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Abstract 

 
For cases involving a helicopter involving a towing cable with an end mass, when the mass of the towed body 
is of the same order of magnitude of the towing cable mass, the dynamic analysis and simulation of the 
resulting system can become quite challenging, especially in cases that involve large cable lengths. This paper 
develops an approach utilizing the natural modes of a hanging string with tip mass in free vibration. With a 
modal representation of the cable deflection, the problem solution reduces to response to applied aerodynamic 
forces on the cable and the towed body. The aerodynamic forces acting on the cable are calculated using the 
cross-flow principle and the aerodynamic forces on the towed body are included using a table look up variations 
with angle of attack and sideslip angles, which are pre-computed using a comprehensive CFD analysis. The 
resulting equations of motion in generalized coordinates are numerically integrated for determining the cable 
transient deflections due to helicopter maneuvers. Results from transient simulation of the cable/tow body 
system for selected cases of helicopter maneuvers are presented. Further, the impact of variations of cable/tow 
body system parameters on the tow body transient motion are analyzed. 
 
 
1. NOMENCLATURE 
𝑔𝑔 Constant of acceleration due to 

gravity 
𝑠𝑠 Lagrangian coordinate that traces 

the cable from tow body to 
helicopter 

𝑥𝑥, 𝑦𝑦, 𝑧𝑧 Longitudinal, lateral and vertical 
axes with origin at the cable 
attachment point of the helicopter 

𝑢𝑢, 𝑣𝑣,𝑤𝑤 Longitudinal, lateral and vertical 
deflections of an arbitrary point of 
cable 

𝜌𝜌 Cable mass per unit length 
𝑇𝑇 Cable Tension 
𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Cable aerodynamic force 
𝑒̂𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Direction of cable aerodynamic 

force 
𝛼𝛼 Cable angle of attack 
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𝑞𝑞𝑖𝑖 ,𝑀𝑀𝑖𝑖 ,𝑄𝑄𝑖𝑖 Generalized coordinate, 

generalized mass and generalized 
force 

𝐽𝐽0,𝑌𝑌0 Bessel functions of first and second 
kind of order zero 

𝜇𝜇 Ratio of tow body mass to cable 
mass 

 
2. INTRODUCTION 
Modeling and analysis of a helicopter with an 
external load connected by a cable or towing of a 
body using a cable has been extensively studied in 
the literature1, 2.  Most of those studies involved the 
mass of the slung load/ tow body being an order of 
magnitude larger than that of the cable. When the 
mass of the load/tow body is of the same order of 
magnitude of the cable mass, the dynamic analysis 
and simulation of the resulting system can become 
quite challenging, especially in cases that involve 
large cable lengths, as aerodynamic forces on the 
cable, which often are neglected, become that 
much more important.  
 
 
Previous efforts3, 4 have utilized a discretized 
model, wherein the cable is discretized into multiple 
segments with each segment modeled as a three-
degree-of-freedom system in space, and joining 
them with proper tension forces and kinematic 
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constraints. With such a discretized model, one can 
obtain solution of the cable deflection under steady 
state conditions of helicopter motion. But for cable 
transient motion arising from helicopter 
accelerations / deceleration or from effects due to 
external gusts, the tension forces at some 
segments may become close to zero due to the 
light weight of the attached load.  This can lead to 
a stiff system of equations, requiring very small 
integration step size in order to maintain fidelity of 
the numerical simulation, thus posing an issue for 
real time simulations without a compromise on 
solution fidelity.  

 

This paper develops an alternate approach, which 
utilizes the natural modes of a hanging string with 
tip mass in free vibration5. The external 
aerodynamic forces are applied to the modal 
equations using the generalized force formulation, 
and the simulation output is the superposition of the 
mode shapes multiplied by the corresponding 
generalized coordinates.  

 

With a modal representation of the cable 
deflections, the problem solution reduces to 
response to applied aerodynamic forces on the 
cable and the end mass (tow body). The 
aerodynamic forces acting on the cable are 
calculated using the cross-flow principle6 and the 
aerodynamic forces on the end mass body are 
obtained using a pre-computed table look up 
variations with angle of attack and sideslip angles. 

  

The paper is organized as follows: First, the 
governing equation of the entire cable/tow body 
system are derived. Next, the free vibration mode 
shapes and modal frequencies of a cable with end 
mass (towed body) are computed and are 
compared with known test cases. This is followed 
by presentation of results from transient 
simulations of the cable/tow body system for 
selected cases of helicopter maneuvers. Next, the 
impact of variations of cable/tow body system 
parameters on the transient motion of the towed 
body are analyzed. Finally, conclusions are drawn 
based on the presented results, followed by 
recommendations for future work.  

 

3. TOWING CABLE DYNAMICS MODELING 
The approach pursued in this paper for modeling 
the towing cable dynamics is to use a modal 
approximation in order to reduce the degrees of 
freedom and, hence, the computational cost 
associated with integration of the resulting 
equations. To this end, (1) the governing equation 

of the entire cable is derived, (2) its mode shapes 
and modal frequencies are determined and 
compared with known test cases, and (3) the 
towing cable dynamic equations are obtained in 
terms of the generalized coordinates. 

 

3.1. Derivation of Governing Equations for 
the Towing Cable 
To derive the governing equation for the towing 
cable, a coordinate, 𝑠𝑠, is defined which traces the 
cable from the bottom towed body to the towing 
aircraft as shown in Fig. 1. The longitudinal, lateral, 
and vertical deflections, 𝑢𝑢, 𝑣𝑣,𝑤𝑤 as well as the cable 
coordinate, 𝑠𝑠, are noted in the illustration. 

 

Figure 1. Towing cable configuration and 
definition of important parameters. 

 

For an arbitrary infinitesimally small segment, the 
forces acting on a cable segment are defined as 
shown in Fig. 2 with the cable mass per unit 
length, 𝜌𝜌, the cable coordinate, 𝑠𝑠, the cable tension 
vector, 𝑇𝑇, and the cable aerodynamic force, 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.  
 

 

Figure 2. Definition of important parameters for 
the towing cable segment. 

