57) and (58) the conclusion 
thus is: 
 

fla PP =  (59)
 
Or in words: the power that is transmitted to the root 
of the blade is also available to drive the rotor, 
hence no power loss occurs at these points in the 
transmission. 
 
The engine power: the power transmitted by the 
engine to the spring 
 
The average engine power can again be derived 
from figure 4 and the fact that power is equal to 
moment times angular velocity: 
 

∫=
π

ψδ
π

2

02
1 dMP fleng

&  (60)

 
Combining equations (52) and (55) gives: 
 

( )εδ −= KM fl  (61)
 
Which substituted into equation (60) results in: 
 

( )∫ −=
π

ψδεδ
π

2

02
1 dKPeng &  (62)

∫∫ −Ω=
ππ

ψδε
π

ψ
ψ
δδ

π

2

0

2

0 22
dKd

d
dKPeng &  (63)

∫−Ω=
=

=

π
πψ

ψ
ψδε

π
δ

π

2

0

2

0

2

22
1

2
dKKPeng &  (64)

 
And since δ is a periodic function it will have the 
same value for ψ=0 and ψ=2π, therefore equation 
(64) reduces to: 
 

∫−=
π

ψδε
π

2

02
dKPeng &  (65)

 
To be able to compare the engine power to the 
power that is available to drive the rotor equation 
(57) is rewritten using equation (61): 
 

( )∫ −=
π

ψεεδ
π

2

02
1 dKPa &  (66)

∫∫
Ω−Ω=

ππ

ψ
ψ
εε

π
εδ

π

2

0

2

0 22
d

d
dKtd

dt
dKPa  (67)

πψ

ψ

π

ε
π

εδ
π

2

0

2
2

0 2
1

22
=

=

Ω−Ω= ∫
KdKPa  (68) 

πψ

ψ

π
πψ

ψ ε
π

δεεδ
π

2

0

2
2

0

2

0 2
1

22
=

=

=

=

Ω−







−Ω= ∫

KdKPa

 

(69) 

 
And since ε is also a periodic function: 
 

∫
Ω−=

π

δε
π

2

02
dKPa  (70)

 
or: 
 

∫∫ −=Ω−=
ππ

ψδε
π

δε
π

2

0

2

0 22
dKtd

dt
dKPa &  (71)

 
Comparing equations (71) and (65) it can be seen 
that the engine power and the available power are 
equal. This means that all the power that is 
provided by the engine is available to drive the 
rotor, hence that no power is lost due to the 
flexibility of the blades when the engine power is 
converted to flapping power.  
 



 

 9

A two mode (flexible) approximation 
 
To calculate the influence of the flexibility of the 
blade on other important parameters, a two mode 
approximation will be used. In this section the 
expressions for the mode shapes and generalized 
coordinates of the first two modes will be calculated 
and the resulting bending motion will be presented. 
The following displacement function has been 
adopted (Ref 6): 
 

( )( ) ( ) ( )
6

1
3

3
6

32
321 +++

+++−++=
iii

i xiixiixii
R
γ  

 (72)
In which x is the non-dimensional rotor radius: 
 

R
rx =  (73)

 
This results in the following displacement functions 
which comply with the boundary conditions, i.e. the 
fact that the displacement is zero at r=0, and equal 
to R at r=R: 
 

r=0γ  (74)

3

4

2

32

1 3
1

3
42

R
r

R
r

R
r +−=γ  (75)

 
The coefficients Aij and Bij are now calculated: 
 

3
00 3

1mRA =  (76)

3
01 45

13 mRA =  
(77)

0110 AA =  (78)

3
11 405

104 mRA =  
(79)

32
00 3

1 RmB Ω=  
(80)

32
01 45

13 RmB Ω=  
(81)

0110 BB =  (82)

32232
11 405

122
5

16
405
122

5
16 RmkRm
R
EIB Ω






 +=Ω+=  

 (83)
With k given by: 

42
2

Rm
EIk

Ω
=  (84)

In the remainder of this paper, k2 is chosen to be 
equal to 1/270. Using equation (20) the 
eigenfrequencies are obtained: 
 

Ω=0ω  (85)

Ω=
13

127
1ω  (86)

 
And with the eigenfrequencies known, equation (20) 
can be used to calculate the mode shapes. For the 
first eigenfrequency (ω0) it follows that: 
 

0
ˆ
ˆ

0

1 =
α
α

 (87)

 
And with equation (25): 
 

( ) rcrcS 0100 01 =⋅+⋅= γ  (88)
 
The normalization constant is chosen such that: 
 

( ) RRSn =  (89)
 
Resulting in: 
 

10 =c  (90)

rS =0  (91)
 
And for the second eigenfrequency: 
 

