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Abstract

The application of a mathematical optimisation process to heli-
copter vibration control by structural modification is reported.
Attention is focussed on the reduction of vibration in the crew area
using stiffness parameters as design variables. Use is made of forced
vibration response circles to identify the parameters most effective in
controlling the response in the crew area, thereby reducing the number
of available design variables to a tractable size. The problem of
reducing vibration is then cast as a non-linear programmlng problem,and
a sequential unconstrained minimization technique incorporating an
algorithm based on the methods of Dawidon, Fletcher and Powell is used
to determine the precise values of the parameters. The method is
applied to a simple two-dimensional beam-element helicopter fuselage
model, and the results discussed. Although the model is too simple for
useful deductions of practical significance to be made in the strictly
engineering sense, the exercise doss demonstrate what can and cannot be
done in controlling vibration by using an optimisation routine.

1. Introduction

One of the many possibilities for vibration control of a heli-
copter is to design the fuselage structure itself so that the vibration
response in the more important areas such as crew and passenger spaces

is minimised. Ideally this would involve optimising the separate ele-
ments of the fuselage structure to achieve minimum respomse in the
desired area. It is usual to perform structural analysis operationms

on an appropriate mathematical model, such as a finite element model of
the structure comprised of many elemsnts, but to treat each element as
a variable for the purpose of optimisation would be beyond the scope of
the average optimisation computer prcgramme and could involve heavy
computational costs. To avoid this, a subsidiary exercise is per-—
formed in which the best few elements that can be treated as variables
for reducing vibration are chosen. Wnen once the sensitive elements
are identified, a formal optimisaticn can be used to fix the precise
values of the parameters characterisinag these elements.

——ts

tz2en a considerable advance in the
area of structural optimisation under dynamic constraints, as the
recent comprehensive reviews by Rao - } and Venkayya [2] w111 testify.
A portion of the research work that -zs been done is concerned with
optimisation of a structure under forced vibration, and this is rele-—
vant in the present case. Sciarra 3| provides the apparently sole
example of a specific application to z helicopter fuselage, although he
used an optimality criterion rather zhzn a formal mathematical optimisa
tion procedure. Parameter selecticz before optimisation is not covered
to any great extent in the literaturs; quite often, when the numbexr of
parameters needs to be limited the choice is simply made initielly on
the basis of dynamical experience.

In the last decade there has

y -
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Z. Parameter selection

The identification of the best parameters for selection in the
optimisation process is based on the way the response at a point
behaves when a parameter is varied. If a structure is excited by a
sinusoidal force, while either the mass at a point or the stiffness
between two points (as represented by a spring) is continuously varied,
then the response in the complex plane at some other point is seen to
trace out a circular locus. The diameters of the response circles
thus produced for each parameter can be taken as a2 simple yardstick for
deciding which parameters are most effective in controlling the
response at the point under consideration; for example, a parameter
producing a large response circle diameter clearly has a relatively
greater effect than one producing a small response circle diameter.
From a listing of circle diameters in decreasing size order for dif-
ferent parameters, the top few parameters are those selected for the
subsequent optimisation process.

The circular response property was originally used by Vincent[&],
and adopted and utilised in the way just described by Dome and Hughes
[5,6] and Done et al. [7] on two simple practical cases.

3. Response optimisation

The response to harmonlc excitation of a general structure
modelled by finite elements and having n degrees of freedom is given by

R =GF .. ‘e .. .. - (1)

G is the (nxn) complex receptance matrix between all the points

concerned and is given by

S

9 -1
{_}S-w_bii_+iw_(_3_] ve .. ‘s .. (2)

where K, M and C are stiffness, mass and damping matrices respectively
and w 1s the circular frequency of the exciting force. ¥ and R are
the column vectors (order {mxl)) denoting force and response
respectively. .