 

Considering the longitudinal cable deflection 
exclusively and starting from Newton’s Second 
Law, 

(1)                             𝑚𝑚𝑎⃗𝑎 = ∑ 𝐹⃗𝐹 
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An application of Eq. 1 to the cable segment leads 
to 

(2)    𝜌𝜌∆𝑠𝑠 𝜕𝜕
2𝑢𝑢(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= −𝑇𝑇𝑥𝑥(𝑠𝑠, 𝑡𝑡) + 𝑇𝑇𝑥𝑥(𝑠𝑠 + ∆𝑠𝑠, 𝑡𝑡) + 𝐹𝐹𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 

with the longitudinal deflection, 𝑢𝑢, and the 
longitudinal components of tension force 𝑇𝑇𝑥𝑥 and 
aerodynamic force 𝐹𝐹𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Dividing both sides of 
Eq. 2 by ∆𝑠𝑠 and with ∆𝑠𝑠 → 0, the equation becomes 

(3)               𝜌𝜌 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝜕𝜕𝑇𝑇𝑥𝑥(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕

 

 

The cable longitudinal tension force,  𝑇𝑇𝑥𝑥(𝑠𝑠, 𝑡𝑡),  can 
be expressed as 

 (4)         𝑇𝑇𝑥𝑥(𝑠𝑠, 𝑡𝑡) = �𝑇𝑇�⃗ (𝑠𝑠, 𝑡𝑡)�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

��𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
2
+�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

2
+�1−𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 �

2  

 

For the case of an inextensible cable, 

��𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �1 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

= 1. Hence, for the 

Inextensible cable and with the cable mass per unit 
length,  , Eq. 3 can be written as  

(5)                𝜌𝜌 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝜕𝜕
𝜕𝜕𝜕𝜕
��𝑇𝑇�⃗ � 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕𝜕𝜕𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕
    

 

The aerodynamic force, 𝐹𝐹𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, acting on the 
towing cable is calculated using the Cross Flow 
Principle6, which states that, for towing cables with 
circular cross-section, the aerodynamic force 
direction is perpendicular to the cable tangential 
direction and is always in the plane defined by the 
free-stream direction and the cable tangential 
direction. The equation for the aerodynamic force 
along the cable coordinate 𝑠𝑠 and at time 𝑡𝑡 is given 
as  

(6)      𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑡𝑡) = 𝐶𝐶𝐷𝐷𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟(sin(𝛼𝛼))2𝑒̂𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 

with the drag coefficient 𝐶𝐶𝐷𝐷, the dynamic pressure 

𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
2
𝜌𝜌∞ ��𝑉𝑉∞ + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
�, free 

stream air density 𝜌𝜌∞,  cable reference area 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑑𝑑∆𝑠𝑠, and the cable diameter, 𝑑𝑑. The angle of 
attack,𝛼𝛼, is calculated as 

(7)             𝛼𝛼 = cos−1( �𝑊𝑊���⃗ ∙𝑈𝑈��⃗ �
�𝑊𝑊���⃗ �∙�𝑈𝑈��⃗ �

) 

 

 with the local tangential vector, 𝑊𝑊���⃗ =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝚤𝚤̂ + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝚥𝚥̂ +

(1 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝑘𝑘�, and the cable velocity vector, 𝑈𝑈��⃗ = (𝑉𝑉∞ +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝚤𝚤̂ + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝚥𝚥̂ + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑘𝑘� . The direction of the aerodynamic 

force is calculated as 

(8)                      𝑒̂𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �𝑈𝑈��⃗ ×𝑊𝑊���⃗ �×𝑊𝑊���⃗

�(𝑈𝑈��⃗ ×𝑊𝑊���⃗ )×𝑊𝑊���⃗ �
 

 

The aerodynamic force component along the cable 
(i.e., longitudinally in the x-direction) is calculated 
as  

(9)                       𝐹𝐹𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ �
1
0
0
� 

The cable tension force, �𝑇𝑇�⃗ (𝑠𝑠, 𝑡𝑡)�, at any point 
along the cable consists of the summation of all 
cable forces below the point of interest including 
the aerodynamic and inertial forces acting on the 
tow cable and the towed body. In order to reduce 
the computational complexity, the free vibration 
mode shapes of the cable are obtained first and 
then are used to compute the generalized forces 
for the cable/tow body system as shown in the next 
sub-section. 
 

3.2. Determination of Free Vibration Mode 
Shapes and Modal Frequencies 
Assumption: The cable mode shapes and modal 
frequencies depend on the cable tension, �𝑇𝑇�⃗ (𝑠𝑠, 𝑡𝑡)�. 
The formulation for the cable tension that considers 
the towed body and cable aerodynamics is highly 
nonlinear which makes finding the cable mode 
shapes and frequencies unnecessarily 
complicated. Hence, the aerodynamic forces of the 
towing cable and the towed body are neglected 
when finding the mode shapes and modal 
frequencies of the towing cable. Thus, the free 
vibratory dynamics of a hanging cable with a point 
mass are represented. The dynamic equation of 
the towing cable without aerodynamics can be 
derived from Eq. 5 as  

(10)                  𝜌𝜌 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝜕𝜕
𝜕𝜕𝜕𝜕
��𝑇𝑇�⃗ � 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 

 

where the magnitude of the tension force can be 
approximated as 

(11)           �𝑇𝑇�⃗ � ≈ 𝑚𝑚𝑇𝑇𝑇𝑇𝑔𝑔 + 𝜌𝜌𝜌𝜌𝜌𝜌 = 𝐹𝐹1 + 𝐹𝐹2𝑠𝑠  

 

with the towed body mass, 𝑚𝑚𝑇𝑇𝑇𝑇, the cable mass per 
unit length, 𝜌𝜌 , the gravitational constant, 𝑔𝑔, and the 
cable coordinate, 𝑠𝑠. Assuming a solution of the 
form, 𝑢𝑢 = 𝑢𝑢�(𝑠𝑠) ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, and dividing both sides of Eq. 
10 by 𝜌𝜌𝜔𝜔2 results in 
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(12)                    𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝑇𝑇

�⃗ �
𝜌𝜌𝜔𝜔2

𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕
� + 𝑢𝑢� = 0  

 

In order to obtain an analytical solution to Eq. 12, 
Sujith and Hodges5 use a change  of variable with 
the new variable, 𝜂𝜂, defined as 

