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Summary 

For several years, ON ERA has been performing researches with the aim of predicting helicopter 
blade dynamic response and loads. The application of linearized methods to the prediction of loads 
on flexible blades has already been illustrated at the first European Forum. The object of the present 
paper is a calculation taking account of the non-linear aerodynamic loads due to high angle of attack 
on the retreating blade. The programme is still limited to rigid blades, but its extension to flexible 
blades offers no theoretical difficulty. 

The aerodynamic three-dimensional and compressible effects are taken into account with the 
acceleration potential method and the effects of large incidence are evaluated with a mathematical 
model based on airfoil wind tunnel tests and superimposed through an iterative procedure. 

The theoretical results have been compared with experimental data obtained on a rotor tested in 
the large wind tunnel of Modane. 

Resume 

Depuis plusieurs annees, I'ONERA poursuit des recherches dans le domaine de Ia prevision des 
charges aerodynamiques et de Ia n)ponse dynamique des pales d'helicopteres. Une application des me
thodes lineaires au calcul des charges pour un rotor a pales souples a deja ete presentee au premier 
Forum Europeen. Le but de Ia presente etude est !'introduction des non linfarites dues aux incidences 
elevees presentes dans Ia zone de Ia pale reculante. Le calcul est actuellement limite au cas d'une pale 
rigide articulee, mais !'extension au probleme de Ia pale souple ne presente pas de difficultes theoriques. 

Les effets tridimensionnels et ceux dus a Ia compressibilite sont pris en compte par Ia methode 
du potentiel d'acceltiration. Les non linearites induites par les grandes incidences sont incluses par un 
processus pas a pas a I' aide d'un modele mathematique fonde sur des resultats experimentaux bidi· 
mensionnels. 

La theorie a ete comparee a des resultats experimentaux obtenus dans Ia grande soufflerie de 
Modane. 

INTRODUCTION 

For a few years ON ERA has been pursuing researches in 
the aeroelastic field, with the aim of predicting the in flight 
vibratory response of a helicopter. The first step has been the 
development of a computer programme based on the assum· 
ption of linear aerodynamics and using the blade normal modes 
of vibration as degrees of freedom of flexibility. 

The validity of this method is restricted to flight cases 
where the aerodynamic angle of attack on the blade remains 
small all over the rotor disk. In the method presented in this 
paper, non linear aerodynamic effects are included, but the 
blades have been considered as rigid for the sake of simplicity. 
Even with this simplification, the programme may be used to 
solve many practical non linear problems where the influence 
of blade flexibility is small, such is the case for performance. 

1 - LINEAR, THREE-DIMENSIONAL COMPRESSIBLE 
AERODYNAMICS 

1.1 - Acceleration potential theory 

The method presented here is based on the acceleration 
potential or doublet theory, Ref. (1), (2), (3). The blade is 
assimilated to a surface of pressure discontinuity. We assume 
that the blade motion is known. 
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For a prescribed distribution of pressure discontinuity 
defined by a function of the space coordinates (over the blade 
surface) and time (from the remote time t = ......,., to the present 
timet = t

0
l, one is able to calculate, by integration of a 

rather complicated kernel function, the total induced velocity, 
resulting from the attached and shed vortices, at any given 
point and time t0 . The formulation differs fundamentally from 
the vortex theory which determines the velocity induced by 
the shed vortices instead of the total velocity. 

On the blade surface the normal component of this total 
induced velocity is a known function of time also named down· 
wash. lt is given by the non-separation condition. Such a condi· 
tion introduces a relation between the pressure discontinuity 
and the blade movement. This condition is directly used to 
compute the lift forces on the blades without necessitating 
any two-dimensional assumption such as the one used in 
Prandtl method. 

1.2- Practical application of the theory 

In order to save computer time, one is obliged to sim· 
plify the problem, Ref. (4) and (5). The following assumptions 
are introduced. 



1 l The blade movement is a known periodical function of 
time. 

2) The blade is represented by a lifting line located on. the 
25 per cent chordwise position. 

3) The non separation condition is applied on the 75 per 
cent chordwise position. 

4) The lift is supposed to be a linear combination of 
prescribed functions of time and blade radius, according to 
the following formula : 

(1) F(r, t) = v'T"=7j.t Z;L;Irl + f:; 
I • 1 I • 1 

where L1(rl is a Lagrange polynomial, 

m 
I; x .. L·(r)cosj,P 
j • 1 IJ I 

41 is the azimuthal angle on the rotor disk, with the origin on 
the backward blade position, 

2r- A -A 
11 = l 0 

AI- Ro 
r : radial coordinate of a blade section 

A
0 

radial coordinate of the blade root 

A
1 

radial coordinate of the blade tip 

Zi X;j Y ij unknown coefficients, to be determined by appli· 
cation of conditions 1 and 3. 