‘ If the structure is modified, say, by inserting linear springs
of stiffness ki (i=1,m) between the nodes that have compatible degrees
of freedom, the stiffmess matrix K becomes a function of these variable
stiffness parameters ki. Out of all possible ki the best few are
selected for optimisation by using the parameter selection prograzmme.
The particular responses Rp to be minimised are given by

= SGF .. .. . .- e (3}

where S is a sorting matrix that picks out the associated points. Now
in terms of mathematical programming the problem is to minimise an
objective function which is a function of the elements of Ry, using the

best parameters as design variables. In evaluating G the damping
matrix C is assumed to be zero, since for situations as in the present
case where the forcing frequency is well removed from resomant fre-
quencies its contribution is negligible compared with those from mass
and stiffness. A major advantage is that complex matrices are thereby
avoided. A further point is that the helicopter rotor speed is sub-
stantially constant, and therefore the excitation freguency is assumed
constant.
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The optimisation is done by using a readily available variable
matrix algerithm supplied by R.A.E., Farmborough. The algorithm
requires gradient information and is based on the methods of Davidon,
Fletcher and Powell [8]; it is one of the most powerful gradient-based
algorithams and has a quaaratic convergence DroOperty. The gradients
required can be obtained from differentiating =qn. (3):

Z X
aki‘*.swﬁ“g‘;;'_‘ﬁf_ . .. .- .. (4)

It can be seen from this that the receptance matrix G needs to be
evaluated fer each recomputation of the gradient vector, thus neces-—
sitating the inversion of a (nxn) matrixz (eqn. (2))} each time. The
number of degrees of freedom n may be large and there is the possibility
of using a lot of computer time, However, an alternative expression
to eqn. (2) can be used to calculate the receptance matrix which is
derived in Ref. 5 and reproduced in the Appendix:

" -1
G=G6, +AV[I+DV] "B . . (5)

where Gp 1s the receptance matrix of the unmodified structure i.e. with
ki = 0. .

The elements of the matrices A, B and D are formulated from the
elements of the basic receptance W1tV1€~Cg. V is a diagonal matrix of
the variable parameters ki and I is an identity macrix. Here the
matr1LEa‘2 and V are of the order (mxm) , where m is the number of vari-
able paramzters. Any sensible and practical modification would
involve relatively few variable paraceters compared with the number of:
degrees of freedom, so m is much less than n and hence the size of the
matrix to be inverted is only (mxm). In the present work the
gradients are computed directly from the expression resulting from

differentiating eqn. (5).

4, Experience on a simple gear box/engine/fuselage model
€ g g g

As a test case for the application of the optimisation method to
dynamic problems, a simple system representing a-helicopter in which
the gear box, engine and fuselage are replaced by rigid bodies as shown
in Fig. 1 is considered. The gear box and engine mountings are
treated as variable stiffness parameters. The model has eight degrees
of freedow and six varizble spring stiffnesses.  The gsar box 1s sub-
jected to an oscillatory forcing moment znd the zim is te find what
variable stiffness values ki are necessary to make the vibration at the

pilot's seat, P, zerc or as low as possihle. The stiffnesses of the
SpFi?gS are given by (kb)l_ ki (i=1,8), ur?re :tb} are tng basic
stifiness values. The stiffnesses k‘ and k, effectively act as one
stiffness. :

Realistic bounds on the stiffness values k! are imposed and a
basic objective function to be minimised is taken as ¢4 = Ré, where RBp

is the vertical response at P.

Now with a simple objective functicn of this type iz must be
realised that a unigue optimum does not exist. For example with only
two variables k, and ku (the gradients with respect to k,, k,, k; and

T

k. were very small and thus these variables are not importamt in the
optimisation) zero vibration response i3 obtained when k, = f(ka) in
the case of ne damping; thus k, and x, are relatzd for zero response.
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Stiffriess parameter ki = (ki = kje)/(kiy = kie) where kiy, kie
are upper, lower bounds on i-th stiffness (i.e. C £ ki € 1).

Fig. 1. Gear Box/Engine/Fuselage Model.

Even in the presence of damping it can be shown by using response cir—
cles that there exist two optimum solutions for this case. For small
damping the shape of the objective function ¢ is such that the respomse
is second order small along , f(k )} which ma%es it hard to find the
minima numerically and the SlLuaElOH can be worse for the case of many
variables. Thus there is a need to choose the best solution cut of
all possible solutions. The simplest means in the present case is to
assume that an increase in stiffness normally icplies an increase in
weight and to seek the solutien which provides the least welght
penalty, i1.e. the least total added stiffness.