(13)                      𝜂𝜂 =
2�𝜌𝜌∙𝜔𝜔∙��𝑇𝑇�⃗ �

�𝑇𝑇�⃗ �
′  

 

where �𝑇𝑇�⃗ �
′

= 𝜕𝜕(�𝑇𝑇�⃗ �)
𝜕𝜕𝜕𝜕

. For the case of dynamics in 
vacuum, i.e., no aerodynamics, �𝑇𝑇�⃗ � = 𝐹𝐹1 + 𝐹𝐹2𝑠𝑠, 
which results in      �𝑇𝑇�⃗ �

′
= 𝐹𝐹2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Consequently, Eq. 13 becomes  

(14)       𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
2�𝜌𝜌∙𝜔𝜔∙

1
2�𝑇𝑇�⃗ �

′

��𝑇𝑇�⃗ ��𝑇𝑇�⃗ �
′ = 𝜔𝜔�𝜌𝜌

��𝑇𝑇�⃗ �
 and �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2

= 𝜔𝜔2𝜌𝜌
�𝑇𝑇�⃗ �

  

 

Substituting the new variable 𝜂𝜂, Eq. 12 becomes 

(15)                  𝜕𝜕
𝜕𝜕𝜕𝜕
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2 𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕
� + 𝑢𝑢� = 0         

 

After expanding the squared term and rearranging 
for the new variable, 𝜂𝜂 , the governing Eq. 12 
becomes  

(16)                    𝜕𝜕
2𝑢𝑢�
𝜕𝜕𝜂𝜂2

+ 1
𝜂𝜂
𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

+ 𝑢𝑢� = 0  

 

Equation 16 is in the form of a Bessel’s equation 
with a solution of Bessel functions of order zero,  

𝐽𝐽0(𝜂𝜂) and 𝑌𝑌0(𝜂𝜂). The general solution can be written 
as 

(17)               𝑢𝑢� = 𝐶𝐶1 ∙ 𝐽𝐽0(𝜂𝜂) + 𝐶𝐶2 ∙ 𝑌𝑌0(𝜂𝜂) 

 

Boundary Conditions: Recall that the new 
variable, 𝜂𝜂, is a function of 𝑠𝑠, i.e.,  𝜂𝜂(𝑠𝑠). For 
convenience, define 𝜂𝜂(0) = 𝜂𝜂0 (cable end at towed 
body) and 𝜂𝜂(𝐿𝐿) = 𝜂𝜂𝐿𝐿 (cable attachment end with 
cable length, L). The boundary condition at the 
cable attachment point to the towing aircraft, i.e., at 
𝑠𝑠 =  𝐿𝐿, is 

(18)        𝑢𝑢�(𝜂𝜂𝐿𝐿) = 𝐶𝐶1 ∙ 𝐽𝐽0(𝜂𝜂𝐿𝐿) + 𝐶𝐶2 ∙ 𝑌𝑌0(𝜂𝜂𝐿𝐿) = 0  

 

with non-trivial solution as  𝐶𝐶1 = −𝑌𝑌0(𝜂𝜂𝐿𝐿) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶2 =
𝐽𝐽0(𝜂𝜂𝐿𝐿). 

 

The boundary condition at the cable attachment 
point to the towed body, 𝑠𝑠 =  0, with the towed 
body mass, 𝑚𝑚𝑇𝑇𝑇𝑇, is  

(19)            𝑚𝑚𝑇𝑇𝑇𝑇
𝜕𝜕2𝑢𝑢(0,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= �𝑇𝑇�⃗ (0, 𝑡𝑡)� ∙ 𝜕𝜕𝜕𝜕(0,𝑡𝑡)
𝜕𝜕𝜕𝜕

  

 

Using 𝑢𝑢 = 𝑢𝑢�(𝑠𝑠) ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and after some rearranging, 
the equation for the boundary condition at 𝑠𝑠 =  0 
becomes 

(20) �𝜌𝜌𝐹𝐹1
𝜕𝜕(𝐶𝐶1∙𝐽𝐽0(𝜂𝜂0)+𝐶𝐶2∙𝑌𝑌0(𝜂𝜂0))

𝜕𝜕𝜕𝜕
+ 𝑚𝑚𝑇𝑇𝑇𝑇 ∙ (𝐶𝐶1 ∙ 𝐽𝐽0(𝜂𝜂0) +

𝐶𝐶2 ∙ 𝑌𝑌0(𝜂𝜂0)) ∙ 𝜔𝜔 = 0 

 

Using the relationships that 𝜕𝜕𝐽𝐽0(𝑧𝑧)
𝜕𝜕𝜕𝜕

= −𝐽𝐽1(𝑧𝑧);  𝜕𝜕𝑌𝑌0(𝑧𝑧)
𝜕𝜕𝜕𝜕

=
−𝑌𝑌1(𝑧𝑧) with J1 and Y1 being Bessel functions of 
order 1, and after substituting 𝐶𝐶1 and 𝐶𝐶2 as obtained 
from the boundary condition at s = L, one obtains 

(21)    �𝜌𝜌𝐹𝐹1[𝑌𝑌0(𝜂𝜂𝐿𝐿)𝐽𝐽1(𝜂𝜂0) − 𝐽𝐽0(𝜂𝜂𝐿𝐿)𝑌𝑌1(𝜂𝜂0)] + 𝑚𝑚𝑚𝑚 ∙
[−𝑌𝑌0(𝜂𝜂𝐿𝐿) ∙ 𝐽𝐽0(𝜂𝜂0) + 𝐽𝐽0(𝜂𝜂𝐿𝐿) ∙ 𝑌𝑌0(𝜂𝜂0)] = 0  

 

where   𝜂𝜂 = 2�𝜌𝜌∙𝜔𝜔∙�‖𝑇𝑇‖
‖𝑇𝑇‖′

, ‖𝑇𝑇‖ = 𝐹𝐹1 + 𝐹𝐹2𝑠𝑠, 𝜂𝜂0 =
2�𝜌𝜌∙𝜔𝜔∙�𝐹𝐹1

𝐹𝐹2
,  and 𝜂𝜂𝐿𝐿 = 2�𝜌𝜌∙𝜔𝜔∙�𝐹𝐹1+𝐹𝐹2𝐿𝐿

𝐹𝐹2
.  

