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Abstract

The Ornicopter is a single rotor helicopter without a
reaction torque. By forcing the blades of the
Ornicopter to flap up and down, both a lifting force
and an average propulsive force can be generated.
Because of this average propulsive force the blades
will propel (i.e. rotate) themselves and there will no
longer be a need to transfer torque from the
fuselage to the rotor. If there is no longer a torque
transferred from the fuselage to the rotor there will
neither be a reaction torque.

The theory and calculations performed in previous
publications [1][3][4] were based on the assumption
of rigid rotor blades. This paper will concentrate on
the effects that flexible blades will have on the key
characteristics of the Ornicopter. It will be
investigated whether any power will be lost due to
the flexibility of the blades, what the effects of a
flexible blade are on the required flapping moment,
the torque about the rotor hub and the vertical
shear force fluctuations in the root of the blade.
Additionally the difference between the root angle €
of a flexible blade and the flapping angle B of a rigid
blade will be addressed and to conclude the phase
difference between the flapping moment and the
deflection of the flapping mechanism will be
calculated.

Notations
c Blade chord
¢ Lift coefficient of a blade element
Clu Derivative of ¢, with respect to o dc/do
Ch Constant of normalization for a particular
mode shape

f(n) Generalized moment of inertia, value of the

R
integral ij”Smdr for n=m
0

k K*=El/msR’

m Mass per unit length

myg Non-dimensional flapping moment

i, Complex amplitude of the non-dimensional
flapping moment

r Radius of blade element

v Induced velocity

Vo

Up
Ucf

Uspring

Vo
W

Non-dimensional vertical shear force in the
root of the blade

Non-dimensional radius of blade element
7R

Coefficient of the equations of motion for a
flexible blade

Coefficient of the equations of motion for a
flexible blade

Lift coefficient of a blade

1 R
—8.8,dr
R 0

Modulus of elasticity

Sn'(0)

Excitation force

i/l

Centrifugal force

Mass moment of inertia of the rotor blade
about the rotor hub

Spring stiffness

Lift

Bending moment

Mechanical flapping moment

Power available to drive the rotor

Engine power, power transmitted by the
engine to the spring of the mechanical
flapping mechansim

Mechanical flapping power, power exerted
by the flap forcing mechanism on the blade
Torque about the rotor hub

Generalized force or moment for the
generalized coordinate ¢,

Rotor radius

Mode shape for a particular eigenfrequency
Derivative of S, with respect to the azimuth
angle dS,/dy

Mode shape for a particular eigenfrequency
Derivative of S,, with respect to the azimuth
angle dS,/dy

Kinetic energy

Potential energy

Strain energy due to bending

Strain energy due to the centrifugal force
Potential energy due to the deflection of the
spring

Vertical shear force in the root of the blade
Work done in the direction of the
generalized coordinate ¢,



® QR

mY Y T Y W™ R

>

=R

=

Vertical displacement of the flexible rotor
blade

Angle of attack
Deflection angle
Amplitude of the generalized coordinate ¢,

Amplitude of the generalized coordinate ¢,

Flapping angle of the blade
Complex amplitude of the flapping angle

Derivative of B with respect to the azimuth
angle dp/dy

Second derivative of  with respect to the
azimuth angle d’p/dy®

Derivative of B with respect to time dp/dt
Second derivative of B with respect to time
d*p/dt®

Deflection of the mechanical flapping
mechanism

Derivative of dwith respect to time do/dt
Angle between the horizontal and the line
tangent to the blade curvature at the blade
root, or € = dZ(r=0)/dr

Derivative of £ with respect to time de/dt
Complex amplitude of the angle between
the horizontal and the line tangent to the
blade curvature at the blade root

Lock number pC,,cR*/I

i-th displacement function

Derivative of the displacement function with
respect to the radius dy/dr

Second derivative of the displacement
function with respect to the radius dzyf/dr2
Inflow angle

Angle of rotation of the flexible rotor blade
Generalized coordinate for a displacement
function

Derivative of the generalized coordinate for
a displacement function with respect to the
azimuth angle dg¢/dy

Second derivative of the generalized
coordinate for a displacement function with
respect to the azimuth angle d°g/dy/
Generalized coordinate for an mode shape
Derivative of the generalized coordinate for
an mode shape with respect to the azimuth
angle dg/dy

Second derivative of the generalized
coordinate for an mode shape with respect
to the  azimuth angle d’¢/dy/
Derivative of the generalized coordinate for

an mode shape with respect to time dg/dt

é, Second derivative of the generalized
coordinate for an mode shape with respect
to time o’ g¢/dt?

