

USE OF OPTIMISATION IN HELICOPTER VIBRATION CONTROL by StRlCtural modification
by
G.I.S. Done,

The City Universicy, London EClV OHB, England.
M.A. Y. Rangacharyulu,

Birla Inst. of Tech. \& Science, Pilani (Rajasthan), India.

FIFTH EUROPEAN ROTORCRAFT AND POWERED LIFT AIRCRAFT FORUM SEPTEMBER 4-7TH 1979 - AMSTERDAM, THE NETHERLANDS
by

G.T.S. Done,
The City University, London EOIV OHB, England. M.A.V. Rangacharyulu,
Birla Inst. of Tech. \& Science, Pilani (Rajasthan), India.
\section*{Abstract}

The application of a mathematical optimisation process to helicopter vibration control by structural modification is reported. Attention is focussed on the reduction of vibration in the crew area using stiffness parameters as design variables. Use is made of forced vibration response circles to identiEy the parameters most effective in controlling the response in the crew area, thereby reducing the number of available design variables to a tractable size. The problem of reducing vibration is then cast as a non-linear programming problem and a sequential unconstrained minimization technique incorporating an algorithm based on the methods of Davidon, Fletcher and Powell is used to determine the precise values of the parameters. The method is applied to a simple two-dimensional beamelement helicopter fuselage model, and the results discussed. A though the model is too simple for useful deductions of practical sigai三icance to be made in the strictly engineering sense, the exercise does demonstrate what can and cannot be done in controlling vibration by using an optimisation routine.

1. Introduction

One of the many possibilities for vibration control of a helicopter is to design the fuselage structure itself so that the vibration response in the more important areas such as crew and passenger spaces is minimised. Ideally this would involve optimising the separate elements of the fuselage structure to acinieve minimum response in the desired area. It is usual to perforg structural analysis operations on an appropriate mathematical model, such as a finite element model of the structure comprised of many elements, but to treat each element as a variable for the purpose of optimisation would be beyond the scope of the average optimisation computer programe and could involve heavy computational costs. To avoid this, a subsidiary exercise is performed in which the best few elements that can be treated as variables for reducing vibration are chosen. When once the sensitive elements are identified, a formal optimisation can be used to fix the precise values of the parameters characterising these elements.

In the last decade there has Eeen a considerable advance in the area of structural optimisation unde dynamic constraints, as the recent comprehensive reviews by Rao 1] and Venkayya [2] will testify. A portion of the research work that tes been done is concerned with optimisation of a structure under forced vibration, and this is relevant in the present case. Sciarra 3] provides the apparently sole example of a specific application to a helicopter fuselage, although he used an optimality criterion rather zien a formal mathematical optimisar tion procedure. Parameter selection before optimisation is not covered to any great extent in the literature; quite often, when the number of parameters needs to be limited the choice is simply made initially on the basis of dynamical experience.

The identification of the best parameters for selection in the optimisation process is based on the way the response at a point behaves when a parameter is varied. If a structure is excited by a sinusoidal force, while either the mass at a point or the stiffness between two points (as represented by a spring) is continuously varied, then the response in the complex plane at some other point is seen to trace out a circular locus. The diameters of the response circles thus produced for each parameter can be taken as a simple yardstick for deciding which parameters are most effective in controlling the response at the point under consideration; for example, a parameter producing a large response circle diameter clearly has a relatively greater effect than one producing a small response circle diameter. From a listing of circle diameters in decreasing size order for different parameters, the top few parameters are those selected for the subsequent optimisation process.

The circular response property was originally used by Vincent [4], and adopted and utilised in the way just described by Done and Hughes [5,6] and Done et al. [7] on two simple practical cases.

3. Response optimisation

The response to harmonic excitation of a general structure modelled by finite elements and having n degrees of freedom is given by

$$
\begin{equation*}
\underline{\mathrm{R}}=\underline{\mathrm{GF}} \quad . \tag{1}
\end{equation*}
$$

G is the ($n \times n$) complex receptance matrix between all the points concerned and is given by

$$
\begin{equation*}
\underline{G}=\left[\underline{K}-\omega^{2} \underline{M}+i \omega C\right]^{-1} \quad \ldots \quad \quad . \quad . \quad . \tag{2}
\end{equation*}
$$

where K, \underline{M} and \mathbb{C} are stiffness, mass and damping matrices respectively and ω is the circular frequency of the exciting force. F and R are the column vectors (order (nxl)) denoting force and response respectively.