Equation 21 is the characteristic equation of the 
towed body system, which determines the 
fundamental frequencies of free vibration of the 
system. Once the modal frequencies are 
determined using Eq. 21, the corresponding free 
vibration mode shapes are calculated using  

(22)       𝑢𝑢�𝑖𝑖 = −𝑌𝑌0(𝜂𝜂𝐿𝐿) ∙ 𝐽𝐽0�𝜂𝜂(𝜔𝜔𝑖𝑖 , 𝑠𝑠)� + 𝐽𝐽0(𝜂𝜂𝐿𝐿) ∙
𝑌𝑌0�𝜂𝜂(𝜔𝜔𝑖𝑖 , 𝑠𝑠)� 

Example estimates of the modal frequencies and 
corresponding mode shapes are shown in Fig. 3. 
Note that for a cable without tip mass and with a 
rigid link pendulum of length L = 20 m, the 

theoretical pendulum frequency is = �𝑔𝑔
𝐿𝐿
 rad/s. As 

the mass ratio between cable and towed body 
increases, the first mode of the towing cable 
behaves close to a theoretical rigid pendulum, as 
seen from the value of the first modal frequency for 
the case of a 999 kg tip mass (Fig. 3(d)). For the 
same 999 kg tip mass, the cable mode shapes are 
similar to the results for a cable that is fixed at both 
ends. 
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(a) 𝑚𝑚𝑇𝑇𝑇𝑇 = 0, 𝐿𝐿 = 20 𝑚𝑚 

 

 
                        (b) 𝑚𝑚𝑇𝑇𝑇𝑇 = 0.1 𝑘𝑘𝑘𝑘, 𝐿𝐿 = 20 𝑚𝑚 

 
  (c) 𝑚𝑚𝑇𝑇𝑇𝑇 = 1 𝑘𝑘𝑘𝑘, 𝐿𝐿 = 20 𝑚𝑚 

 

 
      (d) 𝑚𝑚𝑇𝑇𝑇𝑇 = 999 𝑘𝑘𝑘𝑘, 𝐿𝐿 = 20 𝑚𝑚 

Figure 3. Examples of mode shapes and modal 
frequencies for different cases of ratio of tow body 
mass to cable mass with cable length L = 20 m, 

and cable mass per unit length ρ = 0.02976 kg/m. 

 

3.3. Generalized Equations of Motion with 
Aerodynamic Forces 
The response of the towed body system governed 
by the generalized equation of motion of Eq. 5 can 
be obtained using the superposition of modal 
response. For example, the longitudinal deflection 
of the cable can be written as 

(23)              𝑢𝑢(𝑠𝑠, 𝑡𝑡) = ∑ 𝑞𝑞𝑖𝑖(𝑡𝑡)𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑁𝑁
𝑖𝑖=1  

 

where 𝑞𝑞𝑖𝑖(𝑡𝑡) is the generalized coordinate for the 𝑖𝑖𝑡𝑡ℎ 
mode. Using orthogonality of the free vibration 
mode shapes 𝑢𝑢�𝑖𝑖(𝑠𝑠), 𝑖𝑖 = 1, 2, 3 …, the generalized 
equation of motion reduces to the following 
differential equations for the generalized 
coordinates qi(t), i=1, 2, 3…  

(24)       𝑀𝑀𝑖𝑖(𝑞𝑞𝚤̈𝚤 + 𝜔𝜔𝑖𝑖
2𝑞𝑞𝑖𝑖) = 𝑄𝑄𝑖𝑖     𝑖𝑖 = 1, 2, 3, …  

 

with the generalized mass 𝑀𝑀𝑖𝑖 = ∫ 𝜌𝜌(𝑠𝑠)𝐿𝐿
0 𝑢𝑢�𝑖𝑖2(𝑠𝑠)𝑑𝑑𝑑𝑑; 

the generalized force 𝑄𝑄𝑖𝑖 = ∫ 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑡𝑡) ∙ 𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝐿𝐿
0 , the 

cable mass per unit length 𝜌𝜌(𝑠𝑠),  and the external 
force component in the longitudinal direction 
𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑡𝑡).  For modeling of the towing cable  

(25)    𝑄𝑄𝑖𝑖 = ∫ 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑡𝑡)𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝐿𝐿
0 =

∫ 𝐹𝐹𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑡𝑡)𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝐿𝐿
0 + ∫ 𝑓𝑓𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑠𝑠, 𝑡𝑡)𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝐿𝐿

0  
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(𝑓𝑓𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑠𝑠, 𝑡𝑡) = 𝐹𝐹𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝛿𝛿(𝑠𝑠)) 

 

where, 𝛿𝛿(𝑠𝑠) is the Dirac delta function,  𝐹𝐹𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the 
longitudinal component of aerodynamic force 
distribution on the cable, and 𝐹𝐹𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the 
longitudinal component of concentrated force 
acting on the tow body. Note that, for Dirac Delta 
Function, if 𝑎𝑎 < 𝑠𝑠0 < 𝑏𝑏, ∫  𝛿𝛿(𝑠𝑠 − 𝑠𝑠0)𝑑𝑑𝑑𝑑 = 1𝑏𝑏

𝑎𝑎  or 
∫  𝑔𝑔(𝑠𝑠)𝛿𝛿(𝑠𝑠 − 𝑠𝑠0)𝑑𝑑𝑑𝑑 = 𝑔𝑔(𝑠𝑠0)𝑏𝑏
𝑎𝑎 .  After some 

substitutions, the generalized force for the 𝑖𝑖𝑡𝑡ℎ mode 
can be obtained as  

(26)      𝑄𝑄𝑖𝑖 = ∫ 𝑓𝑓(𝑠𝑠, 𝑡𝑡) ∙ 𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝐿𝐿
0 = ∫ 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) ∙𝐿𝐿

0
𝑢𝑢�𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑢𝑢�𝑖𝑖(0) 

 

and the generalized mass for the 𝑖𝑖𝑡𝑡ℎ mode can be 
obtained as  

(27)     𝑀𝑀𝑖𝑖 = ∫ 𝜌𝜌(𝑠𝑠)𝐿𝐿
0 ∙ 𝑢𝑢�𝑖𝑖2(𝑠𝑠)𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 ∙ �𝑢𝑢�𝑖𝑖(0)�2  