For most of the computations n = 5 and m = 6 and 
there is a total of 65 unknown coefficients (Z, X, Yl. 

The first step of the method is to compute by a time 
integration the total induced velocity generated by each lift 
function 

Li(r) 
L;(r) cos j!J! 
Li(r) sin il/1. 

There is a total of 65 such functions and the integration 
is performed for each function on 65 points P 0, evenly dis
tributed on the rotor disk. As a consequence of the linear 
aerodynamics, the induced velocity is the sum of the velo
cities induced by each function with the appropriate coeffi· 
cient z1, Xij or Y ij· The relation between the velocity at the 
points P 

0 
and the set of coefficients gives algebraic equations 

which can be written in the matrix form : 

(2) 

where [A] is the matrix resulting from the integration :each 
coefficient of A gives the velocity induced at a particular point 
by a particular prescribed lift function ; 

Table 1 

is the column of the unkl)own coefficient ; 

[W] is the column of the total induced velocity for each point 
P 

0
. If the condition 1 is assumed, W is known and obtained by 

projection of the blade velocity on the normal to the blade 
local skeleton. 

The resolution of the linear system (21 gives the coeffi· 
cients Z, X, Y, and by application of (1). the lift distribution on 
the rotor disk is obtained. 

1.3- Introduction of the aerodynamic incidence 

One can notice that, so far, the incidence has not been in· 
troduced,of course we need to know the feathering angle along 
the blade as well as the cyclic and collective pitch. These angles 
determine the section geometric position refered to a conven· 
tional plane. The forces are directly obtained by solving the 
linear system {2). Then one can assume that the lift is created 
on each blade section as on an airfoil in a two-dimensional 
flow. The blade local incidence is the value of incidence which 
would give the same local lift on the airfoil. This procedure is 
based on the same assumptions as the Prandtl's method. 

Now let us compare the calculation procedures used with 
the doublet method and with the vortex method in a block 
diagram. 

(See Table 1 ). 

When the doublet method has given the aerodynamic for· 
ces, the determination of the Prandtl's incidence is based on 
the following formula : 

(3) a _FJ1='M' 
p -

2rrpV~ b 

where F is the lift by unit spanwise length in N/m, 
V n is the local normal velocity to the blade m/sec, 
M = VJa local Mach number, a sound velocity, 
b half chord. 

This is a very simple quasi steady formula but which can 
give satisfactory results for the low reduced frequencies usually 
met on helicopter rotors. The incidences thus obtained are used 
to predict the drag and stall. 

VORTEX METHOD Feathering angle + shed Prandtl's incidence 
gives vortices induced velocity gives 
velocity induced by shed gives 

~ 

aerodynamic forces 
vortices Prandtl's incidences 

DOUBLET METHOD Feathering angle + sum of Forces on the blade 
gives shed and attached vortices gives 

the velocity resulting from the induced velocity ~ two-dimensional Prandt!'s 

shed and attached vortices gives incidence 
forces on the blade 
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2- NON LINEAR COMPRESSIBLE AERODYNAMICS 

2.1 -Introduction of the effective Prandtl's incidence 
(see Ref. 1611 

Let us assume that the method of paragraph 1 has been 
used to compute the linear forces F and Prandtl's incidences 
o:P, on the rotor disk. If aP is no longer small, separation can 
occur. The blade will experience unsteady stall. The actual 
forces on the blade, as one can measure by pressure transdu· 
cers and a chordwise integration is noted F"tr, t). Relation {4) 
is verified 

An interpretation of F'(r, t) can be given by saying that 
the local profile has the e!!ective incidence a:Petr (fig. 1), This 
incidence is derived from F(r, tl with a formula similar to (3) : 

151 CI:Peff = 
Fir, tl v',.-:=-w 

2rrpV~ b 

by comparison of (3), (4). (5). one has : 

161 

The difference (c~P - aPflff) can be assimilated to a loss 
of incidence due to stall. 

Fig. 1 - Effective aerodynamic incidence for a sta/Jed profile. 

