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Abstract 

A thin, low cambered aerofoil with a tab at the trailing edge in incompressible, WJStalled flow is 
considered. The general expressions for unsteady lift and aerodynamic moment on aerofoil and tab 
are derived using two dimensional potential theory extended for the case of varying free stream 
velocity and arbitrary, different motions for both aerofoil and tab. To complete the method the lift 
deficiency function should be calculated for a particular wake shape and its time dependence. 

To validate this approach, the classical Theodorsen case of an oscillating aerofoil is presented. 
Loads are calculated in the time domain by applying inverse Laplace transformation to the 
approximation of the lift deficiency function in the frequency domain. The agreement of the results 
calculated by this method with the results obtained by other methods and experiments is good. 

The aerodynamic loads for the case of arbitrary motions of aerofoil and tab are also 
investigated. 

Notation. 
ab - distance of aerodynamic centre from 

aerofoil midchord 
b - half of aerofoil chord 

be, - the distance of tab hinge from midchord 
C(t, y wl . lift deficiency function 

c~. - lift coefficient 
CM · moment Coefficient 

k - reduced frequency, k= wb/U 
L(t) - lift 

M(t) - moment 
Ma - Mach number of undisturbed flow 

p(t,x) - pressure distribution 
Q(t) - velocity component in circulatory part 

s - variable in Laplace transfonnation 
s=iwt 

t - time, 
x - coordinate along aerofoil chord 

U(t) - free stream velocity 
U0 - relative free steam velocity 

w(t) - aerofoil velocity component 
perpendicular to the chord 

W(x,t) - flow velocity component perpendicular to 
the chord 

a(t)- aerofoil angle of incidence 
y(x,t) - distribution of circulation 

o(t)- angle of tab deflection 
e - spatial variable cose = x/b 

A(x,t) - velocity component induced by circulation 
p - air density, 

cp(x,t) - velocity potential 
<jlo - angular coordinate of tab hinge 

(- wake coordinate along x axis 

Indexes 
(a) - calculated for aerofoil without tab 
(b) - calculated for aerofoilftab 
(t) - calculated for tab only 
(w) - calculated for wake, 
( )· differentiation with respect to time 
(C) - circulatory part 
(N) - noncirculatory part 
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1. Introduction. 

Calculation of aerodynamic loads is a crucial part of aeroelastic analysis of fixed and 
rotary wing aircraft. Despite the latest achievements in Computational Fluid Dynamics, the 
capability of solving full equations of flow around an aerofoil is still a challenging task. 
Evaluation of aerodynamic loads is especially complex in rotorcraft technology when the 
main or the tail rotor blades are concerned. Flow velocity components both along and 
perpendicular to a blade chord can vary in an arbitrary way as functions of time, due to the 
combined effects of rotor angular rotation, rotor craft forward flight velocity, blade and/or 
hub elastic deformations and/or rotations in hub hinges. As a result, blade section angles of 
incidence can vary within a broad range including stall. 

A need for simple and reliable methods for calculation of unsteady aerodynamic loads 
has increased lately, due to intensive investigations into the real time simulation and active 
control of aeroelastic structures. This is evident for instance in rotorcraft activity, where 
different concepts for "smart structures" and active control are explored [1,2]. An 
application of some additional control surfaces mounted on the blade is considered therein, 
which raises the problem of calculating unsteady aerodynamic loads on aerofoils with high 
lift devices like leading edge slots or trailing edge tabs (3]. 

The required properties of the method for calculation of aerodynamic loads stem both 
from the flow environment which is to be modelled and from prospective applications of 
the method. 

Up till now in rotorcraft aeroservoelastic problems the assumption of a two dimensional 
flow environment has been justified. Within this assumption, the method should cover: 
!. Three components of loads: lift, drag, and moment, 
2. Arbitrary variations of: angle of attack, "horizontal" translation, (i.e. translation along the 

chord line or along the direction of w1disturbed flow velocity), and "vertical" translation, 
(i.e. translation perpendicular to the chord line or to velocity of external flow), 

3. Fluctuations of free stream velocity, 
4. Shape of blade wakes, 
5. Angle of incidence up to deep stall, 

and, which has became important recently, 
6. Arbitrary trailing edge tab motion. 