 

For simulation of the towing cable dynamics, the 
ODE in Eq. 24 is solved to obtain the generalized 
coordinate,𝑞𝑞𝑖𝑖, for a selected number of mode 
shapes, 𝑁𝑁. The cable deflections are then obtained 
from the summation of the cable mode shapes 
multiplied by their modal coordinates 

(28)           u(s, t) = ∑ 𝑢𝑢�𝑖𝑖(𝑠𝑠) ∙ 𝑞𝑞𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1  

 
 
 
 
 

3.4. Combined 3-D deflection shape of the 
cable 
The equations of motion previously described are 
exclusively for the longitudinal deflection, 𝑢𝑢. The 
same approach can be used to derive equations for 
the lateral and vertical cable deflections. The 
dynamics of the cable deflections in all directions 
are considered equivalent to the dynamics in the 
longitudinal in the sense that all deflections 
contribute to the moment balance about the cable 
attachment points. The final result of the cable is 
obtained as the vector sum of the longitudinal, 
lateral, and vertical deflections with the non-stretch 
constraint as described below. Since the governing 
equation used for free vibration motion is the same 
for the longitudinal (𝑢𝑢), lateral (𝑣𝑣), and vertical (𝑤𝑤) 
deflections, the modal frequencies and mode 
shapes are considered to be the same. 

 

Applying Non-Stretch Constraint to Modal 
Representation 

Recall that the simulation assumes an inextensible 
cable, which implies 

(29)          ��𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �1 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

= 1 

 

with the deflections in all three directions, 𝑢𝑢, 𝑣𝑣,𝑤𝑤, 
and the curvilinear coordinate along the cable (from 
towed body to aircraft), 𝑠𝑠. However, the vector sum 
of the longitudinal, lateral, and vertical deflections 
will violate the non-stretch assumption by 
extending the cable unevenly. Thus, the non-
stretch constraint is applied piecewise. The cable 
is divided into 𝑛𝑛 segments evenly in the 𝑠𝑠 
coordinate. For each segment, deflections can be 
written as 

               ∆𝑢𝑢�𝑖𝑖 = ∆𝑢𝑢𝑖𝑖 ∗
𝐿𝐿/𝑛𝑛

�∆𝑢𝑢𝑖𝑖
2+∆𝑣𝑣𝑖𝑖

2+(1−∆𝑤𝑤)2
 

(30)         ∆𝑣̅𝑣𝑖𝑖 = ∆𝑣𝑣𝑖𝑖 ∗
𝐿𝐿/𝑛𝑛

�∆𝑢𝑢𝑖𝑖
2+∆𝑣𝑣𝑖𝑖

2+(1−∆𝑤𝑤)2
 

                ∆𝑤𝑤�𝑖𝑖 = ∆𝑤𝑤𝑖𝑖 ∗
𝐿𝐿/𝑛𝑛

�∆𝑢𝑢𝑖𝑖
2+∆𝑣𝑣𝑖𝑖

2+(1−∆𝑤𝑤)2
 

where ∆𝑢𝑢𝑖𝑖, ∆𝑣𝑣𝑖𝑖, ∆𝑤𝑤𝑖𝑖 are the local deflections for 
𝑖𝑖𝑡𝑡ℎ segment before applying non-stretch constraint, 
and  ∆𝑢𝑢�𝑖𝑖, ∆𝑣̅𝑣𝑖𝑖, ∆𝑤𝑤�𝑖𝑖 are the local deflections for 
𝑖𝑖𝑡𝑡ℎ segment after applying non-stretch constraint. 

 

 

 

3.5. Normalization of governing equations 
Starting from the governing equation 

(31)      𝜌𝜌 ∂2𝑢𝑢
∂𝑡𝑡2

= ∂
∂𝑠𝑠
��𝑇𝑇�⃗ � ∂𝑢𝑢

∂𝑠𝑠
� + 𝜕𝜕𝜕𝜕𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∂𝑠𝑠
 

 

and normalizing by cable mass, 𝜌𝜌𝜌𝜌, the mprmalized 
governing equation is obtained as  

(32)     𝜕𝜕
2𝑢𝑢�
𝜕𝜕𝑡𝑡2

= 𝜕𝜕
𝜕𝜕𝑠̅𝑠
�‖𝑇𝑇�‖ 𝜕𝜕𝑢𝑢�

𝜕𝜕𝑠̅𝑠
� + 𝜕𝜕𝐹𝐹�𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∂𝑠̅𝑠
  

 

Cable deflections, 𝑢𝑢,𝑣𝑣, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤 and the curvilinear 
coordinate 𝑠𝑠 are normalized by cable length 𝐿𝐿, 
mass and force distributions are normalized by 
by  𝜌𝜌𝜌𝜌 and force is normalized by 𝜌𝜌𝐿𝐿2. The resulting 
normalized governing equation is of the dimension 
1/𝑠𝑠2. Tables 1 and 2 list the normalized variables 
and input parameters. 
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Table 1. List of Normalized Variables. 

Dimensional Non-Dimensional 

𝑢𝑢 𝑢𝑢� =
𝑢𝑢
𝐿𝐿

 

𝑠𝑠 𝑠̅𝑠 =
𝑠𝑠
𝐿𝐿
 

‖𝑇𝑇‖ ‖𝑇𝑇�‖ =
‖𝑇𝑇‖
𝜌𝜌𝐿𝐿2

 

𝑚𝑚 𝑚𝑚� =
𝑚𝑚
𝜌𝜌𝜌𝜌

 

𝑔𝑔 𝑔̅𝑔 =
𝑔𝑔
𝐿𝐿

 

𝐿𝐿 𝐿𝐿� =
𝐿𝐿
𝜌𝜌𝐿𝐿2

 

𝐷𝐷 𝐷𝐷� =
𝐷𝐷
𝜌𝜌𝐿𝐿2

 

𝜕𝜕𝜕𝜕𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∂𝑠𝑠
 𝜕𝜕𝐹𝐹�𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∂𝑠̅𝑠
 

�����������
=
𝜕𝜕𝜕𝜕𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∂𝑠𝑠
/𝜌𝜌𝜌𝜌 

 

 

Table 2. List of non-dimensional input parameters. 