If the structure is modified, say, by inserting linear springs of stiffness $k_{i}(i=1, m)$ between the nodes that have compatible degrees of freedom, the stiffness matrix K becomes a function of these variable stiffness parameters k_{i}. Out of all possible k_{i} the best few are selected for optimisation by using the parameter selection programme. The particular responses \underline{R}_{p} to be minimised are given by

$$
\underline{R}_{\mathrm{p}}=\underline{S} \underline{G} \underline{F} \quad \cdots \quad \quad \cdots \quad \quad \cdots \quad \quad \cdots \quad
$$

where S is a sorting matrix that picks out the associated points. Now in terms of mathematical programming the problem is to minimise an objective function which is a function of the elements of ${\underset{p}{p}}^{0}$, using the best parameters as design variables. In evaluating \underline{G} the damping matrix C is assumed to be zero, since for situations as in the present case where the forcing frequency is well removed from resonant frequencies its contribution is negligible compared with those from mass and stiffness. A major advantage is that complex matrices are thereby avoided. A further point is that the helicopter rotor speed is substantially constant, and therefore the excitation frequency is assumed constant.

The optimisation is done by using a readily available variable matrix algorithm supplied by R.A.E., Farnorough. The algorithm requires gradient information and is based on the methods of Davidon, Fletcher and Powell [8]; it is one of the most powerful gradient-based algorithms and has a quadratic convergence property. The gradients required can be obtained from differentiating eqn. (3):

$$
\begin{equation*}
\frac{\partial \mathrm{R}_{\mathrm{p}}}{\partial k_{i}}=-\underline{S} \frac{\partial \underline{K}}{\partial k_{i}} G E \quad \ldots \quad \ldots \tag{4}
\end{equation*}
$$

It can be seen from this that the receptance matrix G needs to be evaluated for each recomputation of the gradient vector, thus necessitating the inversion of a (nxn) matrix (eqn. (2)) each time. The number of degrees of freedom n may be large and there is the possibility of using a lot of computer time. However, an altemative expression to eqn. (2) can be used to calculate the receptance matrix which is derived in Ref. 5 and reproduced in the Appendix:

$$
\begin{equation*}
\underline{G}=\underline{G}_{0}+\underline{A} \underline{V}[\underline{I}+\underline{D} \underline{V}]^{-1} \underline{B} \quad \ldots \quad \ldots \tag{5}
\end{equation*}
$$

where G_{0} is the receptance matrix of the unmodified structure i.e. with $k_{i}=0$.

The elements of the matrices A, B and D are formulated from the elements of the basic receptance matrix G_{0}. V is a diagonal matrix of the variable parameters k_{i} and I is an identity marrix. Here the matrices D and V are of the order (mxn), witure m is the number of variable parameters. Any sensible and practical modification would involve relatively few variable parameters compared with the number of degrees of freedom, so m is much less tinan n and hence the size of the matrix to be inverted is only (maxm). In the present work the gradients are computed directly from the expression resulting from differentiating eqn. (5).
4. Experience on a simple gear box/engine/fuselage model

As a test case for the application of the optimisation method to dynamic problems, a simple system representing a helicopter in waich the gear box, engine and fuselage are replaced by rigid bodies as shown in Fig, 1 is considered. The gear box and engine mountings are treated as variable stiffness parameters. The mojel has eight degrees of $f r e e d o m$ and six variable spring stiffnesses. The gear box is subjected to an oscillatory forcing moment and the ain is to find what variable stiffness values ki are necessery to make the vioration at the pilot's seat, P, zero or as low as possible. The stiftnesses of the springs are given by $\left(k_{b}\right)_{i}+k_{i}(i=1,6)$, where (k) are the basic stiffness values. The stiffnesses k_{1} and k_{2} effectively act as one stiffness.

Realistic bounds on the stiffness values ki are imposed and a basic objective function to be minimised is taken as $\phi=\mathrm{R}_{\mathrm{p}}^{2}$, where R_{p} is the vertical response at P.

Now with a simple objective function of this type it must be realised that a unique optimum does not exist. For example with only two variables k_{3} and k_{4} (the gradients fith respect to k_{1}, k_{2}, k_{5} and k_{6} were very small and thus these variables are not inportant in the optimisation) zero vibation response is obtained when $k_{4}=f\left(k_{3}\right)$ in the case of no daming; thus k_{3} and \dot{A}_{4} are related for zero response.