2.2 - Grass and Harris' method 

In order to solve the problem, a relation is needed 
between cxPeft and cxP. Because of the unstationary character of 
stall on the rotor disk, one can expect that, at the present time 
to. the incidence a:peff (t0 ) is determined by all the time history 
of cxp(t) from -oo to t0 . This relation can be given by experi· 
ment or by any available method. A simple method, developped 
at the Boeing Company has been used in the computer pro
gram. The time dependance is restricted to the values of 
both the incidence and the incidence first derivative. Thus we 
have: 

f is a non linear function of the variables a:P and ~P. Determi· 
nations of the relation {7) is given in Ref. {9) and (6). For a 
simple sinusoidal variation of a:P (t l. one obtains a lift coeffi
cient Cz(t) roughly centered on the static experimental Cz0 
curve (fig. 2). 

c, 
lift coef. 

0( 
Pmln 

0( 
Peff 

--- Experimental 

fSia't~-~~ve 
I 
'I 
I 
I 

' ' I 
' ' I 
' ' ' ' I 
0( 

Pmax 
Aerody. incider,ces 

Fig. 2 - Experimental C z loop for a sinusoidal variation of cxP. 
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2.3 - Physical assumptions 

As it has been shown in the linear case, the forces on the 
rotor disk are determined by a condition which express the 
fact that the velocity of the fluid is tangent to the local pro
file neutral axis. This is no longer true when separation occurs. 
It will be supposed that one can replace the actual profile by 
a new one, the neutral axis of which makes , with the former 
one, an angle equal to the loss of incidence. Besides, it is assu
med that the wake induced velocities are still determined by 
the same linear relations as formely, except for the fact that 
non linear lift forces replace the former linear ones. The pro
blem is thus brought back to the precedent linear one expres
sed by relation (2) with the important difference due to the 
presence of an unknown right hand term. This right hand term 
can be considered as the velocity normal to. the equivalent 
neutral axis of the stalled profile. It is now possible to ima· 
gine a step by step method to compute the non linear forces. 
At the first step, the linear solution give the value of a-P, then 
with the non linear relation (7) one obtains the effective inci
dence a:PIIIf , which in turn gives a new right hand term and 
a new value for the forces and so on. The problem is equiva
lent to solving a non linear systems of 65 equations with 65 
unknown parameters. 

2.4 - Resolution of the non linear system 

For convenience, the aerodynamic incidences a:P are 
chosen as the unknown parameters to be determined at the 65 
points P 0 of the rotor disk. Once the incidences are determi
ned the relation (7) gives a:Peff and {5) provides the actual non 
linear forces F on the 65 points P 

0
• All over the rotor disk the 

interpolation of 'F(r, ..p) is made according to formula ( 1) as 
for the linear computation. Because of the large number of 
unknown parameters cxP (currently 65), the method used is a 
Newton'S; generalized one which converges fast enough 
if the non-linearities are not too severe. The starting point is 
provided by the solution of the associated linear system. The 
converge11ce is likely to be difficult fgr strongly non linear 
cases, thcat is to say for heavily stalled rotors. Fortunately the 
stalled region remains restricted to the side of the retreating 
blade ; this in fact reduces the number of non linear equations. 



3- AERODYNAMIC FORCES AND BLADES MOVEMENT 

COUPLING 

3.1 - Solution of the complete problem 

So far, in paragraphes 1 and 2, the blade movement has 
been considered as known in function of time. It remains to 
express the blade mechanical equilibrium. The problem has 
already been solved with linear aerodynamics for an articulated 
flexible blade Ref. (7} (8). Here, it will be restricted to a rigid 
flap and lead-lag hirged blade without hub movement. The 
Lagrange's equation express the coupling between blade mectia· 
nical movements and aerodynamic forces. If the blade angular 
movements are supposed small and if moreover the drag forces 
are neglected or added as known forces, then the Lagrange's 
equations are linear. By an inversion matrix technique one can 
solve the system and obtain the blade periodical movement as 
a linear function of the unknown 65 lift coefficients F. By 
combination of this result with the non linear aerodynamic 
system of paragraph 2, a new non linear system is obtained, 
which governs the response of the fully coupled aerodynamic 
and mechanical system. The small non linearities introduced 
by large blade movements and drag forces are taken into acc:o· 
unts as correction coefficients in a step by step computation. 
Fortunately, these non linearities are small and do not introduce 
convergence difficulties as the strongly non linear system of 
paragraph 2 can do. 

