
PAPER Nr. : 68 

USE OF OPTitHSATION n; HELICOPTER VIBR:\'flON CONTROL 
JlY STRCCTURr\L NODIFICATIO:i 

by 

G. T. S. Done, 
The City Uni ve rs i ;::; , Lend on ECl V OHB, England. 

H. A. 1.". Rangacharyulu, 
Birla Inst. of Tech. c, Science, Pilani (Rajasthan), India .. 

FIFTH EUROPEAN ROTORCRAFT AND POWERED LIFT AIRCRAFT FORUM 

SEPTEMBER 4-7TH 1979- AMSTERDAM,THE NETHERLANDS 



USE OF OPTIHISATION IN IIELICO?ER VIBRATION CONTROL 
BY STRUCTURAL HODI?ICATION 

by 

G.T.S. Done, 
The City University, London ECl V OHB, England. 

H. A. V. Rangachar:;·ulu, 
Birla Inst. of Tech. & Science, Pil&<i (Rajasthan), India. 

Abstract 

The application of a mathegatical opt~mlsation process to heli­
copter vibration control by structural modification is reported. 
Attention is focussed on the reduction of vibration in the crew area 
using stiffness parameters as design variables. Use is made of forced 
vibration response circles to identify the parameters most effective in 
controlling the response in the crew area, thereby reducing the number 
of available design variables to a tractable size. The problem of 
reducing vibration is then cast as a non-linear programming problem and 
a sequential unconstrained minimization technique incorporating an:·- .. 
algorithm based on the methods of Davidon, Fletcher and Powell is used 
to determine the precise values of the parameters. The method is 
applied to a simple two-dimensional bean-element helicopter fuselage 
model, and the results discussed. A:though the model is too simple for 
useful deductions of practical signizicance to be made in the strictly 
engineering sense, the exercise does denonstrate what can and cannot be 
done in controlling vibration by using an optimisation routine. 

l. Introduction 

One of the many possibilities for vibration control of a heli­
copter is to design the fuselage str~cture itself so that the vibration 
response in the more important areas such as crew and passenger spaces 
is minimised. Ideally this would ircvolve optimising the separate ele­
ments of the fuselage structure to achieve minimum response in the 
desired area. It is usual to perfor3 structural analysis operations 
on an appropriate mathematical model, such as a finite element model of 
the structure comprised of many eleme~ts, but to treat each element as 
a variable for the purpose of optimisation wouid be beyond the scope of 
the average optimisation computer prcgramme and could involve heavy 
computational costs. To avoid this, a subsidiary exercise is per­
formed in which the best few elements that can be treated as variables 
for reducing vibration are chosen. ~ne~ once the sensitive elements 
are identified, a formal optimisatio= ccn be used to fix the precise 
values of the parameters characteris~~g these elements. 

In the last decade there has caen a considerable advance in the 
area of structural optimisation unde~ dynamic constraints, as the 
recent comprehensive reviews by Rao -l] and Venkayya [2] will testify. 
A portion of the research work that ~as been done is concerned with 
optimisation of a structure under fo=~eC vibration, and this is rele­
vant in the present case. Sciarra 3 J provides the apparently sole 
example of a specific application to a helicopter fuselage, although he 
used an optimality criterion rather :~en a for~al mathematical optimisa­
tion procedure.. Parameter selectic::-_ before optimisation is not. covered 
to any great extent in the literatur2; quite often, when the number of 
parameters needs to be limited the c:-.oi ce is simply made initially on 
the basis of dynamical experience. 
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2~ Parameter selection 

The identification of the best parameters for selection in the 
optimisation process is based on the way the response at a point 
behaves when a parameter is varied. If a structure is excited by a 
sinusoidal force, while either the mass at a point or the stiffness 
between two points (as represented by a spring) is continuously varied, 
then the response in the complex plane at some other point is seen to 
trace out a circular locus. The diameters of the response circles 
thus produced for each parameter can be taken as a simple yardstick for 
deciding which parameters are most effective in controlling the 
response at the point under consideration; for exawple, a parameter 
producing a large response circle diameter clearly has a relatively 
greater effect than one producing a small response circle diameter. 
From a listing of circle diameters in decreasing size order for dif­
ferent parameters, the top few parameters are those selected for the 
subsequent optimisation process. 