𝜇𝜇 Mass ratio 𝜇𝜇

≡
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝜌𝜌𝜌𝜌

=
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

𝑑̅𝑑 Normalized 
cable diameter 𝑑̅𝑑 =

𝑑𝑑
𝐿𝐿

 

𝑉𝑉�  Normalized 
helicopter 
velocity 

𝑉𝑉� =
𝑉𝑉
𝐿𝐿

 

𝜌̅𝜌𝑎𝑎𝑎𝑎𝑎𝑎 Normalized air 
density 

𝜌̅𝜌𝑎𝑎𝑎𝑎𝑎𝑎 =
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎
𝜌𝜌/𝐿𝐿2

 

𝑆𝑆𝑟̅𝑟𝑟𝑟𝑟𝑟 Normalized 
towed body 

reference area 
𝑆𝑆𝑟̅𝑟𝑟𝑟𝑟𝑟 =

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝐿𝐿2

 

𝑔̅𝑔 Normalized 
gravitational 
acceleration 

𝑔̅𝑔 =
𝑔𝑔
𝐿𝐿

 

𝐶𝐶𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,  𝐶𝐶𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Lift and Drag 
coefficients of 
towed body 

𝐶𝐶𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,  𝐶𝐶𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Drag 
coefficient of 

cable 

𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 
4. SIMULATION RESULTS 
4.1. Steady State Solution of Cable 
Dynamics 
In the generalized equation of motion of Eq. 24, the 
aerodynamic forces provide damping to the cable 
dynamics. In the presence of aerodynamic forces, 
the dynamic system reaches a steady state 
characterized by a steady cable deflection and with 
deflection rates and accelerations approximately 
zero. Hence, the steady state value of the 
generalized coordinate, 𝑞𝑞𝑖𝑖 , 𝑖𝑖 = 1, 2, 3, …, can be 
obtained using 

(32)   𝑞𝑞𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑄𝑄𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜔𝜔𝑖𝑖
2𝑀𝑀𝑖𝑖

, 𝑖𝑖 = 1, 2, 3, … 

 

The aerodynamic force distribution over the length 
of the towing cable depends on the cable shape in 
steady state. Hence, the steady state solution for 
the cable dynamics requires an iterative approach. 
The iterative solution is initiated with the cable 
initially in vertically straight shape. Aerodynamic 
forces are then applied to the cable and a new 
cable shape is calculated. The aerodynamic forces 
are updated and result in a new cable shape and 
so on. The iterative process is stopped when the 
cable shape reaches a solution converged to a 
specified tolerance. 

 

4.1.1. Example of Iterative Calculation to 
Obtain Steady State Solution  
The parameters for the baseline configuration for 
this example are listed in Table 3. 

Table 3. List of Baseline Configuration 
Parameters. 

Operating (cruise) 
speed 

80 knots @ sea level 
standard day 

Tow body mass 6 lbm 

Cable length 300 ft 

Cable mass per unit 
length 

0.02 lbm/ft 

Cable drag coefficient 0.8 

 

Figure 4 shows the convergence history of 15 
iterative calculation steps for obtaining a steady 
state solution for the baseline case. The solution 
converges to a steady state cable shape after 
approximately 10 iterations. 
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Figure 4. Convergence history of iterative 
calculation for finding steady state solution. 

 

4.1.2. Comparison of Steady State Solution 
Using Modal Representation and a Discretized 
Cable Model 
Steady state results from simulations using the 
modal representation of cable deflection from the 
present study are compared with similar results 
from a previously developed discretized cable 
model3 in order to confirm that both methods yield 
similar results and to compare the computational 
effort for both methods. 

 

 Figure 5(a) shows the comparison of steady state 
results for 300 ft of cable length, 6 lbm of towed 
body mass, and for different helicopter cruise 
speeds. Figure 5(b) shows similar results for 100 ft 
of cable length, 6 lbm of towed body mass, and for 
different helicopter flight speeds. Figure 5(c) shows 
results for various towed body masses with 300 ft 
of cable length and 80 knots of helicopter speed. 
The comparison of the simulation results from the 
modal and discretized cable models in Figure 5 
shows excellent agreement. 

 

(a) 𝑚𝑚𝑇𝑇𝑇𝑇  =  6 𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿 =  300 𝑓𝑓𝑓𝑓 

 

 
(b) 𝑚𝑚𝑇𝑇𝑇𝑇  =  6 𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿 =  100 𝑓𝑓𝑓𝑓 

 

 
(c) 𝑚𝑚𝑇𝑇𝑇𝑇  =  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝐿𝐿 =  300 𝑓𝑓𝑓𝑓 

Figure 5. Comparison between steady state 
solutions from modal representation and 

discretized model of Ref. 3. 

4.2. Cable Deflection during Transient 
Motion 
The transient motion of the towing cable is modeled 
using a time-varying algorithm. The generalized 
equation of motion of Eq. 24 is rearranged to get  

(33)  𝑞𝑞𝚤̈𝚤 = 𝑄𝑄𝑖𝑖
𝑀𝑀𝑖𝑖
− 𝜔𝜔𝑖𝑖

2𝑞𝑞𝑖𝑖 

A fourth-order Runge-Kutta method is 
implemented for the numerical integration of Eq. 
33. 

 

4.2.1. Example of Transient Cable Motion – 
Case A 
Figure 6 shows results for transient cable motion 
(Case A). In this case, the initial cable shape was  
set as a straight vertical line with zero initial velocity 
and with the helicopter moving at a constant speed 
of 80 knots. Note that the towed body is 
represented as a point mass with aerodynamic lift 
and drag forces alone. Figure 6(a) illustrates the 
time history of the cable motion and deflections. 
Lines are drawn for various time steps of the time-
marching simulation. The graph shows the 
deflections in the vertical (x-z) plane. Figures 6(b) 
and 6(c) show the time histories of the longitudinal 
and vertical motions of the towed body, 
respectively, for Case A. 
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(a) Cable motion (each line a time step) 

 
(b) Towed body longitudinal displacement 

 
(c) Towed body vertical displacement 

Figure 6. Example results of transient motion - 
Case A. 