K/NF

K
A Non-dimensional induced velocity v/QR

An Non-dimensional n-th eigenfrequency ay/2
o Pitch angle

P Air density

v Azimuth angle

h Eigenfrequency

Q Rotational speed of the rotor

Subscripts

Rigid  For arigid rotor blade
Flex  For a flexible rotor blade

Introduction

A short introduction into the basic principles of the
Ornicopter is given in an accompanying paper (Ref
1). The theory and calculations that have been
presented in previous publications (Ref 2, 3, 4, and
5) were all based on the assumption of rigid rotor
blades. The question this paper will provide an
answer to is whether the introduction of flexible
blades will have an effect on any of the key
characteristics of the Ornicopter.

To be able to do so the equations of motion for a
flexible blade during forced vibration by the forced
flapping mechanism (Ref 1) will have to be derived.
This will be done by using Lagrange's equations
based on the theory as explained in (Ref 6). The
following section will start with the derivation of the
potential and kinetic energy of a blade in free
vibration. Using these expressions the equations of
motion for a blade in free vibration will be derived in
the next section. Subsequently the excitation force
will be added to the equation which will result both
in the equations of motion for a blade during forced
vibration by the flapping mechanism and in the
bending function for a blade during forced vibration.
This bending function will then be used to analyse
the effects that flexible blades have on the
characteristics of the Ornicopter.

Potential and kinetic energy of a blade in free
vibration

The lift force acting on the blade will bend the
blade, for example in the way that is shown in figure
1. The differential angle of rotation (d¢) of an
element of the blade with length dr can be
expressed as:



Mdr
do= 1
Q I (1

In which M is the bending moment and E/ is the
flexural rigidity of the blade (E the modulus of
elasticity and / the area moment of inertia of the
cross sectional shape).

ZA

E

‘dr

Fig. 1: Bending of and forces acting on a
rotating flexible blade

The strain energy that is stored in this element is
given by:

U, = %Md(p )

Which, using equation (1) can also be written as:

2
v, = LM Lo, 3)
2 EI 2 dr
ZA
Fig. 2: Relation between the vertical

displacement and the angle of rotation

Assuming small angles (see figure 2):

dz
tan@ = (DZE (4)

Substitution of equation (4) into equation (3) and
integration yields a general expression for the total
strain energy due to bending as a result of the lift
force that is acting on the blade:

sz—jEI(a ZJ dr (5)

2
0 or

The centrifugal force (G) that is acting on the blade
also causes potential energy. The magnitude of the
moment that is caused by the centrifugal force can
be calculated using figure 1:

R
M =GdZ + deTZ ~GdZ = j mrQ*drdZ  (6)

Where m denotes the mass per unit length and @
the rotational velocity. The potential energy of the
entire blade due to the centrifugal force can be
calculated as:

jM j @f] dr (7)

The total potential energy is now obtained by
summing equation (5) and (7):

1t (0Z 0°Z
u _,=—|G — — | EI d 8
total 2 v([ ( a}’ j j ( ar j r ( )

To conclude the total kinetic energy of a flexible
blade due to bending is equal to:

R 2
T =l m(a—ZJ dr 9)
24 ot

Equations of motion for a blade in free vibration

As a starting point to derive the actual bending of
the flexible blade the displacement of the blade is
expressed as a function of both the distance to the
rotor hub and time:

Z}/l fOI"l—(Olz ) (10)

In this equation ¥ are functions used to approximate
the blade shape and ¢ is the normal coordinate.
The normal coordinates ¢ determine in which
proportions the functions y have to be summed to
arrive at the actual bending of the blade.