The circular response property was originally used by Vincent [4], 
and adopted and utilised in the way just described by Done and Hughes 
[5,6] and Done et al. [7] on two simple practical cases. 

3. Response optimisation 

The response to harmonic excitation of a general structure 
modelled by finite elements and having n degrees o£ freedom is gLven by 

R = G F (1) 

G is the (nxn) complex receptance matrix bet<.;een all the points 
concer~d and is given by 

G = (2) 

where K, Nand Care stiffness, mass and damping matrices respectively 
and w Ts the citcular frequency of the exciting force. F and R are 
the column vectors (order (nxl)) denoting force and response 
respectively. 

If the structure is modified, say, by inserting linear springs 
6f stiffness ki(i=l,m) between the nodes that have compatible degrees 
of freedom, the stiffness matrix K becomes a function of these variable 
stiffness parameters ki. Out of-all possible ki the best few are 
selected for optimisation by using the parameter selection programme. 
The particular responses ~p to be minimised are gLven by 

R = S G F 
-p 

(3) 

where S is a sorting matrix that picks out the associated points. Now 
in terffis of mathematical programming the problem is to minimise an 
objective function which is a function of the elements of~' using the 
best parameters as design variables. In evaluating ~ the damping 
matrix C is assumed to be zero, since for situations as in the present 
case wh~re the forcing frequency is well removed from resonant fre­
quencies its contribution is negligible compared with those from mass 
and stiffness. A major advantage is that complex natrices are thereby 
avoided. A further point is that the helicopter rotor speed is sub­
stantially constant, and therefore the excitation frequency is assumed 
constant. 
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The optimisation is done by using a readily available variable 
matrix algorithm supplied by R.A.E., Farr.borough. The algorithm 
requires gradient information and is based on !:he methods of Davidon, 
Fletcher and Powell [8]; it is one of the most powerful gradient-based 
algorithms and has a quadratic convergence property~ The gradients 
required can be obtained from differentiating eqn. (3): 

oR 
...::.!?. 
ok. 

~ 

oK 
- S G-=- G F --ak. --

~ 

(4) 

It can be seen from this that the receptance matrix G needs to be 
evaluated fer each recomputation of the gradient vector, thus neces­
sitating the inversion of a (nxn) matrix (eqn. (2)) each time. The 
number of degt"ees of freedom n may be large and there is the possibility 
of using a lot of computer time. Hm.rever, an alternative expression 
to eqn. (2) can be used to calculate the receptance matrix which is 
derived in Ref. 5 and reproduced in the Appendix: 

(5) 

where 2.0 is the receptance matrix of the unmodified structure i.e. with 
ki = 0. 

The elements of the matrices A, B and D are formulated from the 
elements of the basic receptance mntrix-G0 • -V is a diagonal matrix. of 
the variable parameters ki and I is an identity matrix. Here the 
matrices D and V are of the order (mx:m), 1.;here m i.s the number of vari­
able parameters~ Any sensible and ~ractical modification would 
involve relatively fe~v variable parar:ete:cs compared with the number of 
degrees of freedom, so m is much less than n and h~nce the size of the 
matrix to be inverted is only (m..'<rn). In the present \Wrk the 
gradients are computed directly from the e::..'"Pression resulting from 
differentiating eqn. (5). 

4. Experience on a simple gear box/engine/fuselage illodel 

As a test case for the application of the optimisation method to 
dynamic problems, a simple system representing a ·helicopter in which 
the gear box, engine and fuselage are replaced by rigid bodies as shown 
in Fig~ l is coP.sidered. The gear box and engine mountings are 
treated as variable stiffness parameters. The n;odel has eight C.egrees 
of freedom and six variable spring stiffuesses~ The gear box is sub-
jected to an oscillatory forcing mome:1t cnC the a:.::t is to find Hhat 
variable stiffness values ki are necessary to r.:ake. the vibration at the 
pilot's seat, P, zero or as low as possibie~ lhe stiffnesses of the 
springs are given by (kb)i + ki (i=l,5), wt:e.re (kb) are the ba.sic 
stiffness values.. The stiffnesses k and k effectively <ict as one 

l 2 
stiffness. 

