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Abstract 

The free-vibration problem of a Darrieus vertical 

axis wind turbine blade is studied in detail. The transrer 

matrix method, linked to an integrating matrix scheme, is 

used for the first time to analyze the three-dimensional 
eigenvalue problem. The physical model includes distributed 

properties of both inertia and stiffness, different types 

of blade support, static unbalance, rotary inertia,and 
also some degree of both extensibility and shear 

deformation of the cross section of the blade. The analysis 

demonstrates the fundamental role played by the Coriolis 

force and how two simple fundamental modes of the structure 

are coupled by the same rotationa·l effect and develop a 

complex free-vibration motion. 
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area of the blade cross section 

dimensionless structural parameters (Appendix) 

blade semichord 

Coriolis matrix 

Young's modulus 

axial stiffness 
bending stiffness (i = x, y) 

matrix of external loads 

component of the Coriolis force 

coefficient matrices in the Laplace domain 

(Eqs. 9, 13) 

shear modulus 

shear stiffness 

torsional stiffness 

coefficient matrix in the Laplace domain (Eq.l) 

dynamic stiffness matrix 

integrating matrix 

total length along s-coordinate 

mass matrix 

component of the internal bending moment 

the blade (i = 1 '2) 

component of the internal torque 

origin of the reference frame of the cross 

section; undisturbed position, pertubed 

positJ.on 
Laplace variable 

component of the resultant shear force at 

the blade cross section (i = 1,2) 

of 

radius of gyration of the cross section 

shear center; undisturbed, perturbed position 

spatial coordinate along the blade 

transfer matrix 

reduced transfer matrix 

time 
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U, Y, W 

X, y 

X 

l.: 
z 

a 

C< 

T,Tmax 

w 

Wi 

( ) 

( l , e 

local linear displacement of the elastic 

axis 

component of the relative velocity of the 

elastic axis in the u, v, w directions 

coordinate fixed to the blade 

dimensionless position of the center of mass 

of the blade cross section in semichords 

(Fig. 4) 

dimensionless position of the neutral center 

of the blade cross section in semichords 
(Fig. 4) 

local state vector 

coefficient matrix containing structural 

terms 

Greek Symbols 

torsion of the blade cross section 

azimuth angle of the blade 

local curvature of the troposkien 

dimensionless group (Appendix) 

vector defining the position of the center 

of mass of the blade cross section. 

density of the material of the blade 

local tension, maximum local tension on the 

troposkien 

local angle of the troposkien (Fig. 2) 

rotation of the cross section (i ~ 1,2) 

absolute angular velocity vector of the blade 

spinning rate of the turbine 
harmonic frequency 

eigenfrequency i 

Other Symbols 

time differentiation 

azimuth angle differentiation 
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dimensionless quantity 

state vector extension of a matrix originally 

relating only forces to displacements 

characteristic value (eigenvalue) 
matrix or vector 

inver.se matrix 

transpose matrix 

diagonal matrix 
displacement subset 

force subset 

horizontal (radial) component of a vector 

null matrix 

unit matrix 

r::l 

1. Introduction 

The Darrieus rotor belongs to the class of vertical 

axis turbines used to generate electric power from the 

wind (Fig. 1)~ The particular characteristics of the 

Darrieus rotor have been challenging analysts in the fields 

of aerodynamics and structural dynamics. Accidents reported 

with some of these turbines have indicated that much 

improvement must be done on the existing theory so that 

the new generation of large and more economical machines 
may be considered fully reliable. The troposkien shape has 

been sometimes invoked in structural modeling of the blades 

of the Darrieus rotor. When gravity effects are neglected, 

the troposkien cai be seen as the plane curve described 

by a rope rotating at a constant spinning rate. Its shape 

is known in closed analytic form 1
• A blade with such 

geometry is characterized by having no bending stress in 

the equilibrium position determined by a constant angular 

velocity. However, a three-dimensional vibration pattern 

develops as soon as the blade is disturbed from its 

troposkien equilibrium. The resultant motion involves 
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in-plane (flatwise) and out-of-plane (chordwise) bending 

of the structure as well as torsion. The aeroelastic 

stability of the Darrieus turbine with troposkien geometry 

has been studied in few theoretical works 2'
3
"'. The tendency 

among inves ti ga tors is to deal with a more general geometry 

and to use the finite element method in the analysis 5
'
6
''. Ho~ 

ever, the actual shape of Darrieus turbines is very close 

to the troposkien'. The purpose of this work is to present 

a semi-analytical theory based upon the troposkien 

approximation which is useful not only to understand the 

physical phenomena but also to provide data for flutter-type 

stability analyses. 