TI1e method of calculation of aerodynamic loads should be compatible with existing 
computer codes for rotorcraft motion simulation and stability analysis. In helicopter rotor 
aeroelastic analysis ordinary differential equations are widely applied for calculating the 
steady and periodic motion of the rotor, Floquet or eigen-values for stability evaluation, and 
gains in control algorithms. 

Some efficient methods developed in fluid dynamics for calculating unsteady loads are 
difficult to adopt in algoritluns used for solving rotorcraft aeroelastic problems. For 
instance, application of panel methods leads to a large number of states. When some 
models are utilized the efficiency of numerical perturbation methods and algorithms for 
solving differential equation could be questioned. 

The way to avoid some of the above mentioned difficulties is to express the flow 
motion in state variables, which allows the use of existing codes for aeroelastic analysis 
and the description of the changes of the loads or states by ordinary differential equations. 
These equations account for arbitrary aerofoil motion, and they also model the motion 
history, which is inherent in any unsteady aerodynamic loads case. 

34-2 



The classical approach for calculation of aerofoil unsteady loads in the frequency 
domain was developed first by TI1eodorsen [4]. The restrictions of his approach included 
the constant flow velocity, no chordwise aerofoil motion and the same motion of aerofoil 
and tab. Greenberg's [5] extension of this method concerned the varying free stream 
velocity, but not the tab. The extensions and modifications done by others [6-9] have not 
included a tab either. 

The frequency domain formulation is suited mainly to searching for instability at one 
discrete frequency, which is not the case in rotary wing activity, where, due to periodic, 
parametric excitation, there is no definite frequency for instability. TI1e need for a time 
domain approach is then evident. 

TI1e transformation to the time domain applied in [10] allows the release of the single 
frequency constraint in the above methods. 

Arbitrary motion of an aerofoil with tab was investigated using indicia! function 
concepts in [11], an extension of Greenbergs approach was developed in [12] and an 
heuristic application of the ONERA stall model was used in [13]. 

The objective of the research presented in this paper is to develop a method in the time 
domain for calculation of 2D aerodynamic loads on an aerofoil with trailing edge tab, both 
performing arbitrary motion, different for tab deflections and aerofoil translations. Unstalled 
flow is considered. 

The method described in this study is considered to cover a more general case than in 
previous works, and is simpler and more computationally effective. 

2. Formulation of the problem. 

An inviscid, incompressible 2D flow with a free stream velocity U(t) which is an 
arbitrary function of time is assumed. 

A thin, small cambered aerofoil with a trailing edge tab is considered. The aerofoil 
angle of incidence a(t) and the angle of tab deflection o(t) are arbitrary functions of time 
not exceeding values at which flow separation occurs. 

These assumptions allow the application of linear theory to small perturbations of flow 
velocity with the principle of superposition. 

For the assumed flow, the perturbation <p of the velocity potential fulfils the Laplace 
equation 

VZ<p = o (I) 

The solution of equation (I) should satisfy the boundary conditions: 
- at the aerofoil where the flow should be tangential to the surface, i.e. the flow velocity 

component perpendicular to the aerofoil matches that of the aerofoil 

ll'(x,t)= W(x,t) (2) 

- at infinity where the perturbation of velocity potential should vanish. 
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Having calculated the velocity potential tp, the differential pressure on the aerofoil can 
be obtained from the linearized Bernoulli equation 

l:ip~ -p [~ + UJ!_]/:itp 
ot ox 

(3) 

where 1:1 tp is the difference in the value tp between the upper and lower surface of the 
aero foil 

Using the pressure distribution 1:1 p, the lift and moment are calculated 

b 

Lo<f! ~ J ( -/:ip)dx, 
-b 

b 

MJf) ~ -J ( -/:ip)xdx • abL(t) 
-b 

(4) 

(5) 

It is assumed that lift is positive up. Moment is positive when aerofoil rotates the leading 
edge upward, and is calculated relative to the aerofoil aerodynamic centre situated at a 
distance ab from midchord. 