Using the displacement function (equation (10)) and
the expressions for the potential and kinetic energy
(8) and (9), the equations of motion for a bending
blade will be derived. Substitution of equation (10)
into equation (8) yields the potential energy:

U =L 55000, Oflor ey )+ Er ke

(11)

With:

, dy,

s =1t 12
y,(r) i (12)

, d’y.

s L 13
y(r) o (13)

In which j obviously has the same properties as i.
The kinetic energy is obtained by substitution of
equation (10) into equation (9):

=l S 008 O mrly i

The equations of motion can be derived by using
Lagrange's equations and equations (11) and (14):

0= 36,0 my, )y, )i+

+ 30,0670 )+ B 0l s

J 0

Equation (15) can be simplified by defining:

A

J

my,(r)y, (r)dr (16)

B,

y
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(67, )+ ELy )y ) )

Which results in the following equations of motion
for free vibration:

> (3,004, +9,()B,)=0fori=(01.2...) (4g,

J

To solve the equations of motion the following
harmonic function is adopted:

¢, =@, coslar+e,) (19)

In which @ is the eigenfrequency. Substitution of
expression (19) into the equations of motion for
every generalized coordinate as given by equation
(18) gives:

S ara,+B), =0 fori=(012.) (5

J

Arranging the equations in matrix notation and
putting the determinant to zero will give the values
for the eigenfrequencies of the system. With the

eigenfrequencies known, the relative values of ¢,
can be determined:

o8] a

a,

Using equations (10), (19) and (21) this will result in
the following displacement for a particular
eigenfrequency:

Z,= Z%{?} &, cos(w,t +¢€,) (22)
i a, n

Introducing the constant of normalization ¢, gives:

Z, =Zy{ﬂ c,a, cos(w,t +&,) (23)
i a, n

Define a new generalized coordinate ¢,:
¢, =&, cos(m,t+¢) (24)

And define the normalized mode shape for a
particular eigenfrequency as:

a.
S = | — 25
\ C"Z%L?ol (25)

Combining equations (23), (24) and (25) yields the
normalized displacement of a blade for one
eigenfrequency:

Zl’l = ¢I’l S}’l (26)



And the complete solution for the bending of the
blade in free vibration for all eigenfrequencies is
given as:

Z=39,0s,(r) (27)

An important characteristic of mode shapes is that
they are orthogonal which means that:

R
J-mSmSndIf:O ifnsm (28)
0

R
J-mSmSndr = f(n) ifn=m (29)
0

The equations of motion can now also be derived in
terms of the mode shapes, instead of in terms of
the functions used to approximate the blade shape
(%). The potential energy due to the bending of the
blade, the potential energy due to the centrifugal
force and the kinetic energy of the flexible blade
can be expressed in terms of the mode shapes by
using equations (5), (7), (8), (9) and (29) and by
using the orthogonality of the mode shapes
(equations (28) and (29):

U, = %g;@(bm;fEIS:S;dr (30)
U, =%;Zm:¢n¢mIGS;S;dr (31)
U =%;¢3wﬁf (n) (31)
T= %;&ff (n) (32)

Using Lagrange's equations, the following
equations of motion for free vibration in terms of the
mode shapes result:

@, +0,02)f(n)=0 (32)

Equations of motion for a blade during forced
vibration by the flapping mechanism

A general expression for the generalized force or
moment per blade element (dQ,) for each
generalized coordinate is given by:

oF
o = &W, OZ,dF _ 9,5, gd” (33)
! 5¢I’l §¢n §¢l’l

In which W, is the work done in the direction of the
generalized coordinate ¢,. Integration yields the
generalized force or moment caused by the entire
rotor blade:

R
0,=]s, %—Fdr (34)

r

A specific expression for the generalized forces that
occur due to the flapping of the blade can be
derived by using the formula for the total lift on a
blade element (see also figure 3):

dL=c, {9 _AR_ ﬂ'}%p(gr)z cdr (35)
r

Fig. 3: Aerodynamic forces and velocities on a
blade element at distance r from the rotor hub

With ' the derivative of the flapping angle with
respect to the azimuth angle and the non-
dimensional induced velocity (4;) given by:

V.
A =—t 36
= (36)

This equation is valid for a rigid blade. If the term £’
dz

is replaced by EQ (since a displacement of the
r

air downwards with ,Br corresponds with an

upwards displacement of the blade element with
dZ/dt, see figures 3 and 4) this expression would be
valid for a flexible blade. The influences of pitch
angle and induced velocity will be neglected since



we are only interested in the fluctuating part of the
lift force.
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Q dZ

o
0

dz
dr

r=0

Fig. 4: Schematic representation of a flexible
blade with forced flapping mechanism

The expression for the part of the lift on a blade
element due to the flapping of the blade becomes:

oz

dL=-C, ga; 5 — p(Qr) cdr

(36)

The minus sign is due to the fact that a positive
displacement Z results in a difference in lift which is
directed downwards. With reference to equation
(34) it can be stated that:

YA
9F = dr=—c, %—p(Qr) cdr

or

(37)

Using the Lock number () the mass moment of
inertia (/= 1/3mR) and substituting equation (27) for
the displacement Z yields:

%de —ZEZ(bmSmrdr (38)

The reason that equation (38) is summed over m
instead of over n has to do with the fact that
equation (38) will be substituted into equation (34).
This equation already contains the variable n which
denotes that this is the generalized force or moment
for the generalized coordinate ¢,. If equation (38)
would be summed over n and would be substituted
into equation (34), this would imply that the mode

shape S, already present in equation (34) would
also be summed over n, which is not correct.

Note that since the excitation forces are included,
this implies that the mode shapes are now forced to
vibrate with the excitation frequency. This means
that the generalized coordinate for each mode
shape is from now on given by:

¢, =&, cos(ax+¢,) (39)

In which @ is the excitation frequency. Substitution
of equation (38) into equation (34) yields the
generalized force or moment due to the damping
effect of the lift for a flexible rotor blade:

©
":%Fz(’b jSS rdr (40)

Now the flap forcing mechanism will be included in
the equations of motion, an additional potential
energy term emerges due to the torsion spring that
is part of the flapping mechanism (see figure 4):

1

Uspring :EK(é‘—S)Z (41)
2
US ring =7 5_8_2 (42)
e 2 or|,_,
1 2
Usping =5 K (5 =295, (0)j (43)

1 , ,
Us'pring = 2K(52 - 252 ¢nSn (0)+ z Z ¢n¢mSn (O)S

(44)

In which K is the spring stiffness. For Lagrange's
equations it is necessary to calculate:

U .
o —K(é' -0, (0)}?2 ©)  uy

The equations of motion for a flexible blade in terms
of the mode shapes including the excitation forces
in terms of the mechanical flapping mechanism can
now be composed by incorporating the effects of
the spring (equation (45)) and the general
expression for the generalized forces and moments
(equation (40)) in equation (32):

6+ 0,07 )f<n)—z<(5—z¢ms:,, <o>js,: 0)=

(o)]



R
—%2—?2@ [8,8,rdr for n=(012...) we)
m 0

The displacement of a blade during forced vibration
by the flapping mechanism

The above means that the complete solution for the
displacement of the blade during forced vibration is
now known. Analogous to equation (29) the
complete solution is given by:

Z=39,0s,(r) (47)
with
¢, =, cos(ax +¢,) (39)

&
S = | —
\ C”ZKL? } (25)

e yis a set of chosen displacement functions

e @, is determined by setting the determinant of
equation (20) equal to zero.

e With the eigenfrequencies known, the relative
values of ¢, for each eigenfrequency can be

determined using equations (20) and (21)
e ¢, is the constant of normalization
e wis the excitation frequency, equal to 2

. é{n and g, are calculated using equation (46)

Power balance for flexible blades: is any power lost
due to the flexibility of the blades?

Now the bending of the blade can be calculated, the
question this section will provide an answer to is
whether any power that is provided by the engine is
lost due to the flapping of the flexible blades or due
to the transmission of the power to the mechanical
flapping mechanism. As a consequence this power
will not be available as a propulsive force to drive
the rotor. To determine whether or not this is the
case, the power available to drive the rotor, the
mechanical flapping power and the power that is
provided by the engine are calculated and
compared in the following paragraphs.