The geometric properties of the turbine analyzed 

in this work are those of an actual vertical wind turbine· 

a 17-meter Darrieus turbine manufactured by Alcoa and 

originally designed by the Sandia Laboratories of New 

Mexico to generate 70 kilowatts of electric power. A larger 

42-meter model of this turbine collapsed during tests in 

Southern California Edison's facilities in 1981. The 

properties of the blade are summarized in Table 1. In this 

machine the blades are unstrutted, according to a ne1; 

aerodynamically more efficient design•. 

2. Free-vibration Governing Equations 

The free-vibration equations governing the motion 

of small pertubations from the troposkien equilibrium 

position, connecte.d to both the displacement of the 

elastic axis of the blade and the corresponding rotations 

associated with the deformations of the cross section 

were derived in previous works 10 
"

1
• 

These equations are linear and include the most 

important parameters that may affect the analysis, such as 

CG offset and rotary inertia. Also, some degree of shear 

deformation and extensibility of the structure is allowed. 
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Figures 2, 3 and 4 define the parameters involved in the 

analytical formulation of the problem. The free-vibration 

governing equations are repeated in the Appendix for the 

sake of completeness. 

3. A Transfer-Integrating Matrix Scheme to Solve Eigenvalue 

Problems 

An efficient approach to the solution of dynamic 

problems related to free and forced vibration of one­

dimensional structures was discussed in detail in a 

previous \vork 12 
• The new method combines the classical 

transfer-matrix method 13 with a numerical scheme derived 

from the theory of integrating matrices" . 

According to the same scheme, integrating matrices 

are used to derive transfer matrices of the structure. 
Summarizing the method, the governing equations of motion 

of the system are first written in state vector form: 

d 
ds l = J:!Cs ;plr (1) 

where 
(2) 

and then discretized with respect to the independent 

variables. In general, the matrix H(s;p) contains both 

structural equilibriu111 relations and external loads acting 

on the system. The external loads are Laplace transformed 

to eliminate the time dependence: 

J:!{s;p) = ~(s) + p2t:'*(s) + ~*(s) + ~*(s) + f'"Cs;p) (3) 

where~·. ~· and ~D* are respectively the mass, Coriolis 
and dynamic stiffness matrices of the system; ~(s) is the 

matrix containing structural equilibrium terms and F* is 
a matrix of external forces of non-dynamic origin. Pre­

multiplying Eq.(l) by an integrating matrix~ and 
rearranging the expression, one gets: 
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Fig. 1: Dar!'ieus rotor 
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Fig.4: Blade cross section: 
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0: 

position of the center of mass 

in units of semichor>d (measU:t>ed 

from the elastic axis and 

positive as indicated). 

l!ig.2: Tx>oposkien definitions 

• 

Fig. J: Per>turbation Field. 

Sing~e ar>rows pepr>esent for>oes. 

Double ar>rows r>epr>esent 

moments. Obser>ve the o!'iginal 

and per>tU:t>bed positions of the 

cr>Oss section. All quantities 
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undistur>bed position of the 

blade. 
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y = (-1 - LH)y 
- - -- -1 

(4) 

where ~ 1 is the state vector evaluated atthe end point 

considered as initial in the process of numerical 

integration. It is analogous to the constant of integration 

in exact problems. 

From Eq.(4), by simple inspection, all transfer 
matrices of the one-dimensional structure are obtained 

and in particular one relating the extremes of the 

integration path. These are also the end points of the 
structure: 

= T(p)y 
- -1 

( 5) 

By applying the boundary conditions and canseqtently 

eliminating half of the lines and columns in Eq. (5), the 

characteristic values of the system are determined: 

(6) 

where !R is the reduced transfer matrix of the system 

between the two end points and *p is an eigenvalue. 

Eigenvectors are then obtained by successively solving 

Eq.(4) with *p for the intermediate transfer matrices. 

Examples of application of this technique in some classical 

eigenvalue problems are presented in Ref. 12. In the 

same work accuracy of the method is tested. Throughout 
this work the charaKteristic values of Eq.(6) will be 

obtained via a root finder routine based upo.n Muller's 

Ir.ethod to calculate complex roots of analytical functionsJS. 

Once the convergence to a complex root is acheived, its 

complex-conjugate pair is automatically eliminated by 

the algorithm to avoid unnecessary searches. The 

integrating matrix employed in the integrating scheme is 
based on a 5th. order Newton's forward-difference formula 

and may be found in Ref. 11. A complete table of integrating 

matrices is presented in Refs. 14 and 16. The results in 
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Sects. 4 and 5 were obtained by taking 11 discretizating 

points along the structure. 