Thus the problem can be recast as a constrained problem, viz.
Minimise Iki, subject to the constraint ¢ = BJ%;EP =@

where  is a matrix which allows a quadratic function of response mag-~
nitudes at various points to be formed and Zk; is the sum of added

stiffnesses. This optimisation algorithm is ussd sequentially in the
present problem on a modified objective function defined by
2
Y = Zki + Bd .. - .. . (6)
where B is a penalty parameter. Starting with 2 small value of B and

an initial design vector of variables ki, ¥ is miniaised to arrive at a
new desipn and taking this as the initial design and with an increased
value of B the process 1s repeated sequentially until convergence is
achieved. If a zero response 1s obtainable, ths lzast added weight
solution is obtained. If however there 1s no zero response solution
then the sequentially increasing values of B ensure che minimum
possible response within the stiffness (or weight) 2ounds allowed.

The nature of the result obtained for the two variable case is

shown in Fig. 2. This represents a case where zero response can be
obtained within the range of variation of ky and ¥, considered.  The
optimisation process has been startedarbitrarily at k, = k, = 0.1 and

it is clear from study of the Figure that the minizup value of ¥ occurs
roughly at the intersection of k; = 0 and Rp = i(k;,k,) = 0. For an
initial low value of B the solution moves to vpoin ; thereafter, B is
increased sequentially (steepening the slope of the penalty function
surface) and the solution moves to the final one, satisfactory
convergence being achieved after 5 steps.
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Fig. 2. Visualisation of Optimisation.

The model considered here is very simple and to assess how this
method works for a more complex model, a two-dimensional beam element
model ("stick" model) of the Westland Lynx helicopter is studied. The
details of the model and the results of application are presented in
the next s=ction.

5. Application of Lyax "stick model

The aforementioned optimisation technigue using the modified
objective fupction is now applied to the problem of minimising the
vibrational response in the region of the pilot's seat of the Westland
Lynx nelicepter. The model used is shown in Fig. 3.  This "stick"
model has 25 taperad beam elements and 60 degrees of fresdom with two
translational and one rotational at each node. The excitation on the
structure is an osclllatory couple of frequency 21.7 Hz applied to the
rotor head (node 8) as shown in the Figure. Only stiffness changes
corresponding to the adjacent nodes are considered, and the vertical
response at the pilot's seat (node 18) denoted by Ry is minimised..
The suffix "53" refers to the degree of freedom number -~ its relation
to structure node number is found by reference to Fig. 3.

The first twenty parameters obtained from a respoanse cirels dia~
meter listing are given in Table 1 and the paramaters are indicated by
the respective degree of freedom numbers. A modal damping factat-of
2% critvical is assumed for getting the parameter listing,  The para-
meters are zlso indicated in order of importance in Fig. 4 and are
those used in the optimisation.
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Degree of freedom co-ordinates for node i are (3i-2,3i-1,31i).
Thus, e.g. co—ordinates for node 18 are (532,53,34) and for
node 2 (4,5,6).

Fig. 3. Lynx "Stick' Model - Node & d.o.f. Numbering.

TABLE 1

Parameter listing for the response Ry based on circle diameters

Parameter p Correspondiﬁg Un@pdified
identifying arameter Direction structural StlffnesF
no. co—ordinates nodes value ki
(N/m)
1 25 28 X 3-10 0.398620 x 10’
2 10 X 3~ 4 0.398620 x 10’
3 4 13 7 2~ 5 0.398620 x 107
4 14 17 z 5- 6 0.525380 x 10°
5 5 14 y 2- 5 0.250400 x 10°
6 28 40 X 10-14 0.703606 x 10’
7 12 57 e £=19 0.175127 x 10°
8 36 39 e, 12-13 0.175127 % 10°
9 6 15 0 2- 5 0.165430 x 10°
10 9 30 o, 3-10 0.277979 x 10*%
11 9 12 o, 3~ 4 0.165430 x 10°
12 20 23 7 7- 8 0.965550 x 10%%
13 19 22 X 7- 8 0.406040 x 10+
14 16 19 X 6- 7 0.384125 % 10°%
15 19 55 X 7-19 0.384125 x 10%2
16 17 20 z 6- 7 0.434304 % 1072
17 17 56 z 6-19 0.778341 = 10°°
18 20 56 z 7-19 0.434304 x 1072
19 11 56 z 4-19 0.210152 x 10%°
20 2 53 z 1-18 0.216385 x 10°
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Fig. 4. Stiffness Parameters (Identification Numbers).