 

4.2.2. Example of Transient Cable Motion - 
Case B 
Figure 7 shows results for transient cable motion 
for Case B where the helicopter and towing cable 
were initially in steady state at 80 knots cruise 
speed. The helicopter then decelerates to 70 knots 
with a maximum deceleration of 0.2g (shown in Fig. 
7(b)). Note that the towed body is represented as a 
point mass with aerodynamic lift and drag forces 
alone. Figures 7(c) and 7(d) show the histories for 
the towed body longitudinal and vertical 
displacements, respectively. The forces on the 
aircraft towing hook are shown in Fig. 7(e). 

 

 
(a) Cable motion (each line a time step) 

 
(b) Helicopter airspeed history 

 



Page 10 of 16 

 
Presented at 45th European Rotorcraft Forum, Warsaw, Poland, 17-20 September, 2019  
NAVAIR Public Release 2019-571. Distribution Statement A – “Approved for public release; distribution is unlimited” 

  
(c) Towed body longitudinal displacement 

 

 
(d) Towed body vertical displacement 

 

 
(e) Aircraft hook loads 

Figure 7. Example results of transient motion - 
Case B. 

 

4.2.3. Example of Transient Cable Motion - 
Case C 
Figure 8 shows the results for the transient cable 
motion for Case C where the helicopter was initially 
in hover with the cable vertically below the 
helicopter and in equilibrium. A constant horizontal 
force of 13.5 lbf was then applied to the towed 
body. Note that the aerodynamic forces from the 
free stream were omitted in this case. The only 
aerodynamics acting on the cable were due to 
cable and towed body motions. The result 
converged to the theoretical result from the force 
balance. Note that the aerodynamic damping in this 
case was small since the free steam velocity was 
approximately zero. 

 

 
(a) Cable motion (each line a time step) 

 

 
(b) Towed body vertical displacement 

Figure 8. Example results of transient motion - 
Case C. 

 

4.2.4. Example of Transient Cable Motion - 
Case D 
Figure 9(a) shows the transient results for Case D. 
Initially, the helicopter is at a speed of 80 knots. The 
helicopter then turns 180 deg with constant speed 
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and an acceleration of 0.5g. Figures 9(b), 9(c), and 
9(d) provide the towed body deflection in the 
longitudinal, lateral and vertical directions in the 
body-fixed reference frame during the turning 
maneuver. Figure 9(e) shows the components of 
the normalized tension force (i.e., normalized by 
cable weight) at the helicopter towing hook during 
the turn maneuver. 

 

 
(a) Flight path 

 
(b) Longitudinal deflection 

 
(c) Lateral deflection 

 

 
(d) Vertical deflection 

  
(e) Towing hook loads 

Figure 9. Transient results for Case D (Helicopter 
in a steady turn at 80 knots speed). 

 

4.3. Computational Efficiency of the Cable 
Model 
In order to improve the computational efficiency of 
the cable model, polynomial curve fitting was 
implemented to the mode shapes and the 
aerodynamic force distribution. Since derivative 
and integral evaluation of polynomials is linear 
mapping, the entire simulation process was 
converted to be based on matrix calculations, thus 
improving the computational efficiency. As a result, 
in order to simulate 60 seconds of cable motion, the 
time consumed was around 40 seconds for a 
single-core computer with 48GB of available 
memory (RAM). It was noticed, albeit not 
investigated in detail, that the amount of memory 
available affects the computational time. 
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4.4. Parametric Study of Towing Simulation 
Using New Cable Model 
Parametric studies were performed to better 
understand the towing system dynamics in 
response to changes in design parameters and the 
use of the new cable model. The main design 
parameters considered were the cable length, the 
mass ratio (i.e., between cable and towed body), 
and the towing cable diameter. 

 

In order to compare the system response for 
variations of design parameters, the root mean 
square 

(RMS) value for the oscillation was calculated for a 
duration equivalent to two pendulum periods after 
the helicopter maneuver ends, as illustrated in Fig. 
10. 

 
Figure 10. Simulation duration used for 

determination of root mean square (RMS). 
 

For a flexible pendulum, the 1st  mode frequency 
(pendulum frequency) depends on the cable 

length and the mass ratio, 𝜇𝜇, defined as 

𝜇𝜇 =
𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

Figure 11 shows the value of the 1st mode 
frequency for different cable lengths and mass 
ratios. It shows that, for a given cable length, when 
the mass ratio is small, the 1st mode frequency is 
somewhat higher than the theoretical rigid 
pendulum frequency. As the mass ratio 
approaches infinity, the 1st mode frequency 
approaches the theoretical rigid pendulum 
frequency. 

 

Figure 11. First cable mode frequency, pendulum 
frequency, as a function of cable length and mass 

ratio. 
 

4.4.1. Mass Ratio Variation 
The effect of variation of the mass ratio is illustrated 
for the towed body vertical deflection during the 80 
to 70 knot deceleration maneuver and for four 
different configurations (see Fig. 12). The cable 
length and the cable diameter were kept constant 
and the mass ratio was varied. For towing systems 
with a higher mass ratio, pendulum motion tends to 
dominate the system response. As the mass ratio 
decreases, flexible mode motion is blended into 
pendulum motion and eventually comes to 
dominate the towing system response. As shown 
in Table 4, a higher mass ratio also leads to a 
higher oscillation RMS and maximum amplitude.   
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Figure 12. Towed body vertical deflection during 
the 80 knot to 70 knot deceleration for different 

mass ratios, µ. 

 
 
 

4.4.2. Cable Length Variation 
Studies were conducted with a constant mass ratio 
and with varying cable length. Figure 13 shows the 
towed body vertical deflection during the 80 knot to 
70 knot deceleration maneuver. A short cable 
length leads to a more dominant pendulum motion, 
smaller oscillation RMS, but larger overshoot.  

Table 5 shows the RMS and maximum amplitude 
for oscillation for the maneuver for different cable 
lengths. 

 

 

 

Figure 13. Tow body vertical deflection during 80 
knot to 70 knot deceleration with different cable 

lengths, 𝐿𝐿. 

Table 5. Oscillation RMS and Max value after the 
80 knot to 70 knot deceleration maneuver for 
different cable lengths. 

Length 
(ft.) 