13
15

ˆ
ˆ

0

1 −=
α
α

 (92)

















+−−⋅=

13
15

3
1

3
421 3

4

2

32

11 R
r

R
r

R
rrcS  (93)

( ) RRRRRcRS =













 +−−=

13
15

3
1

3
4211  (94)

2
13

1 −=c  (95)

3

4

2

32

1 2
51015

2
13

R
r

R
r

R
rrS +−+−=  (96)

 
The equations of motion (46) can be rewritten using 
equation (52): 
 

( ) ∑ ′−Ε=+′′
m

nmmnflnnnn CmF φγλφφ
2

2
 (97) 
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in which: 
 

Ω
= n

n
ωλ  (98)

I
fF n

n =  (99)

2Ω
=
I
M

m fl
fl  (100)

( ) ( )
dr

dSS n
nn

0
0 =′=Ε  (101)

∫=
R

mnnm rdrSS
R

C
0

4

1
 (102)

 
For the first mode shape this results in: 
 

( ) ( )01100000
2

000 2
CCmF fl φφγλφφ ′+′−Ε=+′′   

 (103)
With the following quantities: 
 

12

2
02

0 =
Ω

=
ωλ  (104)

( ) 10
0 ==

I
fF  (105)

( ) 1000 =′= SE  (106)

4
11

0
00400 == ∫

R

rdrSS
R

C  (107)

168
111

0
10401 == ∫

R

rdrSS
R

C  (108)

 
When these quantities are substituted, equation 
(103) can be written as: 
 

( ) flm=





 ′+′++′′ 1000 168

11
4
1

2
φφγφφ  (109)

 
For the second mode shape, the equation of motion 
is given by: 
 

( ) ( )11110011
2

111 2
CCmF fl φφγλφφ ′+′−Ε=+′′ (110)

 
Substitution of the following quantities: 
 

13
127

2

2
12

1 =
Ω

=
ωλ  (111)

( )
12
13

3
1
36
13

1
3

3

1 ===
mR

mR

I
fF  (112)

( )
2

13011 −=′=Ε S  (113)

0110 CC =  (114)

144
251

0
11411 == ∫

R

rdrSS
R

C  (115)

 
gives: 
 

flm2
13

144
25

168
11

212
13

13
127

1011 −=





 ′+′+






 +′′ φφγφφ  

 (116)
 
Since the excitation frequency of the mechanical 
flapping moment is equal to the angular velocity Ω, 
the following expressions can be adopted for the 
generalized coordinates and the non-dimensional 
mechanical flapping moment (assume a phase 
difference equal to zero for the mechanical flapping 
moment): 
 

ψφφφ iti ee 000
ˆˆ == Ω  (117)

ψφφφ iti ee 111
ˆˆ == Ω  (118)

ψi
fl

ti
flfl ememm ˆˆ == Ω  (119)

 

 
Fig. 5: Bending of a flexible blade for k2=1/270 
and γγγγ=8, normalized at S(R)=R. An azimuth 
angle difference of ππππ/4 occurs between two 
successive plots. 
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Substituting the above expressions into the 
equations of motion for the mode shapes (110) and 
(116), and assuming that the Lock number is equal 
to 8 will give, after some calculation, the following 
expressions for the generalized coordinates: 
 

( )38944.1cosˆ0291.10 −= ψφ flm  (120)

( )06578.0cosˆ710241.01 −−= ψφ flm  (121)
 
Combining equations (47), (91), (96), (120) and 
(121) finally gives the resulting bending motion for 
the two mode approximation. This resulting motion 
is shown in figure 5. 
 

A one mode (rigid) approximation 
 
The bending function of a rigid blade will also have 
to be derived in order to be able to compare the 
results of a flexible blade to the results of a rigid 
blade. A rigid blade can be simulated by using a 
one mode approximation. The displacement 
function for a one mode approximation is still given 
by equation (73) and the coefficients A00 and B00 
are given by equations (76) and (80). This results in 
the eigenfrequency of equation (85) and the mode 
shape as given by equation (91). The 
corresponding generalized coordinate for the one 
mode (rigid) approximation can now be calculated 
as: 
 







 −=

2
cosˆ0

πψφ flm  (122)

 
Which results in the following bending function for a 
rigid blade: 
 

rmZ fl 





 −=

2
cosˆ πψ  (123)

 
The difference between the flexible blade root angle 

and the rigid blade flapping angle  
 
The equation for the flexible blade root angle ε is 
given by equation (55). For a two mode flexible 
blade approximation is thus follows that: 
 

1100 EEflex φφε +=  (124)
 
Substitution of equations (106), (113), (120) and 
(121) and some calculation yields: 
 