The optimisaviou algorithm requires the lower and upper limits
on the variables. Two types of bound are chosen, firstly, all the
stiffness parameters are each allowed a uniform veriation of 0~1.75 x
10% N/m (0-107 1bf/in) and, secondly, a range of variation of 20% of
the basic stiffness values is also takern. For each set of bounds dif-
ferent response cases are considered although the listing of best
parametexs is not strictly applicable to response casss other thanm Hy.

. . , : L

The basic objective functions ¢{ corresponding to the different
response cases (see Fig. 5) considered are

2 2 2

41 = Ryq ’ by = B53 * Bs

2 2 2 2 2 2
$g = Rgq + Ry ’ by = Rgy * R5y + Ry + Ry

where the suffices on the R's refer to degree of freedom numbers.
Minimising a multiple response involving more than one node as in the
case of ¢, and ¢, can be thought of as reducing the vibratory response
over a region of the structure, These response cases are illustrated
in Fig. 5.

The computer results for the different cases of response and
stiffness parameter constraints follow in Tables 2 to 9 inclusive.
For each case the response function ¢; used is stated, and also type of
upper bound Ak; nax % the additional stiffpess variations Akj. This

is either simply 1.75 x 10° N/m throughout or 0.2k;, where ky is the
existing ctiffness parameter value of ths wmodifisd structure. A
typical value is obtaired from the stiffress matrix; for example, a
stiffness connecting points p and q on the structure is given by the
negative of the pg—th element in the matrix. The lower bounds on Ak
are all zero.
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Fig. 5. Response Cases Considered.

The magnitude of the response or composite response (di)é is
given as an acceleration for a nominal excitation pitching moment at
the rotor head of 5650 Nm.

The parameters listed in Table 1 are used for a sequence of runs
in which the first two, four, six, ten etc. parameters are used in the
optimisation, the optimum values being shown. The response is given
as a ratio of that for the unmodified structure, and the sum of the
additional stiffnesses indicated. Also given are the C.P.U. times.
The parameter identifying number appearing in the first columm of
Tables 2~9 is that which appears in the first column of Table 1 and

also in Fig. 4.

68~-8



6-89

TABLE 2 ' TABLE 3
2 i

Cage 1 Response function '51 e R§3 Case 2 Response function ;{2 =R, * R,
StifEness bounds O € [\ki £ 1.75 x 109 N/m A Stiffness bounds O £ Aki € 1.75 % 1.09 N/m
Response magnitude (dl}im} 0.132g . Regsponse mapnitude (dz)i"iﬂ.fm}g
Opt. values of Akilaki Rgs?. Opt. valves of Akimki Res[_).
Param, mnax ratio CPU Param. max ratio CPU
ident. for diff. noe, of params, d !‘ time ident. for diff. nos. of params. ¢ { ti_\ne
no, 1 {min) ne. e {min)
2 4 & 10 15 20 {(JITO} 2 4 5 10 15 {(éz)o}
1 0 0 ¢ 0 0 1 ) 1.0 0 0 4]
2 o} Q o 0 o 0 1.0 0.025 2 0 1.0 0 c 0 1.0 0.03
3 Q 0 o 0 ] 3 1.0 0 o o
4 0.1936 | 0.0059 { 0.0059 | 0.0059 0 o 3.5 4 1.0 1.0 1.0 o 0,322 _6.12
5 0.0161 { ©.0161 } 0.Ql61 Q 5 o 1.0 0
0 () 0 4] 0 4] 3.2 6 0 Q 4] o, ﬂii() 1:(3. )
) B 0 o o e ) e s o 0 A .,'.‘ »
8 o] ] 0 ' 8 0 Q
g 0 4] o 9 1.0 1.0
10 ¢ Q [y 0 4,0 10 1.0 0 0.939 1.7
181 4] G 11 o
12 0 Q 12 1.0
13 G &) 13 1.0
14 ] o 14 1.0
i5 0 0 0 15 ‘ 15 ‘ 1.0 0,011 12
e @ Dok, x1077) o 4.0 1.0 5.0 5.0
17 0 L
i8 0
19 0
PAY] ] 0.0037 . 0 45
Fxxio7y o 10.193 |0.022 |0.022 |0.022 [0.007 ‘
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TABLE 4