Realistic bounds on the stiffness values k:, are 
basic objective function to be minio.ised is ta..l(en as C 
is the vertical response at P~ 

imposed and a 
., 2 

-· h-p, vhere Rp 

Now with a simple objective ft:...'l.c~icn of this type it must be 
realised that a unique opti111um does not exist. For example ·with only 
two variables k

3 
and k

4 
(the gradiencs i .. ~ith respect to k 1 , k 2 , k 5 and 

k 6 were very small anci thus these variables are no-:: i2portant in the 
optimisation.) zero vibi"ation respons~ is obtaincC. ;.;ften k:.; == f(k 3 ) in 
the case of no dam:ping; thus k

3 
and ~ ... a-re relat.=:C. for zero response. 
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Stiffness parameter ki = (ki - kie)/(kiu- kie) ~here kiu, kie 
are upper, lower bounds on i-th stiffness (i.e. 0 ~ ki ~ 1). 

Fig. 1. Gear Box/Engine/Fuselage Model. 

Even in the presence of damping it can be sho••n by using response cir­
cles that there exist two optimum solutions for this case. For small 
damping the shape of the objective function ¢ is such that the response 
is second order small along k, = f(k

3
) which makes it hard to find the 

minima numerically and the situation can be worse ior the case of many 
variables. Thus there is a need to choose the best solution out of 
all possible solutions. The simplest means in the present case is to 
assume that an increase in stiffness normally i=plies an increase Ln 
weight and to seek the solution which provides the least '"eight 
penalty, i.e. the least total added stiffness. 

Thus the problem can be recast as a constrained problem,. VlZ. 

Hinimise l:ki, subject to the cons trairct P = ~l_g_~p = 0 

where g is a matrix which allows a quadratic function of response mag­
nitudes at various points to be formed and Eki is the sum of added 
stiffnesses. This opti1msation algorithm is used sequentially in the 
present problem on a modified objective function defined by 

~ = l:k. + S¢2 
(6) 

l 

where S is a penalty parameter. Starting «i th a s::1all value of S and 
an initial, design vector of variables ki, 1JJ is rrini::Used to arrive at a 
new design and taking this as the initial design. and with an increased 
value of S the process is repeated sequentially ~ntil convergence is 
achieved. If a zero response is obtainable, th~ l2ast added ~;eight 
solution is obtained. If however there is no z2ro response solution 
then the sequentially increasing values of t3 ens:.:re the minimum 
possible response within the stiffness (or '..reight) oounds allowed. 

The nature of the result obtained for the t~J variable case is 
shown in Fig .. 2. This represents a case where zero response can be 
obtained within the range of variation of k 3 and k 0 considered. The 
optimisation process has been started arbitrarily at k 3 = k 4 = 0.1 and 
it is clear from study of the Figure that the miLic~w value of ~ occurs 
roughly at the intersection of k 3 = 0 and Rp = f(k 3 ,k4 ) = 0. For an 
initial low value of S the solution moves to point 2; thereafter, S is 
increased sequentially (steepening the slope of t"-e ?enalty function 
surface) and the solution moves to the final one, satisfactory 
convergence being achieved after 5 steps. 
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Fig. 2. Visualisation of Optimisation. 

The model considered here is very simple and to assess how this 
method ;rorks for a more complex model, a two-dimensional beam element 
model ("stick" model) of the Westland Lynx helicopter is studied. The 
details of the model and the results of application are presented in 
the next section. 