Stiffness parameter $k_{i}=\left(k_{i}-k_{i e}\right) /\left(k_{i u}-k_{i e}\right)$ where $k_{i} u$, kie are upper, lower bounds on $i-t h$ stiffness (i.e. $0 \leqslant k_{i} \leqslant l$).

Fig. 1. Gear Box/Engine/Fuselage Mode 1.

Even in the presence of damping it can be shown by using response circles that there exist two optimum solutions for this case. For small damping the shape of the objective function ϕ is such that the response is second order small along $k_{4}=f\left(k_{3}\right)$ which makes it hard to find the minima numerically and the situation can be worse for the case of many variables. Thus there is a need to choose the best solution out of all possible solutions. The simplest means in the present case is to assume that an increase in stiffness normally implies an increase in weight and to seek the solution which provides the least weight penalty, i.e. the least total added stiffness.

Thus the problem can be recast as a constrained problem, viz.

$$
\text { Minimise } \Sigma k_{i} \text {, subject to the constraint } \phi=\underline{R}_{P}^{T} \underline{Q}_{p} R_{p}=0
$$

where \underline{U} is a matrix which allows a quadratic function of response magnitudes at various points to be formed and Σk_{i} is the sum of added stiffnesses. This optimisation algorithm is used sequentially in the present problem on a modified objective function defined by

$$
\begin{equation*}
\psi=\Sigma k_{i}+\beta \phi^{2} \quad \cdots \quad \cdots \quad \cdots \tag{5}
\end{equation*}
$$

where β is a penalty parameter. Starting with \exists small value of β and an initial design vector of variables ki, ψ is mininised to arrive at a new design and taking this as the initial design and with an iricreased value of β the process is repeated sequentially until convergence is achieved. If a zero response is obtainable, the least added weight solution is obtained. If however there is no zero response solution then the sequentially increasing values of β ensire the minimum possible response within the stiffness (or weight) jounds allowed.

The nature of the result obtained for the two variable case is shown in Fig. 2. This represents a case where zero response can be obtained within the range of variation of k_{3} and k_{4} considered. The optimisation process has been started arbitrarily at $k_{3}=k_{4}=0.1$ and it is clear from study of the Figure that the minimu value of ψ occurs roughly at the intersection of $k_{3}=0$ and $A_{p}=f\left(k_{3}, k_{4}\right)=0$. For an initial low value of β the solution moves to point 2; thereafter, β is increased sequentially (steepening the slope of the penalty function surface) and the solution moves to the final one, satisfactory convergence being achieved after 5 steps.

Fig. 2. Visualisation of Optimisation.
The model considered here is very simple and to assess how this method works for a more complex model, a two-dimensional beam element model ("stick" model) of the Westland Lynx helicopter is studied. The details of the model and the results of application are presented in the next section.

5. Application of Lynx "stick" model

The aforementioned optimisation technique using the modified objective function is now applied to the problem of minimising the vibrational response in the region of the pilot's seat of the Westland Lynx helicopter. The model used is shown in Fig. 3. This "stick" rodel has 25 tapered beam elements and 60 degrees of freedom with two translational and one rotational at each node. The excitation on the structure is an oscillatory couple of frequency 21.7 Hz applied to the rotor head (node 8) as shown in the Figure. Only stiffness changes corresponding to the adjacent nodes are considered, and the vertical response at the pilot's seat (node 18) denoted by R_{33} is minimised. The suffix " 53 " refers to the degree of freedon number - its relation to structure node number is found by reference to Fig. 3.

The first twenty parameters obtained from a rasponse circla diameter listing are given in Table 1 and the paramaters are indicated by the respective degree of freedom numbars. A modal damping factar of: 2% critical is assumed for getting the parameter listing. The parameters are also indicated in order of importance in Fig. 4 and are those used in the optimisation.

Degree of freedom co-ordinates for node i are ($3 i-2,3 i-1,3 i$).
Thus, e.g. co-ordinates for node 18 are (52,53,54) and for
node $2(4,5,6)$.
Fig. 3. Lynx "Stick" Model - Node \& d.o.f. Numbering.