The aerofoil force and moment are rearranged using the Bernoulli equation (3) 

b 

M (f)~- p {f ol:itp + Uol:itp ]xdx+abL(f) 
0 !J ot ox 

(6) 

This is the "classical formulation" of aerofoilloads in two dimensional, unsteady flow. 

3. The method of solution. 

The approach proposed in this study consists of using the principle of superposition and 
calculating total unsteady loads as the sum of contributions from the aerofoil itself and tab: 
- lift 

(7) 

-moment 

(8) 

- moment on the tab hinge 

(9) 

The same general expressions for calculating loads on the aerofoil and on the tab are 
derived. This result could have been achieved by appropriate adjustments in derivation of 
expressions for aerodynamic loads. 
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The method presented follows the classical approach to unsteady aerofoils [ 14]. First, 
the boundary conditions (2) on the aerofoil are expressed in terms of circulation. Next the 
integral equation is formulated which gives the relation between bound and shed 
circulation. The solution of this equation is calculated using decomposition of velocities and 
circulations into Fourier series [15]. 

In this method the coefficients of the Fourier series for an aerofoil and a tab are 
obtained separately. 

Finally the expressions of unsteady loads are obtained in terms of velocities of 
aerofoil/tab motion and velocities induced by the wake by integrating the pressure 
distributions. 

To calculate the loads effectively, assumptions conceming wake shape and its time 
dependence are necessary. For such a particular case, the transformation to the time domain 
is obtained via approximations of lift deficiency functions. 

To check the validity of this method, the wake shape from [4] is considered and 
different approximations of lift deficiency function are analyzed to find the best one. 

The loads calculated by this method are compared with other approaches and available 
experimental data. 

4. Extension of unsteady thin aerofoil theory. 

In this chapter the expressions of unsteady loads on aerofoil are re-derived and 
extended to account for arbitrary flow and aerofoil/tab motion. 

w(t) 

o(t) 

__ e<t> 
~~~f=========-~8(0 a(t)/~- r---_ 

/U(t) . 

L(t) z 
_A.C. M(l) w(t) 

~~~~~~~~~--
-ab be, 

b b 

Fig.l. 

Because of the small camber and thickness, the aerofoil is decomposed into two parts 
(Fig.l): 
- a symmetrical profile, with the axis of symmetry along the mean flow velocity, 
- a cambered mean line at incidence angle a (t) to the flow direction. 
It is assumed here that the trailing edge tab influences aerodynamic loads in a similar way, 
as does changing of the aerofoil camber line. 

For the symmetrical case the pressure distributions on the upper and lower surfaces of 
aerofoil are the same and there is no net force or moment. 
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For the unsymmetrical case the velocity potential and aerodynamic loads are 
decomposed into a circulatory part, which relates to the aerofoilftab, and a noncirculatory 
part, which relates to the wake. At the trailing edge, these two parts are reconciled using 
the Kutta condition, which requires no discontinuity in velocity. The circulation Yb results 
from the difference of velocity between the two points considered, so for xE[-b, b] 

Y = !::w = oAtp = otp I - otp IL 
b ox ox u ox (10) 

because y b does not exist for x E [ -oo, -b ]. From the definition of velocity potential, the 
difference A tp and its time derivative are expressed as 

X X 

Atp = f y b dx = f Y b dx, 
"" -b 

The flow velocity component in the boundary condition (2) is calculated as 

"" 
U{x,t) = _I f y(CI) d( 

27T' -b x-( 

(II) 

(12) 

This expression is transformed into an integral equation [14] and inverted using Songen's 
kemel transformation 

With a new spatial variable 0 defined by 

x= lxo.s{O), xc[-b,b], 

equation (15) is transformed to the form 
,. 

y = _ 2b tg( ~ )j (I +cos\J)( W- A) d\J 
b 7T' 2 

0 
cosO -·cos \J 

The aerofoilftab and wake velocities are decomposed in Fourier series 

"" 
w = L wncos(IiJ), 

JPO 

"" 
A = L Ancos(IiJ) 

JFO 
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After including (18) into (17), the circulation y b , which fulfils Kutta condition i.e. y b cO, is 
obtained in the form 