5. Application of Lynx "stick" model 

The aforementioned optimisation technique using the modified 
objective fu~:ction is now applied to the problem of minimising the 
vibrational response in the region of the pilot's seat of the Westland 
Lynx helicopter. The model used is show-n in Fig. 3. This "stick" 
model has 25 tapered beam elements and 60 degrees of fr<~edom with two 
translational and one rotational at each node. The excitation on the 
structure is 2-'l oscillatory couple of frequency 21.7 Hz applied to the 
rotor head (node 8) as shown in the Figure. Only stiffness changes 
corresponding to the adjacent nodes are considered, and the vertical 
response at the pilot' a seat (node 18) denoted by R53 is minimise-4~.­
The suffix "53" refers to the degree of freedom number- its relation 
to structure node number is found by reference to Fig. 3. 

The first twenty parameters obtained from a response circle dia­
meter listing are given in Table 1 and the par~ters are indicated by 
the respective degree of freedom numbers. A li!odal damping'· ·facta:t :of· 
2% critical is assumed for getting the parameter listing. The para­
meters are also indicated in order of importance in Fig. 4 and are 
those used in the optimisation. 
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Degree of freedom co-ordinates for node i are (3i-2,3i-l,3i). 
Thus, e.g. co-ordinates for node 18 are (52,53,54) and for 

node 2 (4,5,6). 

Fig. 3. Lynx "Stick" Model - Node & d. o. f. Numbering. 

TABLE 1 

Parameter listing for the response R53 based on circle diameters 

Parameter Corresponding Unmodified 
Parameter stiffness 

identifying co-ordinates 
Direction structural 

value ki no. nodes 
(N/m) 

l 25 28 X 3-10 0.398620 X 107 

2 7 10 X 3- I. 0.398620 X 107 
~ 

3 4 l3 z 2- 5 o. 398620 X 107 

4 14 17 z 5- 6 0.525380 X 10 8 

5 5 14 z 

I 
2- 5 0. 250400 X ro8 

6 28 40 X lD--14 0.703606 X 107 

7 12 57 e 4-19 - 0.175127 X 104 
y 

I 
i 

X 104 
8 36 39 8 12-13 1 o.r75127 y 

109 
9 6 15 8 2- 5 I o.r6543o X y 

!o.277979 x 1011 10 9 30 8 3-10 
y ! 

ro9 
11 9 12 8 3- 4 J 0.165430 X 

I 
y ! 0.965550 1012 12 20 23 z 7- 8 X 

I 
x lOll 13 19 22 X 7- 8 i o. 406040 

' 1012 14 16 19 X 6- 7 r o. 384125 X 

' 1012 15 19 55 X 7-19 10.384125 X 

16 17 20 z 6- 7 0.434304 X 1012 

17 17 56 z 6-19 I o. 778341 X 1010 

18 20 56 z 7-19 X 1012 '0.434304 
I 

X 1010 
19 11 56 z 4-19 i 0.210152 

8 
20 2 53 z 1-18 1 o.216385 X 10 
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Fig. 4. Stiffness Parameters (Identification Numbers). 

The optimisadou algorithm requires the lo'Cler and upper limits 
on the variables. Two types of bound are chosen, firstly, all the 
stiffness parameters are each allowed a ~~iform variation of 0-1.75 x 
109 N/m (0-10 7 lbf/in) and, secondly, a .range of variation of 20% of 
the basic stiffness values is also taken. For each set of bounds dif­
ferent response cases are considered although the listing of best 
parameters is not strictly applicable to response cases other than tlm• 

' 
The basic objective functions ~i corresponding to the different 

response cases (see Fig. 5) considered are 

where the suffices on the R's refer to degree of freedom numbers. 
Hinimising a multiple response involving more than one node as in the 
case of ~ 3 and ~ 4 can be thought of as reducing the vibratory response 
over a region of the structure. These response cases are illustrated 
in Fig. 5. 