TABLE 1
Parameter listing for the response R_{53} based on circle diameters

Parameter identifying no.	Parameter co-ordinates		Direction	Correspondirig structural nodes	```Unmodified stiffness value ki (N/m)```
1	25	28	X	3-10	0.398620×10^{7}
2	7	10	X	3-4	0.398620×10^{7}
3	4	13	2	2-5	0.398620×10^{7}
4	14	17	Z	5-6	0.525380×10^{8}
5	5	14	2	2-5	0.250400×10^{8}
6	28	40	X	10-14	0.703606×10^{7}
7	12	57	θ_{y}	4-19 ${ }^{\text {- }}$	0.175127×10^{4}
8	36	39	θ^{y}	12-13	0.175127×10^{4}
9	6	15	θ_{y}^{y}	2-5	0.165430×10^{9}
10	9	30	θ_{y}^{y}	3-10	0.277979×10^{11}
11	9	12	θ_{y}	3-4	0.165430×10^{9}
12	20	23	$z^{\text {y }}$	7-8	0.965550×10^{12}
13	19	22	X	7-8	0.406040×10^{11}
14	16	19	X	6-7	0.384125×10^{12}
15	19	55	X	7-19	0.384125×10^{12}
16	17	20	Z	6-7	0.434304×10^{12}
17	17	56	2	6-19	0.778341×10^{10}
18	20	56	2	7-19	0.434304×10^{12}
19	11	56	Z	4-19	0.210152×10^{10}
20	2	53	2	1-18	0.216385×10^{8}

Fig. 4. Stiffness Parameters (Identification Numbers).
The optimisariou algorithm requires the lower and upper limits on the variables. Two types of bound are chosen, firstly, all the stiffness parameters are each allowed a uniform variation of $0-1.75 \mathrm{x}$ $10^{9} \mathrm{~N} / \mathrm{m}\left(0-10^{7} \mathrm{lbf} / \mathrm{in}\right)$ and, secondly, a range of variation of 20% of the basic stiffness values is also taken. For each set of bounds different response cases are considered although the listing of best parameters is not strictly applicable to response cases other than Nand $_{4}$.

The basic objective functions ϕ_{i} corresponding to the different response cases (see Fig. 5) considered are

$$
\begin{array}{ll}
\phi_{1}=R_{53}^{2} & ,
\end{array} \begin{array}{ll}
2 & =R_{53}^{2}+R_{52}^{2} \\
\phi_{3}=R_{53}^{2}+R_{5}^{2} & ,
\end{array} \phi_{4}=R_{53}^{2}+R_{52}^{2}+R_{5}^{2}+R_{4}^{2} . l \text { l }
$$

where the suffices on the R 's refer to degree of fzeedom numbers. Minimising a multiple response involving more than one node as in the case of ϕ_{3} and ϕ_{4} can be thought of as reducing the vibratory response over a region of the structure. These response cases are illustrated in Fig. 5.

The computer results for the different cases of responsa and stiffness parameter constraints follow in Tables 2 to 9 inclusive. For each case the response function ϕ_{i} used is stazed, and also type of upper bound $\Delta k_{i_{\max }}$ on the additional stiffness variations $\Delta \mathrm{k}_{\mathrm{i}}$. This is either simply $1.75 \times 10^{9} \mathrm{~N} / \mathrm{m}$ throughout or $0.2 \mathrm{k}_{i}$, where k_{i} is the existing stiffness parameter value of the madified structure. A typical value is obtained from the stiffness matrix; for example, a stiffness connecting points p and q on the structure is given by the negative of the pq-th element in the matrix. The lower bounds on Δk_{i} are all zero.

Cases 3,7

Fig. 5. Response Cases Considered.
The magnitude of the response or composite response $\left.\left(\phi_{i}\right)\right)_{0}^{\frac{1}{2}}$ is given as an acceleration for a nominal excitation pitching moment at the rotor head of 5650 Nm .

The parameters listed in Table 1 are used for a sequence of runs in which the first two, four, six, ten etc. parameters are used in the optimisation, the optimum values being shown. The response is given as a ratio of that for the unmodified structure, and the sum of the additional stiffnesses indicated. Also given are the C.P.U. times. The parameter identifying number appearing in the first column of Tables 2-9 is that which appears in the first column of Table 1 and also in Fig. 4.