~ 0 
y b "2 L ( W 11 - A 11) t;,(O), fo(O) " tg(- ), t;,(IiJ) " sin(lJO) for n?. 1 ( 19) 

n~o 2 

The coefficients of the series of the induced velocity A due to wake circulation are 
calculated as 

~ 

A II = 2 f ACOS(IJO)dJ c 

7rb 

Using the series (19), lift and moment are expressed as 

(20) 

L(t) ~- 2rrpblJl(w0+.lw1)-(A0+_!_A 1)] +p rrb2_i[(w0-.lw2)-(A 0-_!_A2)] (21) 
2 2 at 2 2 

M(l)" - rr pb2Ul(w1+w2)-(A 1+A 2)] +(l•a)bL(t) 
2 2 

(22) 
prrb2 a I I 

--8- a/( WI- w3)+4( Wo-2 w2)-(AI- A3)-4(Ao-2A2)] 

Conservation of circulation gives the relation 

(23) 

Inserting (20) into (21) and (22) and then using (23) and rearranging, the lift is obtained in 
a "standard unsteady aerodynamics" form 

L(t) " rrp b 2( w0-_!_ w2) + 
2 

+2rrpb~t+-Iyj~ ~:1-l)d(+ ~:r{y,j(-)(2-b2)d(} ~Y,~ ~:1f 

where 

and the expression 
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qy,.,t) ={l-fY,j~ (+b_l)d(,x~Jy,j(-y'(2-b2)d(}lry ~W}-l (26) 
b c-b uarb Vb 1D 

is a lift deficiency function in the time domain. 
The influence of the wake on moment comes from the lift contribution and from the 

wake itself. The wake influence is expressed as 

Cn,(Y,.,f) =Iy,.l(-y'(2-b2][~ ~:~-+(+ 
+..e.~fr y ,,l( . .; (2- b2fd(+ 2bf y ;c.; e-b2Jd(} 

4 ar~ . b 

The aerodynamic loads are decomposed into noncirculatory and circulatory parts 

L(l) ~ LJ..I) + LJI) 

M.l) ~ MJ..t) + MJt) 

MJ..t) = - 1Tpb
2

[4£A:w1+w2)-b(w0-w3)-4b(w0-lw2)]+(l+a)bLJ..t) 
8 2 2 

MJI) = - ~ p UCm(Y ,.,t)+( ~ +a)bLJI) 

(27) 

(28) 

(29) 

(30) 

(31) 

To obtain effective expressions for calculating lift and moment, the dependence of 
velocities and circulations on time and on spatial coordinates should be established. 

The above derived expressions are valid for loads on the aerofoil and the tab with the 
proper adjustments of tab velocities given in the next section. 

5. Modifications for tab loads. 

The tab rotation relative to the aerofoil changes the direction of the free stream velocity 
and gives its own contribution to the flow velocity 

w,0 = Wl8(fHx}Ctl (32) 
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To obtain formulae for the Fourier series (19) for the tab only the first two harmonics of 
the spatial function for tab velocity are taken into account. The bow1d circulation of the tab 
is first calculated in the form 

where 

. . J, . sin(2c;b0) } 
fr/..0) = sm(O)r(w,0-A 1o)smc;b0+(w11-A 1)[c;b0+ 

2 
] 

fJ.O) = sin(20)[( w10-). 1oJsin(2c;b0)+l( w11-). 11)(sin2c;b0cosc;b0 •sinc;b0)] 
3 

2 sin(2c;b ) 
t;jO) = sin(30)[("3)(w10-AJsin(3c;b0)+(w11-A 11) 

2 
° ] 

and the rest of series 

00 

(33) 

(34) 

R = L ( l )sin(IA/>0)(2sin(Iil)( w10- ). 0)+ [sin((n+ 1 )O)+sin((n-1)0)] w11} (35) 
n=4 n 

In the above formulae the value of <1>0 relates to the tab x coordinate. 

TI1e main difficulty in obtaining (33) lies in the calculation of the Glauert integral 

<Po 

1 = J cos(nil) dfJ 
n 

0 
cos(il)-cos(O) 

(36) 

for the boundaries appropriate to tab coordinates. This is solved by decomposing the 
integrand into series. 