( )ψψε sin31568.1cos79218.4ˆ += flflex m (125)
 

Which results in the following amplitude: 

flflex m̂96.4ˆ =ε  (126)
 
For the one mode approximation resembling a rigid 
blade, the ‘flexible’ blade root angle is equal to the 
flapping angle of the entire blade and can be 
calculated by: 
 

00Erigid φβε ==  (127)
 
Substitution of equations (106) and (122) then 
gives: 
 







 −==

2
cosˆ πψβε flrigid m  (128)

 
And thus the following amplitude results for the rigid 
blade: 
 

flrigid m̂ˆˆ == βε  (129)
 
Which is consistent with the findings in (Ref 2 and 
4). When comparing equations (129) and (126) it 
can be seen that the amplitude of the flexible blade 
root angle is almost five times as large for the 
flexible blade as it is for the rigid blade. This is 
depicted in figures 6 and 7. Figure 6 is the same as 
figure 5 except for the fact that the two extreme 
positions of the movement of the rigid blade are 
added. Figure 6 shows a close up of the bending of 
the blades at the blade root, and clearly shows that 
the flexible blade root angle is five times as large. 
Physically this means that the up and down 
movement of the forced flapping mechanism at the 
blade root should be five times larger for a flexible 
blade than for a rigid blade.  
 

 
Fig. 6: Bending of a flexible blade and a rigid 
blade for a given flapping moment 
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Fig. 7: The root bending of a flexible blade and a 
rigid blade for a given flapping moment 
 
Windtunnel tests that have been performed (Ref 7) 
indeed showed that the amplitude of the forced 
flapping mechanism needed to be larger than what 
was expected from calculations based on the theory 
for rigid blades. However, these windtunneltests 
showed that the ratio of the amplitudes of the 
flexible blade and rigid blade (

rigidflex εε ˆ/ˆ ) was only 
equal to 1.5 which is lower than indicated by 
equations (126) and (129). This is due to the fact 
that the blades that were used for the 
windtunneltests had a larger stiffness.  
 

Effect of a flexible blade on the required flapping 
moment 

 
The required flapping moment can be calculated by 
using the expression for the flapping power as 
given by equation (58). Using equations (56), (100) 
and (119) it can be derived for the two mode flexible 
blade approximation that: 
 

( )∫ ′+′Ω=
π

ψφφψ
π

2

0
110

3

cosˆ
2

dEmIP flfl  (130)

 
Substitution of equations (113), (120) and (121) and 
some calculation yields: 
 

2
3

. ˆ
2

316.1 flflexfl mIP Ω=  (131)

 
For the one mode approximation of the rigid blade, 
the flapping power can be expressed as: 
 

( )∫ ′Ω=
π

ψφψ
π

2

0
0

3

cosˆ
2

dmIP flfl  (132)

Using equation (122) it follows that: 

2
3

, ˆ
2 flrigidfl mIP Ω=  (133)

 
Which is again consistent with the findings in (Ref 2 
and 4). When comparing equations (131) and (133) 
it can be seen that to obtain the same amount of 
flapping power the amplitude of the mechanical 
flapping moment for the flexible blade only needs to 
be 76% of the amplitude of the mechanical flapping 
moment for a rigid blade. A smaller mechanical 
flapping moment is thus required for a flexible 
blade. The bending of a flexible blade resulting from 
this smaller mechanical flapping moment is 
compared to the flapping of a rigid blade resulting 
from a larger mechanical flapping moment in figure 
8. 

 
Fig. 8: Bending of a flexible blade and a rigid 
blade for the same flapping power 

 
Effect of a flexible blade on the torque about the 

rotor hub 
 
Knowing that power is also given by: 
 

Ω= QP  (134)
 
in which Q  is the average torque about the rotor 
hub, the torque about the rotor hub as caused by 
the flexible and rigid blade is readily calculated 
using equations (131) and (133): 
 

2
2

ˆ
2

316.1 flflex mIQ Ω=  (135)

2
2

ˆ
2 flrigid mIQ Ω=  (136)
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Compared to the rigid blade, a smaller flapping 
moment is thus necessary for the flexible blade in 
order to generate a certain amount of torque around 
the rotor hub. 
 