Case 3 Response fuuction 9_53 = jo

2
+R§

Stiffness bounds 0 € 8k, ¢ 1,75 x 10° w/a

Response magnitude {éa}i =%0.1590g

Opt. values of [:ki/A‘ki Res[.
Param, wax ratio CPU
ident. for diff. nos. of params, d } r_i.u:a
ra, 3 {min}
2 4 6 10 15 {(d;)n}
1 1.0 0 &) o
p 1.¢ 4] 4] 1.0 0,025
- R B 0 0 0
4 0.0173 | 1.0 0.3570] 9.3757 (.818 0.5
s 1.0 | o.2374 {6.2585
b 0.0037] 0.0035 | 0.0036 0 1.7
7 T o 0 .
8 G.7790 | 0.7467
9 4] o
10 \ 0 Y 5
1 T 0
12 0 )
13 0
14 0
15 a 0 57
Bk, x1077) 0 |3.0173 }2.0037( 1.3769 | 1.3805

TABLE §

,

s 2
Case 4 Response function 4, Byy + Rgy + Ry + R
Stiffuess bounds O € Ak, € 1.75 x 109 N/m

Responge magnitude (éa)iz} 0.571g

]
<

2

2
[

Opt. valuwes of Aki;’Aki Res;.:.
Param. max ratio CPU
ident. for diff. nos. of params, 4 i ti.me
no. 4 {win}
4 & 10 15 {(9‘4)0}
1 o 0
2 ]
3 o0 )
4 1.0 1.0 1.0 4] 0. B4 a.?
5 0.0004 0.0008 4] o
6 - v 0 0 0.867 1.1
7 0 1] ,
8 0 c
9 0 1.0
10 1.0 o |03 | a3
11
12 1.0
13 1.0
14 1.0
15 1.0 0.011 14
Lok x1077) 1.0 1.0004 | 1.c008 | 5.0
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TABLE ¢
. 2
Case 5 Response function dl = R53

Stiffness bounds 0 ¢ Aki £ 0.21:]._

Response magnitude “l)i-_") 0.132g

t. values of nki/Ak. Resp.
Taram, Loax ratio CPU
ident. for diff., nos. of params, J time
¢ \
no, 1 {min)
4 6 10 15 g
1 0 0 0 0
2 o] 0 4] 4] 1.0 0.027
3 Q 4] L8} 0
4 1 1 1 1 0. 781 0.24
5 1 1 1 ,
6 4] g Q0 0.538 0. 34
7 o 1 1
8 1 Q
9 1 1
\o 0 ¢ 0,537 1.%4
11 T 1 J
¥ 1
13 1
14 1
1s 1 U.002 33
L x1077) 0.0060 |0.0089 ! 0.0278 | 202.7

TABLE 7

Case 6 Response function 62 = R&.z’}

52

Stiffness bounds 0 ¢ bki £ 0'2ki

Response magnitude (dz)z# 0.403 g

Opt. values of Akilb.ki Res?.
Param, max ratio [sigl}
ident. for diff. nos. of params. g § Li.mr.’
no. {’_3_} (win}
4 6 10 15 | Y,
1 1 0 0 0 |
2 1 0 4] o 1.0 0.033
3 1 0 ) o | T
4 0 ] 1 1 0.991 0.067
S ) ) . AN R
6 0 0 Q0 0,944 0.15
7 T 1 0 T "
1} 0 1
g 1 1
10 ] 0 0.938 0,55
11 T 1 )
12 !
13 1
14 1
15 1 0.001 27
LAk, 1077 0.0137 {0.0089 1 3.202{ 202.7
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TABLE 9