After rearranging (34) to the same form as (19) one obtains for the tab 

(37) 
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6. Classic unsteady aerofoil case. 

In the following the assumptions for the wake from [4] are applied. The wake shape is 
not spatially dependent and flow disturbance is convected downstream with a mean flow 
velocity, so 

( = ((t) = b>UJ)t, L{t) (38) 

In this case the lift deficiency function Cr(y ,k) has the form 

00 00 

ay,.,tJ=aY,.,t)r{fy,,{r,o ' d(Hfy,,{t,O~ ~+bbd(l- 1 
b ~(2-b 2 b •.. 

(39) 

The same assumptions results in the influence of the wake on the moment being zero. 

For the case considered the lift and moment are written in the form 

(40) 

or as coefficients 

cLN(t) = 7rbz( wo-_2! wz), CL (t) = 271" (XJ)ay ,.,t) 
lfo c lfo2 

CM(t) =- 7rb[u._r)(w1+w2)-!.:'(w1-w3)-!.:'(w0-lw2)]+c.!.+a)CL (t), (41) 
N lfo2 8 2 2 2 N 

CM(t) = cl+a)CL (t) 
c 2 c 

This is the generalization of classical unsteady theory to arbitrary aerofoil/tab motion. 
To obtain the loads, usually the harmonic motion is assumed and a Laplace transformation 
utilized to calculate the function C(y w,t) in frequency domain. This part of derivation is not 
included here. 

7. Transformation to time domain. 

Having the lift deficiency function in the frequency domain, and assuming that the 
motion does not differ much from periodic, the calculation of airloads can be transferred to 
the time domain. According to ( 40) only the circulatory part of the lift is considered. 

Applying a Laplace transformation to both sides of the second equation in (29) one 
obtains 
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'-i'{LJIJ) . ~ 21rp l:fc£{ ~t)};;£{ C{t)} 

or 

where Lc(s), Q(s) and C(s) are Laplace transforms of Lc(t), Q(t) and C(t). 

Function C(s) is put in the form 

C(s) ~ H._s) 
K(s) 

and a new state variable X(s) is defined as 

X{s)K(s) ~ ~s) 

(42) 

(43) 

(44) 

(45) 

Including (44) and (45) in (43) and applying the inverse Laplace transform, the circulatory 
lift in time domain is obtained 

(46) 

Usually, because of the complex form of function C(s), it is difficult to find the inverse 
transformation, even for the simple wake pattern assumed here. The expression ( 44) is then 
used to approximate the lift deficiency function with H(s) and K(s) assumed as two 
polynomials of the M-th order 

M M 

H._s) = L aoP m; K(s) = L b~m (47) 
m"O nt-0 

Coefficients of these polynomials are determined by the proper approximation of function 
C(s) in the frequency domain. 

The right hand side of (45) is transformed to the form 

Ml 

X{s)[b0+sM, L brnsm] =~s) (48) 
m=l 

Applying an inverse Laplace transformation to both sides of this equation yields 

M M-1 

_LX{ I)+ L b dm X{ I) +bo X{ I) = ~I) 
dtM nP'l 

01 
dfn 

(49) 
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Having solved equation (49), the circulatory component of the lift is calculated as 

Lc;(l) ~ 21Tpb [(a0-aM b0)X(I) + ~ (am-a~m) >';11(t)+aAMt)] 

where 

(50) 

(51) 

The results of calculations based on the present method are discussed in the following 
chapters. 

8. Verification of the method. 

To verify the method, first the different approximations of lift deficiency fw1ction are 
investigated. Next the unsteady loads calculated in the time domain are compared with 
results obtained by other authors and experiments. Finally the loads for the aerofoil and tab 
performing different motions are presented. 