TABLE 2
Case 1 Response function $\phi_{1}=R_{53}^{2}$
Stiffness bounds $0 \leqslant \Delta k_{i} \leqslant 1.75 \times 10^{9} \mathrm{~N} / \mathrm{m}$
Response magnitude $\left(\sigma_{1}\right)_{0}^{1} \Rightarrow 0.132 \mathrm{~g}$

Param. ident. no	Opt. values of $\Delta k_{i} / \Delta k_{i}$ for diff. nos. of parans.						Resp.$\left\{\begin{array}{c} \text { ratio } \\ \left\{\begin{array}{c} \phi_{1} \\ \left.\phi_{1}\right)_{0} \end{array}\right\} \end{array}\right\}$	$\begin{aligned} & \text { cpu } \\ & \text { tive } \\ & (\min) \end{aligned}$
	2	4	6	10	15	20		
1	0	0	0	0	0	0		
2	0	0	0	0	0	0	1.0	0.025
3		0	0	0	0	0		
4		0.1936	0.0059	0.0059	0.0059	0	0	3.5
5			0.0161	0.0161	0.0161	0		
6			0	0	0	0	0	3.2
1				0	0	0		
8				0	0	0		
9				0	0	0		
10				0	0	0	0	4.0
11					0	0		
12					0	0		
13					0	0		
14					0	0		
15					0	0	0	15
16						0		
17					.	0		
18			-			0		
19						0		
20						0,0037	0	45
$8\left(\mathrm{nkx}^{\times 10^{-7}}\right.$	0	0.1936	0.022	0.022	0.022	0.0037		

TABLE 3
Case 2 Response function $\phi_{2}=R_{53}^{2}+R_{52}^{2}$
Stiffness bounds $0 \leqslant \Delta k_{i} \leqslant 1.75 \times 10^{9} \mathrm{~N} / \mathrm{m}$
Response magnitude $\left(\phi_{2}\right)_{0}^{l} \rightarrow 0.403 \mathrm{~g}$

Param. ident. no.	Opt. values of $\Delta k_{i} / \Delta k_{i}$ $123 x$ for diff. nos, of params.					Resp.$\left\{\begin{array}{c} \text { ratio } \\ \left\{\frac{\phi_{2}}{\left(\phi_{2}\right)_{0}}\right\} \end{array}\right.$	$\begin{aligned} & \text { CPU } \\ & \text { tive } \\ & \text { (winit) } \end{aligned}$
	2	4	6	10	15		
1	0	1.0	0	0	0		
2	0	1.0	0	0	0	1.0	0.03
3		1.0	0	0	0		
4		1.0	1.0	1.0	0	0.322	0.12
5			0	1.0	0		
6			0	0	0	0.870	1.0
7				1.0	0		
8				0	0		
9				1.0	1.0		
10				1.0	0	0.939	1.7
11					0		
12					1.0		
13					1.0		
14					1.0		
15					1.0	0.011	12
$4 \mathrm{k}_{\mathrm{i}} \times 10^{-7}$	0	4.0	1.0	5.0	5.0		

TABLE 4
Case 3 Response function $\phi_{3}=R_{53}^{2}+R_{5}^{2}$
Stiffness bounds $0 \leqslant \Delta k_{i} \leqslant 1.75 \times 10^{9} \mathrm{~N} / \mathrm{m}$
Response magnitude $\left(\phi_{3}\right)_{0}^{\frac{1}{2}} \Rightarrow 0.190 \mathrm{~g}$

TABLE 5
Case 4 Response function $\phi_{4}=R_{53}^{2}+R_{52}^{2}+R_{5}^{2}+R_{4}^{2}$ Stiffness bounds $0 \leqslant \Delta k_{i} \leqslant 1.75 \times 10^{9} \mathrm{~N} / \mathrm{ml}$
Response magnitude $\left(\phi_{4}\right)_{0}^{\frac{1}{0}} \Rightarrow 0.571 \mathrm{~g}$

Param. ident. no.	Opt. values of $\Delta k_{i} / \Delta k_{i}$ ${ }_{\text {max }}$ for diff. nos. of params.				Resp. ratio $\{6]^{\frac{1}{2}}$	CPU time (nin)
	4	6	10	15	$\left\{\left(\bar{\phi}_{4}\right)_{0}\right\}$	
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4	1.0	1.0	1.0	0	0.868	0.7
5		0.0004	0.0008	0		
6.		0	0	0	0.867	1.1
7			0	0	,	
8			0	0		
9			0	1.0		
10			1.0	0	0.863	4.5
11				0		
12				1.0		
13				1.0		
14				1.0		
15				1.0	0.011	14
$\Sigma\left(\Delta k_{i} \times 10^{-7}\right)$	1.0	1.0004	1.0008	5.0		