4. Free-Vibration Eigenvalue Problem lvith no Coriolis Effect 

When the Coriolis-related matrix is subtracted 

form the dynamic load, the free-vibration eigenvalue 

problem in state vector form is written as: 

d r 
ds 

Taking the Laplace transform of Eq.(7), time is 

eliminated from the equation of motion yielding: 

where 

_i_ Y = ~(s ;plr 
ds -

( 7) 

(8) 

~(s;p) = ~(s) + p 2 l:!*(s) + ~D*(s) (9) 

The dimensionless matrices that appear in Eq.(9) 

are repeated from Ref. 11 and presented in the Appendix. 

The eigenvalue problem is then solved by closely following 

the procedure explained in Sect. 3. Here, the matrix~ 

replaces the matrix~ in Eq.(l). As formulated, the non­

dimensionalized eigenvalues are obtained as pure imaginary 

numbers since no structural damping is assumed: 

*p (U • 
= -J 

fl 
(10) 

where w is the natural frequency and n is the magnitude 

of the absolute angular velocity vector of the blade. As 

long as there is no Coriolis effect, the characteristic 

of the sistem is such that all eigenvectors are real 

vectors. The orthogonality property holds and eigenvectors 

related to different eigenvalues are orthogonal. 

Figure 5 shows the behavior of the first two 
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natural frequencies when the angular velocity of the 

turbine is changed. Pinned joints are assumed at both 

ends. In analogy with the free vibration of a string. 

the natural frequencies of the troposkien blade are 

heavily dependent upon the turbine's spinning rate, which 

directly affects the tension on the blade. In Fig. 6 the 
ratio of the same two frequencies is plotted against the 

turbine's rpm and one notices that the separation between 

these two eigenfrequencies decreases as the spinning rate 

increases. 

The corresponding eigenvectors for the first two 

natural frequencies of the blade are plotted in Figs. 7 and 

8. Aside from some minor differences, the shape of the 

eigenvectors remains constant within the operational ran~ 

of the turbine, between 20 and 50 rpm. Normalization is 

made with respect to their largest component. In Fig. 7 

the case is considered in which there is no static 

unbalance and so the center of mass coincides with the 

shear center Of the cross section of the blade. The 

second case, in Fig. 8, is an example in which the center 

of mass is 

by a tenth 

to Fig. 4). 

moved towards the trailing edge of the airfoil 

of the blade semichord. (x = -0.1, according 
c; ' 

From the former situation it becomes clear that 

when there is no center of mass offset the first natural 

mode consists of an antisymmetric flatwise bending (motion 

of the elastic axis in the u-direction) combined with a 
symmetric spanwise displacement of the structure 

·(displacement in the w-direction). As a remark, the 

latter should not be regarded as a stretching of the blade. 

which contribution on the results is evidently secondary. 

The second natural mode is a combination of antisymmetric 
torsion and chordwise bending of the blade (motion of the 

elastic axis in the v-direction). One should also stress 

that the absence of a symmetric flatwise first mode with 
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nodes only at both ends of the structure is indeed 

expected due to the particular distribution of curvature 

which characterizes the troposkien. 

In The latter situation of Fig. 8, a coupling between 

torsion and flatwise bending is already noticed. Such 

coupling is still small for this value of the center of 

mass offset parameter, but larger values of x are 
a 

uncommon. 

In Fig. 9 an example in which clamped joints are 

used is pres en ted. For a close comparison with the previous 

example, the center of mass was also set at the 

~ -0.1. The first natural mode is similar in XCI 

position 

shape to 

its equivalent with pinned joints. However, the chordwise 

bending component is one order of magnitude lower, as a 

result of imposing a more restraining boundary condition. 

The most interesting difference between the two latter 
examples comes with the second natural mode, which now 

consists of an almost pure symmetric chordwise bending of 

the blade. The amplitude of the torsion component of the 

eigenvector is one order of. magnitude lower and has a 

symmetric shape with two intermediate nodes. As expected, 

the eigenfrequencies are higher in the clamped than in 

the pinned joints case, following the lateral free-vibration 

characteristics of a straight beam. 