Eventually the solution of the problem is given by two 
step by step computation procedures. The convergence needs a 
rather long computer time, about 8 minutes of UNIVAC 1110. 
(Acceleration potential induced velocities not included). 

4- APPLICATIONS 

4.1 - Choice of one experiment performed at the Modane 
test rig 

The computation method presented in the preceding 
paragraphs has been compared with experimental results 
obtained in July 1970 in the 51 large wind tunnel of Modane. 
The model was a very rigid flap and lead-lag articulated one, 
with a diameter of 4.15 m and a blade chord of 0.21 m. In 
flight measurements with pressure transducers along 4 blade 
sections provide, by integration, the lift at reduced distances 
riA = 0.52 ; 0.71 ; 0.855; and 0.952 from the rotor axis. 
The blade inertia coefficients have been measured in a ground 
experiment to be used in the Lagrange's equations. The flight 
case selected for comparison is a heavily stalled one at an 
avance ratio J1. = 0.3. The angle cr: between the shaft axis and 
the perpendicular to the flight pa~ is aq = -15.94°. The fea· 
thering angle at 75% of blade spanwise location is 13.49°. There 
is no cyclic pitch ; the control is provided by the variation of the 
angle aq· The rotor is operating at C/a = 0.1138; CL/a,.. 
1. 728 ; n R = 200 m/sec at the tip. The blade flapping move· 
ment is approximated by the formula : 

,B(t) = ,60 + .Bc1 cos~J~ + .Bs 1 sin~J~ + ... + .Bc6 cos6tP + .Bs6 sin61Ji 

and the lead-lag movement by : 

4.2- Incidence and lift charts 

For the flight configuration considered, fig. 3 and 4 show 
the charts of incidence for linear and non linear calculations. 
In both figures it is worth to notice the 0 incidence occuring 
at both ends of the lifting surface. On the reverse flow area 
boundary the incidence is± 90". At the blade tip there · 
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very large incidence variation on most of the rotor disk. This 
is mainly an effect of the tip vortex. Both charts are very 
similar in their general shape. Nevertheless differences occur 
in the retreating side region. This is clearly shown on figure 5 
for the aP = 15" contour. The area embraced by the contour 
is much larger in the non linear case, in spite of the lower 
forces (fig. 6 and 7). This is the consequence of a complex 
combined effect of blade movement and induced velocities, 
different in both cases. The differences for the 1'" and 2° 
contours have no important effect on the lift forces. They are 
induced by the very small incidence slope on the 1/J = 90"' 
advancing blade region. 

Fig. 3- Map of incidence linear computation. 

Fig. 4 - Map of incidence nonlinear computation. 



Fig. 5 - Comparison of incidences obtained by linear and 
nonlinear computation. 
--- linear computation fig. 3 

nonlinear computation fig. 4 

u .. 

Fig. 6 - Lift {N/m) map. Linear computation. 

The forces on the rotor disk are presented on figs. 6, 7, 
8 ; they show the expected decrease in lift induced by the 
non linear effects. It is important to notice that the highest 
lift occurs on both the forward and backward parts of the 
rotor disk. 

4.3 - Comparison with experiment 

The time histories of lift are given in fig. 9, 10, 11, 12. 
They result from the integration of 10 pressures transducers 
located on 4 radial locations. The results of the experiment 
and the linear and nonlinear computations are given in a nor-

Fig. 7 - Lift (N/m) map. Nonlinear computation. 

u .. 

. ' 
(_-~-300 ' 

-""iC" ~-- - -- ' 

-""'==-

Fig. 8 - Comparison of lift (N/m) obtained by linear and 
nonlinear computations. 
--- linear computation fig. 6 

nonlinear computation fig. 7 

malized form : dx 
c 

where ap is the pressure difference between intrados and 
extrados ; Po is the static pressure in the wind tunnel. 
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Non linear computation shows some improvement at 
sections r/R = 0.52; 0.71 ; 0.855. At the blade tip, where the 
incidence is small, both computatiOns are similar. The diffe
rence with experiment can be due to non linear effects of the 
large incidence spanwise variation or to radially swept flow in 



the stalled region. 

Figure 13 is the comparison between experiment and 
computations for the harmonic analysis of lift. Non linear 
results are generally in better agreement with experiment. 

Pm 

0.1 

0 

.....•.... linear computation ero ynamrca an 
--Experimental I A d . 1 d 

mecanical coupling _____ Non linear computatioo 

"'>.I I 

90 180 

Fig. 9 - Time history of normalized lift force at radial section 
r/R = 0.520. 