TABLE 6
Case 5 Responge function $\phi_{1}=R_{53}^{2}$
Stiflness bounds $0 \leqslant \Delta k_{i} \leqslant 0.2 k_{i}$
Response magnitude $\left(d_{1}\right)_{0}^{\frac{1}{2}} \Rightarrow 0.132 g$

TABLE 7
Case 6 Response function $\phi_{2}=R_{53}^{2}+R_{52}^{2}$
Stiffness bounds $0 \leqslant \Delta \mathrm{k}_{\mathrm{i}} \leqslant 0.2 \mathrm{k}_{\mathrm{i}}$
Response magnitude $\left(\sigma_{2}\right)_{\mathrm{o}}^{\frac{1}{2}} \Rightarrow 0.403 \mathrm{~g}$

Param. ident. no.	Opt. values of $\Delta k_{i} / \Delta k_{i_{\text {max }}}$ for diff. nos. of params.					Resp. ratio$\left\{\frac{\phi_{2}}{\left(\alpha_{2}\right)_{0}}\right\}^{1}$	CPU time (min)
	2	4	6	10	15		
1	0	1	0	0	0		
2	0	1	0	0	0	1.0	0.033
3		1	0	0	0		
4		0	1	1	1	0.991	0.067
5			1	1	1		
6			0	0	0	0.944	0.15
7				1	0		
8				0	1		
9				1	1		
10				1	0	0.938	0.55
11					1		
12					1		
13					1		
14					1		
15		.			1	0.001	27
$\Gamma\left(\lambda k_{2} \times 10^{-7}\right)$	0	0.0137	0.0089	3.202	202.7		

TABLE 8
Case 7 Response function $\phi_{3}=R_{53}^{2}+R_{5}^{2}$
Stiffness bounds $0 \leqslant \Delta k_{i} \leqslant 0.2 k_{i}$
Response magnitude $\left(\phi_{3}\right)_{0}^{\frac{1}{2}} \Rightarrow 0.190 \mathrm{~g}$

TABLE 9
Case 8 Response function $\phi_{4}=R_{53}^{2}+R_{52}^{2}+R_{5}^{2}+R_{4}^{2}$
Stiffness bounds $0 \leqslant \Delta k_{i} \leqslant 0.2 \mathrm{k}_{\mathrm{i}}$
Response magnitude $\left(\phi_{4}\right)_{0}^{\frac{1}{2}} \rightarrow 0.571 g$

Param. ident. no.	Opt. values of $\Delta k_{i} / \Delta k_{i}$ ${ }_{\text {max }}$ for diff. nos. of parame.				Resp. ratio$\left\{\frac{\phi_{4}}{\left(\phi_{4}\right)_{0}}\right\}^{!}$	CPU time (min)
	4	6	10	15		
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4	0	1	1	1	1.0	0.067
5		1	1	1		
6		0	0	0	0.945	0.15
7			1	0	.	
8			1	1		
9			1	1		
10			1	0	0.938	0.68
11				1		
12	.			1		
13			.	1		
3.4				1		
15				1	0.001	25
[. $\left(\Delta \mathrm{k}_{\mathrm{i}} \times 10^{-7}\right)$	0	0.0089	3.202	202.7		

6.1 The optimisation process

The problem of minimising the ribration on the Lynx model has been formulated so that a straightformard optimisation process can be applied. In doing this, many practical aspects have had to be ignored, but discussion of this is gresented in the following section.

The optimisation exercise has been extremely useful in that an idea of the limitations, and hence its future usefulness can be formed. The most important limitation is that the process itself, or rather the particular process adopted, is very extravagant of computer time. This has been found to vary approximately with the cube of the number of variables considered, thereby imosing a practical top limit of about 20 variables. This represented a serious drawback because the present exercise was essentially exploratory and the time left for development was thus drastically curtailed.

Before discussing further drawbacks, it is instructive to examine individually each case studied. In Case 1 (Table 2), zero response was obtainable and the optimisation proceeded without complications. Parameters 4 and 5 are sean to provide all that is necessary, until the final introduction of parameter 20 winch gives a solution of lesser total added stiffness (discussion of the added weight is reserved for the following section). Cese 2 illustrates that aproblem of finding a global maximum has occurred. This case was run several times with different input conditions and for the 10 and 15 parameter cases, a variety of solutions was obrained. In the event, a low response solution was found (15 parameters), but the results taken together do not represent a sensible aŋd ordered sequence. Case 3, on the other hand, shows a successful sequence, as coes Case 4, although the latter indicates a rather heavy peaalcy (in added stiffness) to pay for the reduced response. The remaining Cases 5 to 8 may be considered together. In these the stizfress bouncs were taken to be 20% of the existing stiffnesses, and throushout, the variable stiffnosses went to either their upper or lower lizits. It is interesting that in these cases, regardless of the response function taken, the final stiffness configuration obtained is roughy the same.