Effect of a flexible blade on the vertical shear 
fluctuations in the root of the blade 

 
The vertical shear in the root of the blade can be 
expressed as follows: 
 

∫ 





 −

∂
∂=

R

drZm
r
FV

0
0

&&  (137)

 
Since we are only interested in the vertical shear 
fluctuations the influence of the pitch angle and 
induced velocity will be neglected and the first part 
of the integral in equation (137) is given by 
equations (37) and (38).  
For the flexible blade two mode approximation the 
first part of the integral representing the shear force 
due to aerodynamic forces, when using equations 
(91), (96), (120) and (121) can be calculated as: 
 

⋅Ω=








∂
∂
∫ fl

flex

R

o

m
R
Idr

r
F ˆ372.1

2

 

                           ( )38944.1sin −⋅ ψ  (138)
 
For the rigid blade the first part of the integral is 
calculated using equations (91) and (122): 
 

ψcosˆ
3
4 2

0
fl

rigid

R

m
R
Idr

r
F Ω−=









∂
∂
∫  (139)

 
The second term of the integral due to inertia forces 
can be expressed as: 
 

∫ ∑∫ ′′Ω−=−
R

n
nn

R

drSmdrZm
0

2

0

φ&&  (140)

 
Using equations (91), (96), (120) and (121) it 
follows for the flexible blade that: 
 

( +Ω=







−∫ ψcos53996.0ˆ

2
3 2

0 R
ImdrZm fl

flex

R
&&  

                             )ψsin03556.1+  (141)
 

And the vertical force in the blade root due to inertia 
forces for the rigid blade can be expressed as 
(using equations (91) and (122)): 
 

ψsinˆ
2
3 2

0 R
ImdrZm fl

rigid

R Ω=







−∫ &&  (142)

 
The total vertical shear force in the root of a flexible 
blade can now be calculated by adding equations 
(138) and (141): 
 

( )ψψ cos540.0sin801.1ˆ
2

,0 −Ω= flflex m
R
IV  (143)

 
And the total vertical shear force in the root of a 
rigid blade is, when summing equations (139) and 
(142), given by: 
 







 −Ω= ψψ cos

3
4sin

2
3ˆ

2

,0 flrigid m
R
IV  (144)
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Fig. 9: The total vertical shear force, the vertical 
shear force due to inertia forces (in.) and due to 
aerodynamic forces (aero) at the root of the 
blade for both a rigid blade and a flexible blade 
as a function of the azimuth angle  
 
This is also depicted in figure 9. In figure 9 the non-
dimensional vertical shear force is used: 
 

200 Ω
=

I
RVv  (145)

 
It can be seen that although the amplitudes of the 
separate contributions of aerodynamic forces and 
inertia forces to the vertical force in the root of the 
flexible blade are larger than those for the rigid 
blade, the amplitude of the total vertical force in the 
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root of the flexible blade will be smaller than in the 
root of the rigid blade. 
 

Effect of a flexible blade on the phase difference 
between the flapping moment and the deflection of 

the flapping mechanism 
 
The mechanical flapping moment can be expressed 
by (see figure 4): 
 

( ) ( )εδκεδ −=−
Ω

=
Ω

= 22 I
K

I
M

m fl
fl  (146)

 
In which κ is given by: 
 

2Ω
=
I
Kκ  (147)

 
Equation (146) can also be written as: 
 

( )






 =−=

dr
rdZm fl

0δκ  (148)

 
As already shown in equation (43) this can be 
rewritten as: 
 

( ) ( )( )00 1100 SSm fl ′−′−= φφδκ  (149)
 
Using equations (91), (96), (120) and (121) and 
choosing κ equal to 0.2 finally gives: 
 

( )13356.0cos880.9ˆ −= ψδ flm  (150)
 
Equation (150) shows that a phase difference equal 
to –0.13356 rad indeed occurs between the 
mechanical flapping moment and the deflection of 
the flapping mechanism. 
 

Conclusions 
 
This paper has shown that the flexibility of the 
blades does not have an influence on the key 
characteristics of the Ornicopter. Despite the 
flexibility it is still possible to achieve a propulsive 
and lifting force by forced flapping of the blades, 
and it is thus still possible to realize a single rotor 
without reaction torque.  
 
No power is lost due to the flexibility of the blades, 
which means that all the power that is provided by 
the engine is available to drive the rotor. 
 

When the angle of the flexible blade at the blade 
root is compared to the flapping angle of a rigid 
blade it appears that the angle of the flexible blade 
is larger than that of the rigid blade at the blade 
root. As a consequence of the larger blade root 
angle (or flapping angle), the angular velocity of the 
flapping motion at the blade root will also be larger 
for a flexible blade. Since the flapping power is 
equal to the integral of angular velocity times 
flapping moment, it follows that for the same 
amount of power a smaller flapping moment will be 
necessary for a flexible blade than for a rigid blade 
since the angular velocity will be higher for a flexible 
blade. 
 
Additionally it has been shown that the total vertical 
shear force in the root of the flexible blade will be 
smaller than the total vertical shear force in the root 
of a rigid blade. And that a phase difference occurs 
between the flapping moment and the deflection of 
the forced flapping mechanism. 
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