The power available to drive the rotor

The power per blade that is available to drive the
rotor due to the forced flapping of the blade (P,) is
equal to the forward component of the lift multiplied

by r, integrated over the rotor blade and averaged
over one revolution, see also figures 3 and 4:

2 R
P, =2L.[dl//j—dLsin(pQr (48)
1 0 o
oz
P :Lwaf—dLigr (49)
2wy Y Qr

Using equation (47) it follows that:

P = —lzjﬂdwfz& S dL (50)
a 27 ) n

Combining equations (46) (37) and (38) gives:

R

[s,aL=6,+0,0)f(n)+

0

—K((s—;%s; <o>js,: 0 e

Which can be simplified by introducing the following
relation for the flapping moment M (figure 4):

M, = K(é ->.9,5., (o)j (52)

Substitution of equation (52) into equation (51), and
subsequent substitution in equation (50) yields:

1 2w . ,
== j Y39, - ,57(0)+
+(@, +0,02)r(n)] (53)

The second part of the integral in equation (53) is
equal to zero, which yields:

1 2 .,
Fo= g [ M 2005, 0My (54)

Looking at figure 4 the following can be derived for
the flexible blade root angle &

_dZ(r=0) ,
e=— — = ;Mﬂ 0) (55)



£=.4,5,(0) (56)

Substitution of equation (56) into equation (54)
gives the final expression for the average available
power:

1°F .
P, = _([Mﬂsdz// (57)

The flapping power: the power transmitted by the
spring to the root of the blade

The average flapping power (the average power
transmitted by the spring to the root of the blade)
can be derived from figure 4 and the fact that power
is equal to moment times angular velocity:

2r
P,=— | M ,édy (58)
A fl
2 l-
Comparing equations (57) and (58) the conclusion
thus is:

B, =P, (59)

Or in words: the power that is transmitted to the root
of the blade is also available to drive the rotor,
hence no power loss occurs at these points in the
transmission.

The engine power: the power transmitted by the
engine to the spring

The average engine power can again be derived
from figure 4 and the fact that power is equal to
moment times angular velocity:

en

1 2z .
Fow =5 [ My (60

Combining equations (52) and (55) gives:
M,=K(-¢) (61)

Which substituted into equation (60) results in:

1271'

P, == |K(6-¢&)dty (62)
2

2 2r
eng:K_Q d_é‘dw_ﬁjg&’l// (63)

2 y dy 27

KQ1 ,w=2r K .
=—_4 —— |exd 64
w8 2T 2 ‘W:O 2%! v (64)

And since ¢ is a periodic function it will have the
same value for y=0 and y=27, therefore equation
(64) reduces to:

K 2w .
P =——— e 65
27[! v (65)

To be able to compare the engine power to the
power that is available to drive the rotor equation
(57) is rewritten using equation (61):

1 °f .

P =— |K(6-¢)édy (66)
27 s,

2 2r

Pa :£ 5Ed _K_Q ﬁdl/f (67)
2y dt 2y dy
KQ°f KQ1 =2

P =K e KL -
27 2w 2 lw=0

And since ¢is also a periodic function:

2
P, = _kQ jgdﬁ (70)
2
or.
2r 2
P, :—£ ed—5d£2t :—ﬁje‘é‘a’w (71)
2y dt 27

Comparing equations (71) and (65) it can be seen
that the engine power and the available power are
equal. This means that all the power that is
provided by the engine is available to drive the
rotor, hence that no power is lost due to the
flexibility of the blades when the engine power is
converted to flapping power.



A two mode (flexible) approximation

To calculate the influence of the flexibility of the
blade on other important parameters, a two mode
approximation will be used. In this section the
expressions for the mode shapes and generalized
coordinates of the first two modes will be calculated
and the resulting bending motion will be presented.
The following displacement function has been
adopted (Ref 6):

7 ' ' xi+l o xi+2 o xi+3
—==0+2)i+3 —ili+3 +ili +1
= (i 2)+3) =il +3) o+ il+1)
(72)
In which x is the non-dimensional rotor radius:
x=L (73)
R

This results in the following displacement functions
which comply with the boundary conditions, i.e. the
fact that the displacement is zero at r=0, and equal
to Ratr=R:

Yo=T (74)

S LA LA Y (75)