The computer results for the different cases of response and 
stiffness parameter constraints follow in Tables 2 to 9 inclusive. 
For ea~h case the response function ~i used is staced, and also type of 
upper bound nki on the additional stiffness variations nki. This 

max 
is either simply 1.75 x 10 9 N/m throughout or 0.2ki, where ki is the 
existing stiffness paremeter value of the unQOdified structure. A 
typical value is obtained from the stiff~ess matrix; for example, a 
stiffness connecting points p and q on the structure is given by the 
negative of the pq-th element in the matrix. The lower bounds on nki 
are all zero. 
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Fig. 5. Response Cases Considered. 

The magnitude of the response or composite response C~i)~ is 
given as an acceleration for a nominal excitation pitching moment at 
the rotor head of 5650 N m. 

The parameters listed in Table l are used for a sequence of runs 
in which the first two, four, six, ten etc. parameters are used in the 
optimisation, the optimum values being shown. The response is given 
as a ratio of that for the unmodified structure, and the sum of the 
additional stiffnesses indicated. Also given are the C.P.U. times. 
The parameter identifying number appearing in the first column of 
Tables 2-9 is that which appears in the first column of Table l and 
also in Fig. 4. 

68-8 



0' 
00 
I 

"' 

TAULE 2 

Cnse 1 

Par.o.m. 
ident. 

no. 

1 

2 

J 

4 

5 

6 

I 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Response function ~l a R; 3 

Sti(fneoa bounds 0 ~ bk. $ 1.75 x 109 N/rn 
l 

Rl!sponne m.lgaitude (tJ 1 )~-=} 0.132g 

Opt. values of 6ki/6ki 
max 

for cliff. nos. of params. 

2 4 6 10 15 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0.1936 0.0059 0.0059 0.0059 

0.0161 0.0161 0.0161 

() () () 
~-·····~--

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

---·--::- -
f.(P.'<.xlo-7 0 0.1936 0.022 0.022 0.022 

1 

-
&!sp. 
ratio CPU I 

{~J 
time i 
(min) 

20 

0 

0 1.0 0.025 

0 

0 0 3.5 

Q 
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----~~ --~-----

0 
' 0 

0 

0 0 4.0 
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0 0 15 I 
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o. 0037 . 0 I 45 I 
0.0037 

TABLE 3 

Case 2 

Par am. 
ident. 

no. 

I 

2 

3 

4 

5 

6 

7 

B 

9 

10 

11 

12 

13 

!4 

15 

Response function ~ 2 • a; 3 + R;2 

Stiffness bounds 0 .t; hki (. 1. 75 x 10
9 

N/lo 

Response magnitude (~ 2 )~ ~)Q,I,OJg 

Opt. values of 6ki/6ki 
tn3X 

for diff. nos, of pararns. 

2 4 6 10 15 

0 1.0 0 0 0 

0 1.0 0 0 0 

1.0 0 0 0 

1.0 1.0 !.0 0 

0 1. () 0 

0 () 0 
-----··· 

1.0 () 

0 0 

1.0 1.0 

!.0 0 

0 

1.0 

1.0 

!.0 

1.0. 

E(6k.xlD-7) 0 4.0 1.0 5.0 5.0 
1 

Renp. 
ratio CPU 

{(.:d tin~ 
(ruin) 

!.0 --~1 

o. 322 ___ d 
(l, f\70 l.O 

_,. ... " ·-· -, 

0.939 1.7 i 

I 

0.011 
I 
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Case J 

-

l'arnm, 
ident. 

no. 

1 

2 

) 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

f 
. J 2 2 

Response uuct10n ¥'
3 

= R
53 

+ R
5 

Stiffness bounds 0 ~ 6k. ~ 1. 75 x 10
9 

N/m 
' 

Response magnitude (~ 3)! =}0.190g 

-
Opt. vnlues of bki/liki 

max 
for cliff. nos. of params, 

2 4 6 10 15 
--

0 1.0 0 0 0 

0 l.O 0 0 0 
~ --·--·· 

l.O () 0 0 

0.0173 1.0 0.3~70 0. 3 7 57 
-----

1.0 0.2374 0.2545 

0.0037 0.0035 0.0036 

0 0 

0. 7790 0.7467 

0 0 

0 0 
·-·-· 

0 

0 

0 

0 

0 

E(6k. x1o-7) 0 3.0173 2.0037 1. 3769 1. 3805 
l 

-

RPsp. 
ratio CPU 

{(.:h1 
timl! 
(min) 

1.0 0.025 ---·-- -----

o. 818 0. 5 
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. 