From this study of the separate cases it way be seen that a second important drawback is the inajility in Case 2 to find global minima. When it is suspected or known that a giobal minimum has not been found, then the case under investigation must be re-run with different starting values of the parameters and oz the penalty function coefficient β. Thus, the human opezator enters into the picture and judgement, backed up by experience, चus d be used so obtain a better answer. In cases where a zero or near-zero response was obtainable, finding the global minimum did not see= to be a problem. However, in the opposite situation, there was a ter Zency for all parameters to adopt either their upper or lower limits, and, particularly in Case 2, a number of different minima were fomc. To sote extent, the particular minimutn found is pre-determireci $E t$ the first and lowest value of β; thereafter, for increasing vaiues of β the response part of the objective function dominates at the expense of the added weight part.

Finally, there must remain the Gaestion of whether or not the optimisation process used here was the zight one. Iime did not allow the development of other methods.

It is clear from Tables 2 to 9 that using the response circle diameters for initially selecting the jest parameters for optimisation is not altogether satisfactory. Ideally, the parameters that turned out to be important in the optimisation should have appeared at the top of the circle listing. However, the circle diameter method as used here is very simple, and a more realistic criterion, still based on circle response properties, can easily be employed. This is something that warrants further investigation.

The gear box-engine-fuselage model of Fig. 1 was simply used to test out and gain experience with the optimisation routine. The "stick" model of the Lynx provided, however, scope for a more serious attempt at structural optimisation. Even here, though, the model was not sufficiently representative for useful practical deductions to be made. The major drawback was the absence of a relationship between element weight and element stiffness. Future models, even if simplified by restricting the number of degrees of freedom, should have the element weights involved in a proper manner.

Unlike flutter optimisation for fixed wing aircraft, the basic objective function is somewhat arbitrary. Human judgement is required to formulate a suitable response function for emoodment in the objective function. Clearly, it is impossible to reduce the response in the fuselage everywhere to zero, so it has to be decided where the response should be small, or zero, and in which directions. If a comm posite response is to be used, some sort of weighting has to be decided upon for the various components.

A further practical consideration is that the optimisation should be terminated when the payoff between added weight and response reduction becomes unacceptable. Such a bounding relationship could be provided by information obtained from incustry.

7. Acknowledgements

The authors wish to thank many people at westland Helicopters Limited and also at the Royal Aircraft Establishment, Farnborough, for their continued help, support and encouragement.

8. References

[1] S.S. Rao, Structural optimization under snock and vibration environment, The Shock and Vibration Digest, 11 (2) Feb. 1979.
[2] V.B. Venkayya, Structural optigization: A review and some recommendations, Int. J. Num. Methods in Eng., 13, 203-228, 1978.
[3] J.J. Sciarra, Use of finite elミment damped forced response strain energy distribution for vibration reduction, Boeing Vertol Rep. D210-10819-1, July 1974.
[4] A.H. Vincent, A note on the properties of the variation of structural response with respect to a single structural parameter when plotted in the complex plane, Westland Helicopters Rep. GEN/DYN/RES/O1OR, 1973.
[5] G.T.S. Done and A.D. Hughes, The response of a vibrating structure as a function of structural parameters, J. Sound \& Vib. , 38, 255-266, 1975.
[6] G.T.S. Done and A.D. Hughes, Reducing vibration by structural modification, Vertica, 1, 31-38, 1976.
[7] G.T.S. Done, A.D. Hughes and J. Webby, The response of a vibrating structure as a function of structural parameters Application and experiment, J. Sound \& Vib., 49 (2) 149-159, 1976.
[8] D.A. Pierre, Optimization cheory with applications, John Wiley, N.Y., 1969.

Appendix

Matrix expression for the modified receptance
A brief derivation of eqn. (5) of Section 3 is given here. Consider a structure modified by inserting two linear springs of rates k_{1} and k_{2} between points a and b, and c and d respectively, and excited by a harmonic force F_{p} at p. The ojjective is to obtain the receptance $G_{p q}$ between point p and a further point q when the structure is thus modified.