8.1. Approximations of Theodorscn function. 

The lift deficiency function derived in [4] has the form 

C\k) = 

The approximations considered here have the form 

C\s) = 

r1r=M 

L amStll+ao 
llt-" 1 

1 

sM+ L bmSm+Bo 
JIJ=.M-1 

The coefficients of approximating polynomials up to the third order are given in the 
following table: 

I [16] 
II 

III [17] 0.50465 

3z 

0.5 
0.4414 

a I 
0.55 
0.28076 
0.07566 

Bo 
0.15 
0.01365 
0.00189 

0.3455 
0.08512 0.64750 

For these approximations the real and imaginary parts of the lift deficiency function are 
compared in Fig.2. 
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1 .0 F(k) __ Theodorsen's 
\ ········· Appro. I 

0.9 \ --- Appro. II 

0.6 

0.7 

0.6 

' - - Appro. Ill 

0.00 G(k) 

-0.05 

-0.10 

-0.15 

-0.20 

0.00 G(k) 

-0.05 

-0.10 

-0.15 

-0.20 

0' 5 +-,,_,....,....,..,...,...,....,.....,...., 
0.0 0.5 

-0 '25 -f::-,--,-.,-,C'C"--,-~C1 k 
0.0 0.5 1.0 

-0.25 F(k) 
0.5 0.6 0.7 0.8 0.9 1.0 

Fig.2. Comparison of original and approximated lift deficiency functions. 

The second and third order approximation gives fairly good agreement with the original 
function, especially for the lower reduced frequency range. 

8.2. Aerofoil loads. 

In this section an aerofoil without a tab is considered. 
To check the validity of approximations and the transformation to the time domain, the 

amplitude and phase of lift obtained from the third order approximation and original 
function is shown in Fig.3 for pitch motion and in Fig.4 for plunge motion. The curves 
calculated are practically undistinguishable from those obtained using Theodorsens function. 
This confirms the feasibility of this approach. · 

1 .0 30 
~ 

~ 0.9 .;. 20 ~ 

5 '0 
~ 

w 
~ 0.8 ~ 10 

t;: 
0.. 

:::J0.7 t;: 0 
:::J 

0.6 k -10 k 
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 

0.15 ~300 
w 

1290 
Cl 

"' t:: 
['0.10 w 

(/) 
:i 

~ 280 < 

lz lz 'i 0.05 'i 270 0 
::E 0 

:i 

0.00 k 260 k 
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 

Fig.3. Calculated amplitude and phase for lift and moment on aerofoil. 
Pitch motion. Third order approximation of Theodorsen function. 
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1 .0 280 

w 0.8 ~ 

0 2'275 
5 0.6 

"0 
~ 

0. ~ 270 il 0.4 J: 

t 0. 

::J 0.2 t 265 
::J 

0.0 k 260 k 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 

0.20 ~200 
w i 180 
Cl 

Eo. 15 ~ 

-' w 0. 
:>; "' 1 60 
; 0.10 ~ 
w !Z 140 
:::; 
~0.05 w 

ill1 20 
:::; 

0.00 k 100 k 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 

Fig.4. Calculated amplitude and phase for lift and moment on aerofoil. 
Plunge motion. Third order approximation of Theodorsen function. 

Lift and moment calculated for aerofoil motion are compared with the experimental 
data for NACA 23010 aerofoil [18] for pitch motion in Fig.5 and for plw1ge motion in 
Fig.6. 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

CL 
Model 

• · · • • Test 
Static 

/o. . /, • :-<. . ., . •} .. / 

0.06 c"' 
/ 

/ 

0.02 

-0.02 
.····.:·.::..·.:.·....!·-·~ . 

.__..-.!.-- '" ..,... . ..... · . . . . . .. .. ...... . 
-0.06 

,_. 
-0. 6 +-~---,--..-----,--.------, CX(') 

-6.0 -2.0 2.0 6.0 
-0. 1 0 +----.---,----,---,-..--

6
---,. 

0
Ct.!' J 

-6.0 -2.0 2.0 

Fig.5. Comparison of calculated lift and moment with experimental data for NACA 23010 aerofoil. 
Pitch motion, k=O. !25, Ma=0.4. Third order approximation of Theodorsen function. 