0 57 ' 
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Case 4 
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no. 

1 

2 

3 

4 

5 

6 • 

7 

8 

9 

10 

11 

12 

13 

14 

15 

• J 2 2 2 2 
Response funct1on ¥1

4 
= R

53 
+ R

52 
+ R

5 
+ R1, 

Stiffness bounds 0 ~ 6k. ~ 1.75 x 109 N/m 
' 

Response magnitude (~4 )! =4 0.57lg 

Opt. values of bk./6k. 
1 ' mnx 

for diff. nos. of params, 

4 6 10 15 

0 0 0 0 

0 0 0 0 

0 u 0 0 

1.0 1.0 1.0 0 

o.ooot. o. 0008 0 

0 0 0 

0 0 

0 0 

0 1.0 

1.0 0 ------
0 

1.0 

1.0 

1.0 

J.O 

E(6k.x10- 7) 1.0 
l 

1. 0004 1. 0008 5.0 

----
Resp. 
ratio 

{"! a4~o} 

0.868 
---·-

a. 867 
---·-

0.863 --·-----

0.011 

CPU 
time 
(1ni n) 

o. 7 

1.1 
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TABLE 0 

~ 
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2 

3 

4 

5 

& 

7 

8 

9 

lO 

ll 

12 

l3 
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Response function 4
1 

.. R~ 3 
Stiffnes5 bounds 0 ~ ~ki ' 0.2ki 

Response magnitude ("
1

)!=---} 0.132g 

Opt. values of 6ki/6ki 
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for diff. nos. of params. 
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0 0 0 
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I I 
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--·- I 

l 

I 
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I 

15 

0 

0 

0 

I 

I 

0 

I 

0 

I 

0 

I 

I 

I 

1 

I 
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---- ·---'--

[(~ 

'---

I Resp. 
ratio CPU 

{(~:~j 
time 
(min) 

1.0 0.027 

o. 781 o. zt. 

0.538 0. 34 

0.537 1. 24 
-·--:-- --·---

' 

0.002 33 

TABLE 7 

Case 6 

Par am. 
ident. 

no. 

1 

2 

3 

4 

5 

& 

7 

8 

9 

10 

II 

12 

13 

14 

15 

Response f\Lnction r\2 "' R;) + F.~z 

Stiffness bounds 0 ~ 6ki ~ 0.2ki 

Response magnitude (~ 2 )! => o.t.o3 g 

Opt. values of bk./bY .. 
l l max 

for cliff. nos. of paraws. 
-

2 4 6 IO 

0 I 0 0 

0 I 0 0 

I 0 0 

0 I I 
-·-

I I 

0 0 
--- I 

0 

I 

I 
-------

------- - -- -· 
/.(~l<.i=<l0-7) 0 0.0137 0.0089 3.202 

-

ResF 
rati 

15 
{ .2 
<'iiT --

0 

0 1.0 
---

0 

1 0.99 
--------

I 

0 0,91,1 
----

0 

1 

1 

0 o. 93! 
·-······ 

1 

1 

1 

I 

I 0.00 

202.7 

--------

CPU 
li WI' 
(min) 
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0.067 
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o. ~5 
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TABLE 8 

~ 
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no. 

1 

2 

3 

4 

5 

6 

7 

6 

9 

IO 

I I 

12 

13 

14 

15 
--

Response function ~J • R; 3 + R; 

Stiffness bounds 0 ~ 6ki ~ 0.2ki 

Response magnitude (lj: )I ~0.190g 
3 0 
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2 4 6 10 

0 I 0 0 

0 1 0 0 
-----

1 0 0 

0 1 1 

1 1 

0 0 

1 

1 

1 

() ____ .. 

r.(6k.x10-7) 0 0.001/1 0.0089 0.0276 
l 

Resp. 
ratio CPU 

{ • ! 
tiroe 

(J3~o} (min) 
15 

0 

0 _:.:_o ___ 0.033 

0 

1 0.994 0.12 

1 

0 0.573 0.33 

1 

1 

I 

0 o. 5 72 o. 2 7 
----- ---------

I 

I ' 
I 

I 

I 0.001 26 I 
L__j 202,7 

-----------

TABLE 9 

~ 
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no. 