Ay = EmR3 (76)
77
Ay, ZEmR3 )
45
4,y = 4, (78)
79
A4, =ﬁmR3 7o)
405
80
By, :émgw (©0)
81
B, = B oo ©)
45
B, =B,, (82)
B, = 16EL 122 ope = [Ekz +£JmQ2R3
5 R 405 5 405
(83)
With k given by:
k* = (84)

© mQ*R*

In the remainder of this paper, K is chosen to be
equal to 1/270. Using equation (20) the
eigenfrequencies are obtained:

w, =Q (89)
127

o = a (86)
13

And with the eigenfrequencies known, equation (20)
can be used to calculate the mode shapes. For the
first eigenfrequency (ay) it follows that:

L =0 87)

And with equation (25):
Sy =c,(r-1+y-0)=c,r (88)

The normalization constant is chosen such that:

S (R)=R (89)
Resulting in:

c, =1 (90)
S, =r (91)

And for the second eigenfrequency:

a, 15
s T T (92)
a, 13

o4 1rt 1S
S =¢|rl-|2————+——r0 | = 93
1 1( (R 3R’ 3R3JI3J ©3

S, (R)= c{R —[2R _2R +1RJEJ =R (94)

3773 )13
13
Cl :—? (95)
2 3 4
S, :—Er+15’"——10’"—2+§’"—3 (96)
2 R R' 2R

The equations of motion (46) can be rewritten using
equation (52):

67 +9,4,2)F, =m E, —%ZQLCW (97)



A = 98
S (98)
/,
F === 99
T (99)
M,
m, =—: (100)
' 1Q
das (0
E =5(0)= .(0) (101)
dr
1 R
C, = F!SnSmrdr (102)
For the first mode shape this results in:
(¢o + 94, ) =m4E, (%Coo + ¢1,C01)
(103)
With the following quantities:
a)Z
A2 = Q_Oz =1 (104)
F,= @ =1 (105)
E,=58;(0)=1 (106)
1§ 1
Cy, =F_([Sosordr = (107)
1§ 11
Cy, S,S,rdr = 108
"R I 168 (109)

When these quantities are substituted, equation
(103) can be written as:

(¢0+¢0) ( ¢o 168¢j:mﬂ (109)

For the second mode shape, the equation of motion
is given by:

(¢1”+ ¢12'12 )Fl = mﬂEl _§(¢(;C10 + ¢1’C11) (110)

Substitution of the following quantities:

2
, o 127
=& 227 (111)
A Q13
13
—mR
F = ) _ 316 _B (112)
Il 12
3
E, =5/(0)= —% (113)
Cy =Cy (114)
1§ 25
C, :F.([SlSlrdr = (115)
gives:
12713 13
((/51 é le 5(@% m(ﬁlj 5 M

(116)

Since the excitation frequency of the mechanical
flapping moment is equal to the angular velocity €,
the following expressions can be adopted for the
generalized coordinates and the non-dimensional
mechanical flapping moment (assume a phase
difference equal to zero for the mechanical flapping
moment):

@ = éoeigt = éoew (117)
¢ = g™ =g (118)
m, = e =m e (119)

Bending of the blade

Total bending

Elade radius

Fig. 5: Bending of a flexible blade for k?=1/270
and =8, normalized at S(R)=R. An azimuth
angle difference of mw/4 occurs between two
successive plots.



Substituting the above expressions into the
equations of motion for the mode shapes (110) and
(116), and assuming that the Lock number is equal
to 8 will give, after some calculation, the following
expressions for the generalized coordinates:

@, =1.0291s1 , cos(y —1.38944) (120)
¢, =—0.710241s , cos(y — 0.06578) (121)
Combining equations (47), (91), (96), (120) and

(121) finally gives the resulting bending motion for
the two mode approximation. This resulting motion
is shown in figure 5.