5. Complete Free-Vibration Eigenvalue Problem 

When Corio lis effect is included, the free-vibration 

eigenvalue problem in state vector form reads: 

r 
ds 

d ( 11) 

Likewise in Sect. 4, time is eliminated by Laplace 

transforming Eq, (ll): 
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r ds 

d ( 12) 

where here 

~cor(s ;p) ; ~(s ;p) + p~*(s) ( 13) 

In the Appendix the dimensionless version of the 

Coriolis-related matrix is presented. The eigenvalue 
problem is solved as in the previous section. However, in 

this section, one is dealing with a system with Hermitian 

character. The new feature is introduced by the skew­

symmetric Coriolis-related matrix. For a complete 

discussion about Hermitian systems and their properties, 

one is referred to Strang's book on linear algebra 17 

For this particular problem, one may also expect 

pure imaginary eigenvalues but complex eigenvectors are 

now generated. In the following examples, normalization 

of the eigenvectors is made by giving the value (1 + Oj) 

to the component with maximum amplitude of displacement. 

The values of the first two natural frequencies 
of the pinned blade as the turbine's sp.eed is increased 

are shownin Fig. 10. Also in Fig. 6, the ratio of these 

frequencies is plotted, and one then observes that 

contrary to the case where the Coriolis term was 

neglected, the ratio of the first two eigenvalues decreases 

slightly with the spinning rate. This is an indication of 

the importance of the Coriolis effect on the behavior of 
the system. 

In this analysis the first two natural modes will 

be called fundamental modes of the troposkien due to 

similar shape presented by the eigenvectors and the fact 

that the third natural mode is obviously an harmonic 

with a greater number of nodes. In Figs. 11 and 12 the 

first three modes are displayed, respectively, for the 
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situations with pinned and clamped joints. In both examples 

xa = 0 and Q = 50 rpm were assumed. When compared with 

the case where the Coriolis effect is neglected, these 

eigenvectores present a higher degree of complexity. All 

components of the eigenvectors are now different from 

zero and there is coupling between flatwise and chordwise 

bending of the blade. Moreover, a phase shift is noticed 

among these components. Table 2 shows that non-zero 

components of the fundamental modes when Coriolis was 

neglected remain in phase when Coriolis is restored. In 

other words, the pairs flatwise bending-spanwise 

displacement and chordwise bending-torsion are always in 

phase. However, in both modes, each individual 

relation to the other. Since the 
pair is in 

value of quadrature in 
phase depends on the 

one's attention will 

normalization of the eigenvectors, 

be focused only on the difference of 

phases rather then on the absolute numerical values of the 

phase angle. 

The mechanism of coupling present in the free 

vibration of the troposkien blade becomes evident when 

two more cases are analyzed. Figure 13 displays the 

fundamental modes for the pinned situation at both 20 and 

80 rpm for which there is no center of mass· offset. One 

first notices the presence of the following "extra" 

components of the eigenvectors in the con;>lete eigenvalue 

problem: 

a) chordwise bending in the first mode; 

b) flatwise bending in the second mode; 

c) torsion in the first mode; 

d) spanwise displacement in the second mode. 

The second observation concerns the amplitude of 

these "extra" components. As a general rule, their 

amplitudes are greater at the higher s~inning rate. The 

third observation is that they are in quadrature in 

relation to the "primary" components. 'The cotl!IIOm explanation 
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for all the aforementioned characteristics is based on 

the Coriolis force, which is proportional to the cross­

product (~)R x ~ . Here, (~)R is the relative velocity 
of the center of mass of the blade cross section and n is 

the absolute angular vel.ocity vector of the blade. Figure 

14 exhibits the different conditions that occur in the 

northern and southern hemispheres of the troposkien blade 

with pinned fixation.~, y and~ are the 

components of the velocity vector of the center of mass 

respectively in the flatwise, chordwise and spanwise 

directions. The components of the Coriolis force in the 
same three directions are denoted by f , f and f . The 

-u -v -w 
subscript ( )H stands for the horizontal (or radial) 
component of a vector. 

In Figs. 14a and 14b the first fundamental mode is 

studied. Since this mode is a combination of an 

antisymmetric flatwise bending and a symmetric spanwise 

displacement, at a certain instant the velocity vectors 

are as shown in the two pictures. This configuration 

criates the Coriolis forces f and f which excite motion 
-U -W 

in the orthogonal, chordwise direction. Futhermore, the 

directions ofthe forces f and f aresuch that their 
-U -W · 

magnitudes sum in the northern hemisphere and subtract in 

the southern hemisphere. As a consequence, the resultant 

chordwise motion is skewed, as one may verify in Figs. 11 

and especially 13, where the effect is pronounced at the 

higher spinning rate (80 rpm). 