TABLE 8
Case 7 Response function . = Rz + Rz
—n 3 53 5
Stiffness bounds O ¢ é.ki '3 O.Zki
Response magnitude (dg)i =0,190g
Opt. values of Ak, /Ak, Resp.
Param, 2 hax ratio cry
ident. for diff. nos, of params. 4 H ti.me
no. {h_S_} (min)
4 6 10 15 CIV
1 1 4} 0 0
2 1 0 o] 0 1.0 0.033
3 1 o] o 0
4 0 1 1 1 0.994 0.12
5 1 1 1
G o] 0 0 0.573 0.33
7 1 1
i3 1 1 '
9 1 1
10 0 v 0.512 0.27
T R ' T R
12 1 ‘
13 1
14 1
15 1 0.001 28
E(ak,x1077) 0.0014 |0.0089| 0.0278 | 202,7

, 2 2 2 2
Case 8 Response function d" st + Rep + R + Ry
Stiffness bounds O € Aki £ O.Zki
Response magnitude (d‘,‘)i-ﬂo.ﬂlg
Opt. values of Akilnki Resp.
Param. max ratio cru
ident. for dif{. nos. of paraus, 4 { time
no. 4 (min)
4 6 10 15 LN
1 0 Q 4] 0
2 4] 4] 0 )
3 0 0 0 0
4 0 1 ) 1 1 1.0 0.067
5 1 1 1
6 0 0 0 0.945 | .15
7 I 0 )
B 1 1
9 1 )
10 1 0 0.934 0.68
11 1
12 1
13 1
14 1
15 ] 0.001 25
Itk x1077) 0 0.0089 3.202 2027




6. Discussion and conclusions

6.1 The optimisation process

The problem of minimising thz wibration on the Lynx model has
been formulated so that a straightforward opticmisation process can be
applied. In doing this, many prac,i:al aspects have had to be
ignored, but discussion of this is presented in the following section.

The optimisation exercise has Zzen extremely useful in that an
idea of the limitations, and hence its future usefulness can be formed.
The most important limitation is that the process itself, or rather the
particular process adopted, is very exiravagant of computer time.

This has been found to vary approximacaly with the cube of the number
of varisbles considered, thereby imposing a practical top limit of
about 20 variables. This represented a serious drawback because the
present exercise was essentially explceratory and the time left for
development was thus drastically curtailed.

Before discussing further drawbacks, it is inmstructive to
examine individually each case studiad. In Case 1 (Table 2}, zero
response was obtainable and the optimisation preceeded without compli-
cations. Parameters 4 and 5 are ssen to provide all that is necessary,
until the fimal introduction of paramezer 20 which gives a solution of
lesser total added stiffness (discussion of the added weight is
reserved for the following section). Czse 2 illustrates that aproblem
of finding a global maximum has occurrzd. This case was run several
times with different input conditions =nd for the 10 and 15 parameter
cases, a variety of solutions was obzained. In the event, a low
response solution was found (15 paramecers), but the results taken
together do not represent a sensible and ordered sequence. Case 3, om
the other hand, shows a successful seguence, as does Case 4, although
the latter indicates a rather heavy pezalcy (in zdded stiffness) to pay
for the reduced response. The remaining Cases 5 to 8 may be con-—
sidered together.  In these the stiffrmess bounds were taken to be 207
of the existing stiffnesses, and throuzghout, the variable stiffnesses
went to either their upper or lower lizits. It is interesting that in
these cases, regardless of the response finction taken, the final
stiffness configuration obtained is roughly the same,

From this study of the separaze cases it =ay be seen that a
second important drawback 1s the inability in Case 2 to find global
minima. When Lt 1s suspected or kmnewn that 2 globzl minimum has not
been found, then the case under 1nvestigation must be re-run with dif~
ferent starting values of the paramezers aad of the penalty fuunction
coefficient B. Thus, the human operazor enters into the picture and
judgement, backed up by experience, =zust be used To obtain a better
answer. In cases where a zero or mesar—zero responsas was obtainable,
finding the global minimum did not sze= tc be z problem. However, in

the opposite situation, there was a terfency for zll parameters to
adopt either their upper or lower limits, and, particularly in Case 2,
a number of different minima were found. Toc scme extent, the par-—
ticular minimum found is pre—determinac zi¢ the first and 10wast vaiue
of B; thereafter, for increasing vaiuss of B the response part of the
objective function dominates at the expznse 0f the added weight part.

tion of wherher or not the

Finually, there must remain the gues
ight one, Time did not allow

optimisation process used here was the T
the development of other methods.
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6.2 The use of optimisation in practical problecs

It is clear from Tables 2 to 9 that using the respomse circle
diameters for initially selecting the best parameters for optimisation
is mot altogether satisfactory. Idezlly, the parameters that turned
out to be important in the optimisaticn should have appeared at the top
of the cirecle listing. However, the circle diameter method as used
here is very simple, and a more realistic criterion, still based on
circle response properties, can easily be employed. This is something
that warrants further investigation.