A one mode (rigid) approximation

The bending function of a rigid blade will also have
to be derived in order to be able to compare the
results of a flexible blade to the results of a rigid
blade. A rigid blade can be simulated by using a
one mode approximation. The displacement
function for a one mode approximation is still given
by equation (73) and the coefficients Ay and By
are given by equations (76) and (80). This results in
the eigenfrequency of equation (85) and the mode
shape as given by equation (91). The
corresponding generalized coordinate for the one
mode (rigid) approximation can now be calculated
as:

@, =m, cos(l//—gj (122)

Which results in the following bending function for a
rigid blade:

Z=m, COS(!// —%]r (123)

The difference between the flexible blade root angle
and the rigid blade flapping angle

The equation for the flexible blade root angle ¢ is
given by equation (55). For a two mode flexible
blade approximation is thus follows that:

E oy = $E, + 9 E, (124)

Substitution of equations (106), (113), (120) and
(121) and some calculation yields:

€ por =1, (4.79218cosy +1.31568siny)  (125)

11

Which results in the following amplitude:
€ o =4.96m (126)

For the one mode approximation resembling a rigid
blade, the ‘flexible’ blade root angle is equal to the
flapping angle of the entire blade and can be
calculated by:

€ igia = IB =@k,

Substitution of equations (106) and (122) then
gives:

(127)

Ega =B =101 COS(‘// _%j (128)

And thus the following amplitude results for the rigid
blade:

Eiga =B =11 (129)
Which is consistent with the findings in (Ref 2 and
4). When comparing equations (129) and (126) it
can be seen that the amplitude of the flexible blade
root angle is almost five times as large for the
flexible blade as it is for the rigid blade. This is
depicted in figures 6 and 7. Figure 6 is the same as
figure 5 except for the fact that the two extreme
positions of the movement of the rigid blade are
added. Figure 6 shows a close up of the bending of
the blades at the blade root, and clearly shows that
the flexible blade root angle is five times as large.
Physically this means that the up and down
movement of the forced flapping mechanism at the
blade root should be five times larger for a flexible
blade than for a rigid blade.

Bending of the blade
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Fig. 6: Bending of a flexible blade and a rigid
blade for a given flapping moment
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Fig. 7: The root bending of a flexible blade and a
rigid blade for a given flapping moment

Windtunnel tests that have been performed (Ref 7)
indeed showed that the amplitude of the forced
flapping mechanism needed to be larger than what
was expected from calculations based on the theory
for rigid blades. However, these windtunneltests
showed that the ratio of the amplitudes of the
flexible blade and rigid blade (‘é/lex/ér[g[d) was only

equal to 1.5 which is lower than indicated by
equations (126) and (129). This is due to the fact
that the blades that were used for the
windtunneltests had a larger stiffness.

Effect of a flexible blade on the required flapping
moment

The required flapping moment can be calculated by
using the expression for the flapping power as
given by equation (58). Using equations (56), (100)
and (119) it can be derived for the two mode flexible
blade approximation that:

9 -
jmﬂ cosy(g; +¢E, Jdy

0

P =
T or

(130)

Substitution of equations (113), (120) and (121) and
some calculation yields:

.,

Py =1.316 it} (131)

For the one mode approximation of the rigid blade,
the flapping power can be expressed as:

193 2r . ,
jmﬂ cos l//(¢o )d‘//
0

P, = (132)

27
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Using equation (122) it follows that:

Q°

== (133)

., rigid

Which is again consistent with the findings in (Ref 2
and 4). When comparing equations (131) and (133)
it can be seen that to obtain the same amount of
flapping power the amplitude of the mechanical
flapping moment for the flexible blade only needs to
be 76% of the amplitude of the mechanical flapping
moment for a rigid blade. A smaller mechanical
flapping moment is thus required for a flexible
blade. The bending of a flexible blade resulting from
this smaller mechanical flapping moment is
compared to the flapping of a rigid blade resulting
from a larger mechanical flapping moment in figure
8.
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Fig. 8: Bending of a flexible blade and a rigid
blade for the same flapping power

Effect of a flexible blade on the torque about the
rotor hub

Knowing that power is also given by:

P=0Q (134)

in which Q is the average torque about the rotor

hub, the torque about the rotor hub as caused by
the flexible and rigid blade is readily calculated
using equations (131) and (133):

2
0 er 131672 3, (135)
—~ 1Q?
Qrig[d :_m;l (136)
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Compared to the rigid blade, a smaller flapping
moment is thus necessary for the flexible blade in
order to generate a certain amount of torque around
the rotor hub.