The second fundamental mode is the matter of study 

of Fi-g. 14c. The antisymmetric chordwise bending excites 

both the flatwise bending and the spanwise displacement 

of the blade through the Coriolis force f which is in -v 
the radial direction. The decomposition of the latter 

vector in the flatwise and spanwise directions also explains 

why the spanwise component of the eigenvector is skewed. 
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The differences in phase angle observed in Table 

2 may be understood as a consequence of the fact that 

maximum displacements and maximum velocities are always 

in quadrature. Since the Coriolis force is directly 

related to the velocity. the motion that it drives is 

developed with the same phase difference. 

Table 3 presents another interesting point of this 

analysis. When the center of mass is moved away from the 

shear center and static unbalance is created in the cross 

section, the most important change undergone by the system 

is a slight alteration in the phase angle. Although its 

mean value remains the same, there is now a characteristic 

distribution of phase not only among components of the 
eigenvector, but also among the points along the structure. 

In other words, each station along the blade span now 

leads or lags its neighbor by a small phase difference. 

Here, once more, symmetry is observed: the sum of 

corresponding phase angles at each station for the cases 
x ; 0.1 and x. = -0.1 is either 0° or 180°. a a 

6. Summary and Conclusions 

The free-vibration characteristics of a blade of a 

Darrieus turbine curved in a perfect troposkien shape has 

been studied. The transfer matrix relating the generalized 

forces and displacements at the two ends of the blade was 

derived by an integrating-matrix scheme. The physical 

model is based upon a continuous distribution of both 

inertia and stiffness properties of the blade. It has been 

demonstrated the essential role played by Coriolis in the 

free-vibration eigonvalue problem of the troposkien-curved 

blade: flatwise, chordwise and torsion vibrations of the 

structure are all coupled in a three-dimensional motion 
of the elastic axis about its original position. 

5]-]C 
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Dimensionless Free-Vibration Equations in Matrix Form 

.s!...y .. I_ y_ + A( M•Y + -c•y + K•)i J 
d'S- - -~a - -fl -D-

f " f() M q !i 1" >I u X v 
I I 2 2 ~ ' 

"Z • r~FF !FOJ 
!oF !oo 

0 0 0 
0 0 .t/b 

T 0 0 0 
!pp"-!DD" 

-£/b 0 0 
.-coJ 0 0 

0 K(o)o 

0 

1/s0 

' 
0 

'!po"l> 1/s¢ 

a 0 0 
' a 0 • 

,'max2b a 
!oF ' 

EIXX 
sym, 

M•. ~· it• " [ ~ ~. ~. 
- ' -0 0 0 

1 0 0 0 
x-z +r2 

a " 
0 0 

1 0 
;:; . 0 

sym. 

X W a}T 

' 

0 -<(o) 0 

0 0 -K(oJ 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 0 0 

0 -x{n)a 0 
• 0 0 0 

a 0 0 
' a a 0 

• ' a 
• 

~~ 
0 -x a 
X 

0 
0 

0 0 

0 0 

1 0 

x2 +r:z 
a a 

0 0 2~¢ 0 0 0 

0 0 -Zxac¢1 r~s'll 0 0 

-2s$ Zxo.c¢ 0 0 2c
0 zxrlo:p 

c"' 

K,. 
-D 

El 
a:~ 

2 b2 F.A • 

0 -r2 s 
a > 0 0 0 r'c 

a 9 
0 0 -2c.p 0 0 0 

0 0 -zx s -r~c 0 0 
!). ¢ (l ¢ 

5)1>1. 

1 a " _ __,.,.--:--:-
0 1 - -i--cx(n))~ 

' El El . 
a = _____g_ , a = ______g_ 

1 El ~Gl 
yy a 

Q "'Q /t . 'i=t/Tmax' M =~! /bt . 
1•2 1.2 max lo2o3 1,2.3 max 

U, v. w"" u, v, h' I b • s"' s I~ ' 9 = nt . K{o)= 2. K{o}. 

51-22 



Table 1 

Structural Properties of the 17-meter DOE-Sandia-Alcoa 
Darrieus 

1!. = 24.1 m 

h 8. 5 m 

aA • 10.22 kg/m 

n • 29.8-52.5 rpm 

airfoil section: NACA-0012 

b • 0.2665 m 

r" " 0.1065 

EI " 357.56 X 104 Nm 2 
XX 

EI " 9.0653 X 104 Nm 2 
yy 

GI " 7.1972 X 104 Nm2 

" 
EA " 231.83 X 106 N 

GA = 89.316 X 106 N 

Table 2 

Characteristic Phase Angles (in degrees) of theFirst TWo Modes 
.of the Pinned Blade at 50 rpm. No CG offset is considered. 

~:E 
1 ~nd. 
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Table 3 

Characteristic Phase Angles (in degrees) of the First Mode of 
the Pinned Blade at 50 rpm. CG offset is considered. 
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