1 

2 

3 

4 

5 

6 

7 

6 

9 

10 

II 

12 

13 

7.4 

15 
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Response function C4 a RSJ + R52 + RS + R4 

Stiffness bounds 0' 6k. ' 0.2k. 
l l 

Response magnitude (~,)I...,.>0.57lg 
" 0 

Opt. values of Ak./Ak. 
l l 

max 
!or diff. nos, o( params. 

4 6 10 

0 0 0 

0 0 0 

0 0 0 

0 I 1 

I 1 

0 0 
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6. Discussion and ~onclusions 

6.1 The optimisation process 

The problem of minimising tioz ·:ibration on the Lynx model has 
been formulated so that a straightfor~ard optimisation process can be 
applied. In doing this, many pracci2al aspects have had to be 
ignored, but discussion of this is presented in the following section. 

The optimisation exercise hcs ::e:en extre:::;ely useful in that an 
idea of the limitations, and hence its future usefulness can be formed. 
The most important limitation is that the process itself, or rather the 
particular process adopted, is very e:.:::t.ravagan.t of computer time. 
This has been found to vary approxiDntely with the cube of the number 
of variables considered, thereby i~osing a prac~ical top limit of 
about 20 variables.. This represented a serious drawback because the 
present exercise was essentially exploratory ~cd the time left for 
development was thus drastically curtailed. 

Before discussing further drawhacks, it is instructive to 
examine individually each case studied. In Case l (Table 2), zero 
response was obtainable and the optimisation proceeded without compli­
cations. Parameters 4 and 5 are seen. to provide all that is necessary, 
until the final introduction of para::::-.e::e:r- 20 w~ich gives a solution of 
lesser total added stiffness (discussion of the added weight is 
reserved for the following section). Czse 2 il2.ustrates that a problem 
of finding a global maximum has occ~rr2d. This case was run several 
times with different input conditions 2ad for the 10 and 15 parameter 
cases, a variety of solutions was obca~ned. In the event, a low 
response solution was found (15 parazecers), but the results taken 
together do not represent a sensible a~d ordered sequence. Case 3, on 
the other hand, shows a successful seq~ence, as does Case 4, although 
the latter indicates a rather heavy pe~alcy (in added stiffness) to pay 
for the reduced response. The remaining Cases 5 to 8 may be con­
sidered together. In these the stiffr:ess bounds were taken to be 20% 
of the existing stiffnesses, and throusho~t, the variable sti££nesses 
tvent to either their upper or lower li-,its. It is interesting that r.n 
these cases, regardless of the respo~se function taken~ the final 
stiffness configuration obtained is ~o~ghly the saQ.e. 

From this study of the separace cases it ·cay be seen that a 
second important drawback is the inaoility in Case 2 to find global 
m1n1.ma. When it is suspected or kncT,..•n_ t!:at a global minimum has not 
been found, then the case under inves ti g-,at.ion nus t. be re-run with dif­
ferent starting values of the parameters a:::td of r:re penalty function 
coefficient P• Thus, the human ope::ac:e;r enteoc::s into the picture and 
judgement, backed up by experience, ::usc be used to obtain a better 
answer. In cases where a zero or near-zer-o response. \-Tas obtainable, 
finding the global minimum did not see:-_ to be 2 p:-oblem. Hmvever, in 
the opposite situation, there was a te:::"ency for all parameters to 
adopt either their upper or lower li=its, and, particularly in Case 2, 
a number of different minima were fow1C.. To sor::-e extent, the par­
ticular minimum found is pre-determi~eC ac the first and lowest value 
of 6; thereafter, for increasing val~es o£ 8 the response part of the 
objective function dominates at the e:<?22Se of the added weight part. 