Effect of a flexible blade on the vertical shear
fluctuations in the root of the blade

The vertical shear in the root of the blade can be
expressed as follows:

R
V, = J-[a—F—ijdr
0

o (137)

Since we are only interested in the vertical shear
fluctuations the influence of the pitch angle and
induced velocity will be neglected and the first part
of the integral in equation (137) is given by
equations (37) and (38).

For the flexible blade two mode approximation the
first part of the integral representing the shear force
due to aerodynamic forces, when using equations
(91), (96), (120) and (121) can be calculated as:

%)

For the rigid blade the first part of the integral is
calculated using equations (91) and (122):

KoF 4107
j—dr =—— m , cosy
. or 3 R

rigid

2
=1.3721£; it -

flex

-sin(y —1.38944) (138)

(139)

The second term of the integral due to inertia forces
can be expressed as:

R

R
j—mZder—mZQZ(D:Sndr (140)
0 0 n

Using equations (91), (96), (120) and (121) it
follows for the flexible blade that:

R
( I - mZdrj =
0 flex

2
%n},, % (0.53996 cosy +

+1.03556sin ) (141)
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And the vertical force in the blade root due to inertia
forces for the rigid blade can be expressed as
(using equations (91) and (122)):

3. IQ?

R
U—mZdrj =ity siny (142)
0 rigid

The total vertical shear force in the root of a flexible
blade can now be calculated by adding equations
(138) and (141):

IQ?

— (1.801siny —0.540cosy)  (143)

VO,ﬂex =

And the total vertical shear force in the root of a
rigid blade is, when summing equations (139) and
(142), given by:

0° . (3. 4
——my, Esmw—gcosw

144
R (144)

VO,rigid =

Vertical shear force at the blade root for both a rigid and flexible rotor blade
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Fig. 9: The total vertical shear force, the vertical

shear force due to inertia forces (in.) and due to

aerodynamic forces (aero) at the root of the

blade for both a rigid blade and a flexible blade

as a function of the azimuth angle

This is also depicted in figure 9. In figure 9 the non-
dimensional vertical shear force is used:

R

_IQZ (145)

vo =V,

It can be seen that although the amplitudes of the
separate contributions of aerodynamic forces and
inertia forces to the vertical force in the root of the
flexible blade are larger than those for the rigid
blade, the amplitude of the total vertical force in the



root of the flexible blade will be smaller than in the
root of the rigid blade.

Effect of a flexible blade on the phase difference
between the flapping moment and the deflection of
the flapping mechanism

The mechanical flapping moment can be expressed
by (see figure 4):

m, =j‘é§ =1§2 (6-e)=x(6-¢)  (146)

In which x is given by:

K= K (147)
1Q°

Equation (146) can also be written as:

m, = K(é‘—@j (148)

As already shown in equation (43) this can be
rewritten as:

m, = k(6 —,5,(0)-¢,5/(0))

Using equations (91), (96), (120) and (121) and
choosing x equal to 0.2 finally gives:

(149)

& =11,9.880 cos(y — 0.13356) (150)

Equation (150) shows that a phase difference equal
to -0.13356 rad indeed occurs between the
mechanical flapping moment and the deflection of
the flapping mechanism.

Conclusions

This paper has shown that the flexibility of the
blades does not have an influence on the key
characteristics of the Ornicopter. Despite the
flexibility it is still possible to achieve a propulsive
and lifting force by forced flapping of the blades,
and it is thus still possible to realize a single rotor
without reaction torque.

No power is lost due to the flexibility of the blades,
which means that all the power that is provided by
the engine is available to drive the rotor.
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When the angle of the flexible blade at the blade
root is compared to the flapping angle of a rigid
blade it appears that the angle of the flexible blade
is larger than that of the rigid blade at the blade
root. As a consequence of the larger blade root
angle (or flapping angle), the angular velocity of the
flapping motion at the blade root will also be larger
for a flexible blade. Since the flapping power is
equal to the integral of angular velocity times
flapping moment, it follows that for the same
amount of power a smaller flapping moment will be
necessary for a flexible blade than for a rigid blade
since the angular velocity will be higher for a flexible
blade.

Additionally it has been shown that the total vertical
shear force in the root of the flexible blade will be
smaller than the total vertical shear force in the root
of a rigid blade. And that a phase difference occurs
between the flapping moment and the deflection of
the forced flapping mechanism.
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