Pm 

',~-... t._._/j 
\ 

0.1 

I 
Azimuth t.jl 

0 90 270 

Fig. 10 - Time history of normalized lift force at radial section 
r/R = 0.110. 

Pm 

0.1 ~-~ ... 

!;:.~~·· 
!/ 
// 
" . " " 

,. 

I 
., ./-

,-. .___ ..-- I . -,. ... / 

270 

' 

I 
Azimuth"' 

3600 

Fig. 11 - Time history of normalized lift force at radial section 
r/R = 0.855. 

Pm 

0.1 

I 
Azimuth t.jl 

0 90 180 270 3600 

Fig. 12- Time history of normalized lift force at radial section 
r/R = 0.952. 
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0.1 

R 0.~1~ 
s, 

x-x exp. 
...... linear 
- - nonlinear 

-··~~ ····' \r1 R 
\ 

' 
I 

' 

os 1 R 

~.:;:><(/ 
.... · 

Fig. 13- Harmonic analysis of normalized lift. 

4.4 - Effect of multicyclic control 

As one can observe on fig. 7, the maximum lift occurs on 
both front side and rear side of the rotor disk. The forces 
remain small at 1/1 = 90 and t/1 = 270°. If the lift could be 
made even smaller at the azimuth 1/1 = 270°, one can expect 
that the stall would be avoided or at least deleted. To obtain 
this effect would require a maximum of the feathering angle 
at 1/1 = ao and 1/1 = 180°and a minimum at 1/J = 90° and 
1/1 = 270~. This leads to a cosine second harmonic mult_icyclic 
pitch angle. To have an idea of the effects one can expect, a 
tentative computation has been carried out with a 5° second 
harmonic cosine term. There is no first harmonic pitch and 
control of lift and thrust is obtained by tilting the shaft axis 
and adjusting the general pitch angle. Calculation have shown 
a small decrease of both ctq and the general pitch, but a 7.5% 
increase of the power requrred to turn the rotor and a small 
increase in the vibratory level at the rotor head (see figure 
14). Nevertheless the incidence charts (fig. 15 and 16) show 
a very important variation of the contour lines and a substan· 
tial decrease of the incidence at azimuth 1/1 =270°. This may 
in turn decrease the stall induced pitching moment on the 
blade but their calculation has not been included in the com· 
puter program so far. Figure 17 shows the maximum of aerody· 
namic incidence on the rotor disk, experimented by a profile, 
and the decrease due to multicyclic control. The new force dis
tribution is given on figure 18. 



I 

I 

" 

I 
No multicyclic Multicyclic pitch 

-I 
pitch 5" x cos21jt 

Collective pitch 13.49° 12.465° 

"q 15.94° 13.24" 

Thrust 444.41 N 442.37 N 

Lift 4 582.34 N 4574.79 N 

Power required 113,939 watts 119,250 watts 

Blade coning 1.34° 1.37° 

1st harmonic 
cosine flapping 

9.58° 6.32" 

mvt 

1st harmonic sine 0.06° 0.575° 
flapping mvt 

2nd harmonic 
cosine flapping 

0.183° 0.40° 

mvt 

Mean inplane 

I 
- 1.72° - 1.80" 

Jagging angle 

Fig. 14- Effects of multicycHc pitch motion (angle aqand 
coflective pitch adjusted to obtain the same thrust and lift). 

Fig. 15- Incidences map. Nonlinear computation 5"cos2oJ; 
multicyclic pitch. 

! 

-

-

- Fig. 16- Comparison of incidences maps. 
-- norilinear computation no mu/ticyclic pitch 
- - - nonlinear computation 5" cos2~Jt mu/ticyclic pitch. 

ocPmax 

30 

-- no multicyclic pitch 
- - - 5o cos21jt multicyclic 

20 

10 

0 0.5 1 ! 
A 

Fig. 17- Maximum of incidence along blade. 

22-7 



Fig. 18- Map of lift forces. Nonlinear computation 
5" cos2VJ multicyclic pitch. 

5 - CONCLUSION 

The computer program presented in this paper is 
restricted to the case of a rigid articulated rotor. Lift non 
linearities due to stall are included, but the important pitch 
moment variation expe<:ted in such flight regime has been 
omitted. This is an important limitation which can only been 
removed by further development of both two-dimensional 
experiments and tridimensional theory. More experimental 
results are also needed to explore Reynolds numbers effect 
and full use of all possibilities of the theory. 
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