Finally, there must remain the c;.·.:estion of whether or not the 
optimisation process used here was the ~ight one. Time did not allow 
the development of other methods. 
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6.2 The use of optimisation in practical proble=s 

It is clear from Tables 2 to 9 that using the response circle 
diameters for initially selecting the best paraceters for optimisation 
is not altogether satisfactory. Ideally, the para3eters that turned 
out to be important in the optimisation should have appeared at the top 
of the circle listing. However, the circle diameter method as used 
here is very simple, and a more realistic criterion, still based on 
circle response properties, can easily be employed. This is something 
that warrants further investigation. 

The gear box-engine-fuselage model of Fig. l was simply used to 
test out and gain experience with the optimisation routine. The 
"stick" model of the Lynx provided, however, scope for a more serious 
attempt at structural optimisation. Even here, though, the model was 
not sufficiently representative for useful practical deductions to be 
made. The major drawback was the absence of a relationship between 
element weight and element stiffness. Future models, even if simpli­
fied by restricting the number of degrees of freedom, should have the 
element weights involved in a proper Eanner. 

Unlike flutter optimisation for fixed wing aircraft, the basic 
objective function is somewhat arbitrary. Human judgement is required 
to formulate a suitable response function for embodiment in the objec­
tive function. Clearly, it is impossible to reduce the response in 
the fuselage everywhere to zero, so it has to be decided where the 
response should be small, or zero, and in which directions. If a com­
posite response is to be used, some sort of weighti2g has to be decided 
upon for the various components~ 

A further practical consideration is that the optimisation 
should be terminated when the payoff between added ;reight and response 
reduction becomes unacceptable. Such a bounding relationship could be 
provided by information obtained from industry. 
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Appendix 

Matrix express~on for the modified receptance 

A brief derivation of eqn. (5) of Section 3 is g~ven here. 
Consider a structure modified by inserting two linear springs of rates 
k 1 and k 2 betwee!l points a and b, ap~d c and d respectively, and excited 
by a harmonic force Fp at p. The o:Ojective is to obtain !:he recep-
tance Gpq between point p and a further point q when the structure is 
thus modified. 

The forces exerted by the springs Fa, Fb and F c, F d at the 
points of attachment a, b and c, d can be written as 

F 
a 

R ) 
a 

where R denotes the displacement res?onse. 

The response Rq can now be written as 

R 
q 

where Gij is the recep tance be tween the points i a!1d J ~ 

Using eqns. (Al) this can be re-written as 

(Al) 

(A2) 

where o1 = Rb - Ra and o2 = Rct - Rc are the relative displacew~nts of 
the springs. 
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Similar expressions for the displacements at a, b, c and d can 
also be formed: 

R = G F + (G - Gab)kl0l + (G - Gad)k2o2 a ap P a a ac 

~ Gb F + (G - cbb)kl01 + (G - Gbdlkz6z p p ba be 

R = G F + (G - Gcb)kl01 + (G - Gcd)kzoz c cp P ca cc 

Rd Gd F p p 
+ (G -

da Gdb)kl0l + (Gdc - Gdd)k2°2 

and by combining these the relative displacements <5 1 and <5 2 can be 
expressed 

where 

o=FB-DVo p-

Rewriting eqn. (A2) as 

R=GF+AVo q qp p 

(Gad - Gac)l 

(G d - G ) c cc 

(A3) 

(A4) 

where A= (Gga- Gqb Gqc- Gqd), i can now be eliminated using eqn. 
(A3) to prov1de the new receptance Gnew between p and q, i.e. 

G = R /F new q p 

G + !::_~ (I_ + ~~) -1! qp 

The expression can be generalised to include 
and !::_, ! and~ can be easily formulated from 
the unmodified structure. The matrix to be 
as the number of variable spring stiffnesses 
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(AS) 

any number of variables 
the receptance matrix of 
inverted is only as large 
considered. 
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