In both cases lift hysteresis is less intensive for the calculated results. The lift curve slope 
of the calculated results is the same as that obtained from experiment data for the pitch 
case and differs slightly for the pure plunge case. This suggests, that the lift deficiency 
function for plunge motion should be slightly different, than for aerofoil pitch. Taking into 
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~ 

-0.0 -0.01 ·- .. :· 
-0.2 
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-0.4 . / . )a .. ... 
/ 

-0.6 
4.00:() -0.03 

4.0Ci(') -4.0 -2.0 0.0 2.0 -4.0 -2.0 0.0 2.0 

Fig.6. Comparison of calculated lift and moment with experimental data for NACA 23010 aerofoil. 
Plunge motion, k=O.l29, Ma=0.4. 'Third order approximation of Theodorsen function. 

account that in the calculations the lift curve slope is taken as 2rr, the agreement with 
experiment is fairly good. 

1 .5 CL 0.06 c" 
--Model 

1 .3 · · · " · Test 0.04 

1 . 1 
Static 

0.02 

0.9 0.00 

0.7 
~ 

-0.02 ;< 
. . 

/ 

0.5 / -0.04 / . . / 
0.3 Ci(') -0.06 

4 6 8 10 12 14 2 

Fig.?. Comparison of calculated lift and moment with experimental data for NACA 0012 aerofoil. 
Plunge motion, k=0.2, Ma=0.3. Third order approximation of Theodorsen function. 

A similar comparison for the NACA 0012 aerofoil with the results presented in [19] is 
shown in Fig. 7. 

1 .4 CL 
0.05 

c,. 
·------ appro. I 
·-- appro. II 

1 .2 - - appro. Ill 0.03 -- ONERA model :;;.-; 
1.0 '• 0.01 

--------~ -""' 
/ '"" / ' 

( \ 
0.8 -0.01 I 

/ 
0.6 -0.03 

. ._,___ ,/ 
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Fig.8. Comparison with ONERA model for different approximations of lift deficiency function. 
Pitch motion, k=0.15. 

In Fig.S the comparison of lift and moment with results from the ONERA model 
modified in [ 13] is shown for all three aproximations of the lift deficiency function. The 
second and third order approximation of lift deficiency function gives the most intensive 
hysteresis. 
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8.3. Aerofoil with tab. 

There are few experimental data relating to aerofoils with tabs, which can be used for 
comparison purposes. Considerable experimental evaluation performed by the NLR 
concerns mainly higher Mach numbers and frequencies. 

In Fig.9. the effects of the influence of reduced frequency for an aerofoil with 
deflecting tab is presented as functions of angle of attack and time. The trend shown is in 
good agreement with [18]. 
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Fig.9. Calculated lift on fixed aerofoil with oscilating tab for different reduced frequencies. 
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Fig.! 0. Calculated loads on aerofoil with tab oscillating with the same frequencies. 

TI1e results of calculations for Theodorsen's case, i.e. an aerofoil with tab oscillating 
with the same frequencies, are shown in Fig.!O. The results are exactly the same as those 
obtained from the original expressions [4]. 

In Fig. II the results of calculations according to the present theory and the modified 
ONERA model [13] are compared. The aerofoil is performing pitch oscillations and the tab 
deflection amplitude is ± 10°. For the lower aero foil and tab frequency ratios, both methods 
predict qualitatively the same load changes. At higher aerofoil and tab frequency ratios, the 
present model gives the more reliable results, as the changes of aerofoil loads are more in 
accord with the ratio of aerofoilftab frequencies. 

The tab motion changes the amount of energy involved in the aerofoil motion, which 
manifests itself by the differently shaped hysteresis loops. This could influence the blade 
aeroelastic behaviour and possibly lead to a tab induced type of blade instability. 
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Fig. II. Comparison of calculated aerofoil loads with modified ONERA model 
for pitching aerofoil and oscillating tab. Amplitude of tab motion ± 10'. 
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Conclusions. 

The 2D aerofoil theory for incompressible, inviscid flow is extended to the case of 
aribtrary aerofoil/tab motion and varying free stream velocity. The expressions for 
calculating lift and moment have general form and are valid for arbitrary wake shape. The 
obtained formulae are easily programmed, as the same expressions are valid for aerofoil 
and tab the only difference being in the velocity expressions involved. 

The theory is validated using the classical Theodorsen case and compared with 
experimental data. For this case the transformation to the time domain is performed using a 
Laplace transformation for approximation of the lift deficiency function. 

The influence of mutually different aerofoil and tab frequencies on aerodynamic loads 
is presented. 
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