The gear box—engine-fuselage model of Fig. 1 was simply used to
test out and gain experience with the optimisation routine.  The
"stick” model of the Lynx provided, however, scope for a4 more serious
attempt at structural optimisation. Even here, though, the model was
not sufficiently representative for useful practical deductions to be
made. The major drawback was the absence of a relationship between
element weight and element stiffness. Future wodels, even i1f simpli-
fied by restricting the number of degrees of freedom, should have the
element weights involved in a proper wmanner.

Unlike flutter optimisation for fixed wing aircraft, the basic
objective function is somewhat arbitrzry.  Human judgement is required
to formulate a suitable response function for embodiment in the ohjec-
tive function. Clearly, it is impossible to reduce the response in
the fuselage everywhere to zero, so it has to be decided where the
response should be small, or zero, ané in which directions. If a com-
posite response is to be used, some sort of weighting has to be decided
upon for the various components.

A further practical consideration is that the optimisation
should be terminated when the payoff besitween added weight and response
reduction becomes unacceptable.  Suck a bounding relationship could be
provided by information obtained from industry.
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Appendix

Matrix expression for the modified receptance

A brief derivation of eqn. (3) of Section 3 is given here.

Consider a structure modified by inserting two linear springs of rates
ky and k, between points a and b, ard ¢ and d respectively, and excited
by a harmonic force Fp at p. The cbjective is to obtain the recep—
tance Gpq between point p and a further point g when the structure is

thus modilfied.

The forces exerted by the springs F,, F, and F., Fy at the
points of attachment a, b and ¢, d can be written as

a kl(Rb - Ra) b

ky(Rg = R

F

il
i
)

1§
P -
=]

r
c

1i

where R denotes the displacement response.
The response Rg can now be written as

= + G -
Rq GQPFP + anFa + quFb + qch 2 quFd

where Gjij is the receptance between the peints i and j.
Using eqns. (Al) this can be re-writtemn as

R =G F + (G =~G )klﬁ

+ (G -G k.8 -
q qp p ga qb ( q

1 qc d 272

where §, = Ry = Ry and 6, = R4y - R¢ are the relative displacem:2nts
the springs.
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(AL)

(42)

of



Similar expressions for the displacements at a, b, c and d can

also be formed:

R, = G F, + (6, = Gy + (6, = G 9k,8)
By = Gppfp * (Gpg ~ Gyp K18y + (G = Gy,
Rc = chFp * (Gca - Gcb)k161 * (Gcc - ch)k262
Ry = G Fp + (Gg, — Ggp)ky 8y + (Gg = G49)%95,
and by combining these the relative.displacements 6, and §, can be
expressed
$§=FB-DVS . .. . (A3)
where
6 = r(Sl - Rb B Ra
L62 Rd B Rc
= bep N ap
~de - G,
D= (be - Gba) - (Gab - Gaa) (de - Gbc) - (Gad - Gac)
(Cpa ™ Cag? = Cpe 7 Gad CGgq ™ CGad (Beq ~ e
ve=x o |
{O k2
Rewriting eqn. (A2) as
R =G F, *AYS . . . - (A4)

where A = (G,, — G Gyn = Go3)s 8 can now be eliminated using eqn.
i a gb c qd’/ > 2 .
(A3) to provide the new receptance GLew between p and q, l.e.
G =R /F
new qg''p

.o (A5)

=G+ AV +DV) 1B
qp - =

The expression can be generalised to include
and A, B and D can be easily formulated from
the unmodified structure. The matrix to be

as the number of variable spring stiffnesses

68-16

any number of variables
the receptance matrix of
inverted is only as large
considered.
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