The forces exerted by the springs F_{a}, F_{b} and F_{c}, F_{d} at the points of attachment a, b and c, \dot{c} can be written as

$$
\begin{align*}
& F_{a}=k_{1}\left(R_{b}-R_{a}\right)=-F_{b} \tag{A1}\\
& F_{c}=k_{2}\left(R_{d}-R_{c}\right)=-F_{d}
\end{align*}
$$

where R denotes the displacement response.
The response R_{q} can now be written as

$$
R_{q}=G_{q p} F_{p}+G_{q a} F a+G_{q b} F_{b}+G_{q c^{\prime}} F_{c}+G_{q d} F_{d}
$$

where $G_{i j}$ is the receptance between the points i and j.
Using eqns. (Al) this can be re-written as
$R_{q}=G_{q p} F_{p}+\left(G_{q a}-G_{q b}\right) k_{1} \delta_{1} \div\left(G_{q c}-G_{q d}\right) k_{2} \delta_{2} \quad \ldots$
where $\delta_{1}=R_{b}-R_{a}$ and $\delta_{2}=R_{d}-R_{c}$ are the relative displacenants of the springs.

Similar expressions for the displacements $a t a, b, c$ and d can also be formed:

$$
\begin{aligned}
& R_{a}=G_{a p} F_{p}+\left(G_{a a}-G_{a b}\right) k_{1} \delta_{1}+\left(G_{a c}-G_{a d}\right) k_{2} \delta_{2} \\
& R_{b}=G_{b p} F_{p}+\left(G_{b a}-G_{b b}\right) k_{1} \delta_{1}+\left(G_{b c}-G_{b d}\right) k_{2} \delta_{2} \\
& R_{c}=G_{c p} F_{p}+\left(G_{c a}-G_{c b}\right) k_{1} \delta_{1}+\left(G_{c c}-G_{c d}\right) k_{2} \delta_{2} \\
& R_{d}=G_{d p} F_{p}+\left(G_{d a}-G_{d b}\right) k_{1} \delta_{1}+\left(G_{d c}-G_{d d}\right) k_{2} \delta_{2}
\end{aligned}
$$

and by combining these the relative displacements δ_{1} and δ_{2} can be expressed

$$
\begin{equation*}
\underline{\delta}=\mathrm{F}_{\mathrm{p}} \underline{B}-\underline{D} \underline{V} \underline{\delta} \quad \cdots \quad \quad . . \quad . . \tag{B3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \delta=\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]=\left[\begin{array}{c}
R_{b}-R_{a} \\
R_{d}-R_{c}
\end{array}\right] \\
& \underline{B}=\left[\begin{array}{ll}
G_{b p}-G_{a p} \\
G_{d p}-G_{c p}
\end{array}\right] \\
& \underline{D}=\left[\begin{array}{lll}
\left(G_{b b}-G_{b a}\right)-\left(G_{a b}-G_{a a}\right) & \left(G_{b d}-G_{b c}\right)-\left(G_{a d}-G_{a c}\right) \\
\left(G_{b d}-G_{a d}\right)-\left(G_{b c}-G_{a c}\right) & \left(G_{d d}-G_{d c}\right) & \left(G_{c d}-G_{c c}\right)
\end{array}\right] \\
& \underline{V}=\left[\begin{array}{ll}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right]
\end{aligned}
$$

Rewriting eq̧. (A2) as

$$
\begin{equation*}
\mathrm{R}_{\mathrm{q}}=\mathrm{G}_{\mathrm{qp}} \mathrm{~F}_{\mathrm{p}}+\underline{A V} \underline{\delta} \quad . . \quad . . \quad . \tag{A4}
\end{equation*}
$$

where $A=\left(G_{q a}-G_{q b} \quad G_{q c}-G_{q d}\right), \delta$ can now be eliminated using eqn. (A3) to provide the new receptance $G_{n e w}$ between p and q, i.e.

$$
\begin{align*}
G_{\text {new }} & =R_{q} / F_{p} \\
& =G_{q p}+\underline{A V}(\underline{I}+\underline{D V})^{-1} \underline{B} \tag{A5}
\end{align*}
$$

The expression can be generalised to include any number of variables and $\underline{A}, \underline{B}$ and D can be easily formulated from the receptance matrix of the unmodified structure. The matrix to be inverted is only as large as the number of variable spring stiffnesses considered.