Oscillation RMS 
(normalized by 
cable length) 

Oscillation Max 
(normalized by 
cable length) 

100 0.01050 0.03409 

200 0.008055 0.02768 

300 0.007316 0.02610 

400 0.007806 0.02599 

500 0.008709 0.02595 
 

4.4.3. Combination of Mass Ratio and Cable 
Length variations 
Figure 14 shows how different combinations of 
mass ratio and cable length affect the oscillation 
RMS and maximum amplitude for the 80 knot to 70 
knot deceleration maneuver. In the oscillation RMS 
contour (see Fig. 14a)), it can be seen that, for a 
given small mass ratio, an optimal cable length 
may be found in order to minimize the oscillation 
RMS. 

Table 4. Oscillation RMS and maximum 
amplitude after 80 knot to 70 knot deceleration 
for different mass ratios. 

Mass 
Ratio 

Oscillation RMS 
(normalized by 
cable length) 

Oscillation Max 
(normalized by 
cable length) 

0.5 0.005447 0.02264 

1 0.007316 0.02610 

2 0.009947 0.02795 

4 0.01831 0.05430 
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(a) Oscillation RMS (normalized) 

 
(b) Maximum. amplitude (normalized) 

Figure 14. Contours for oscillation RMS and 
maximum amplitude for 80 knot to 70 knot 

deceleration maneuver for different cable mass 
ratios and cable lengths. 

 

4.4.4. Cable Diameter Variations 
Figure 15 illustrates the towed body vertical 
deflection during the 80 knot to 70 knot 
deceleration maneuver for configurations with 
different cable diameters and constant cable mass 
ratio. A constant cable material density is assumed. 
Thus, for a larger cable diameter, the towed body 
mass is increased to maintain constant mass ratio. 
The results show that a smaller cable diameter 
leads to a more dominant pendulum motion and 
less overall oscillation amplitude. It is seen that 
smaller cable diameter leads to more dominated 
pendulum motion and less overall oscillation 
amplitude. 

 

 

 

Figure 15.Towed body vertical deflection during 
the 80 knot to 70 knot deceleration maneuver for 

different cable diameters and constant mass ratio. 
 

4.4.5. Cable Material Density Variations 
It was observed that with a fixed value of the cable 
mass per unit length (ρ), increasing the cable 
diameter (i.e., a decrease in cable material density) 
beyond a critical value resulted in random cable 
motion and simulation divergence. Table 6 lists the 
critical cable diameters before the dynamics of the 
towing system diverge for different cable lengths 
and mass ratios. 

 

Table 6. The critical cable diameter (mm) before 
the system divergence with constant mass per unit 
length. 

Cable 
Length 

Mass Ratio 

0.5 1 2 4 

L=200 ft 13 13 12 15 

L=300 ft 8 8 8 10 

L=400 ft 6 6 7 8 
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For a given baseline cable mass per unit length, the 
results above suggest cable material density limits, 
which are listed in Table 7. The result suggests 
that, for the baseline configuration, any cable made 
with metal may be acceptable, but the ultra-low 
weight rope may not be suitable for the application. 

 

Table 7. The critical cable material density (kg/m^3) 
before the system divergence with baseline cable 
mass per length. 

Cable 
Length 

Mass Ratio 

0.5 1 2 4 

L=200 ft 224 224 263 168 

L=300 ft 468 592 592 379 

L=400 ft 1053 1053 773 692 
 

 

5. CONCLUDING REMARKS 
A simulation model of towing system for rotorcraft 
is developed using the modal representation 
approach. The free vibration mode shapes of a 
hanging cable with end mass, as previously shown 
in the literature, are found to be in the form of 
Bessel functions. Aerodynamic forces on both 
cable and towed body are treated as external 
forces, and are included in the modal form of the 
equations using the generalized force formulation. 
The developed model of the cable/towed body 
system in modal form is numerically integrated to 
study the effect of vehicle maneuvers on unsteady 
motion of the cable/tow body system. A 
comparison of the steady state results from the 
present model with those from a previously 
developed discretized model show very good 
agreement between the two models. The 
computing time for a one minute of transient 
simulation with the new model using a single core 
machine with 48GB RAM is seen to be roughly 40 
sec., implying that the modal form of the cable/tow 
body system model developed in the present study 
can be used in real time simulations.  

 

Simulations are carried out using the modal form of 
the equations of motion of the cable/tow body 
system with the helicopter executing constant 
acceleration/deceleration maneuvers or a turn 
maneuver. The resulting transient cable deflections 
and towed body motion are noted to be qualitatively 
correct.  Simulations are performed to understand 
the impact of variations of cable/tow body system 
parameters, such as, cable and towed body mass 
ratio, cable length, cable diameter, cable material 

density, on the transient cable deflections and 
towed body unsteady motion. Based on the results 
presented, the following general conclusions are 
drawn: 

 

1. A smaller cable diameter usually tends to 
contribute to a more stable towing system. 

 

2. A smaller mass ratio results in lower RMS 
values of cable/tow body oscillations, albeit 
with larger steady state deflections of the 
cable.   

 

3. For smaller values of mass ratios, there 
may exist an optimal cable length that can 
result in minimal RMS oscillations of 
cable/tow body system.  

 

4. With a fixed value of cable mass per unit 
length, increasing the cable diameter (i.e., 
a decrease in cable material density) 
beyond a critical value can lead to 
simulation divergence.  

 

While the modal form of the cable/tow body system 
model developed in this study is seen to be 
computationally efficient, further work is needed in 
order to address the following enhancements.  

  

1.  The current study uses a simplified 
aerodynamic model for the towed body, 
mostly represented as lift and drag forces 
using a point mass approximation. Further 
studies are needed with a detailed 
aerodynamic model of the towed body that 
includes both aerodynamic forces and 
moments.  

 

2. The current study assumes quasi-steady 
aerodynamics for the towing cable. Future 
studies need to consider unsteady 
aerodynamics of the cable in order to fully 
capture the coupling between the vortex 
shedding from the cable and its 
oscillations.  

 

3. While the current model is seen to produce 
results similar to a previously developed 
(computationally expensive) discretized 
model of the cable/tow body system, future 
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work must include correlations with 
experimental data.  
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