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Abstract 

An approach for the numerical simulation of the 
aeroelastic behaviour of a helicopter rotor in for­
ward flight is presented. For this purpose a struc­
tural dynamic model of the blade, STAN, is cou­
pled with a three-dimensional finite volume Eu­
ler solver for unsteady compressible flows, IN­
ROT. 

The solution of the coupled system is found by 
the use of staggered time-marching procedures. 
Two fundamentally different coupling schemes 
are investigated. 

The validation of the developed method is 
done on a B0-105 model rotor investigated 
at the DNW within the framework of the 
HELINOISE research project. 
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jacobian matrices of fluxes 
damping parameter 
spring stiffness 
diagonal matrix 
specific total absolute energy 
flux vectors in ~, 1J, ( direction 
aerodynamic force vector 
right-hand side of blade dynamics 
index of blade degrees of freedom 
grid index in ~, ?J, ( direction 
identity matrix 
Coriolis and centrifugal 
force vector 
lower triangular matrix 
left-hand side matrix 
mass 
aerodynamic moment vector 
mass moment of inertia vector 
spring moment vector 
damper moment vector 
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n number of degrees of freedom 
index of time step 

p pressure 
Q jacobian matrix of k 
r coordinate vector 
rhs right-hand side vector 
s blade surface 
t time 
u, ii, iD absolute velocities 
u upper triangular matrix 
v velocity vector 
v blade volume, cell volume 
W; induced velocity 
j3 flapping angle 
& degrees of freedom vector 
c upper error bound 
( lagging angle 
(j spectral radius 
T time 
~,?),( body-fitted coordinates 
if> conservative variables vector 

1/1 azimuth angle 
w angular velocity vector 

Introduction 

A key component for the realistic simulation of 
helicopter flight is the accurate calculation of the 
aerodynamic and dynamic behaviour of the rotor 
blades. Today's aerodynamic methods are rang­
ing from blade-element theory with prescribed 
or fixed wake geometry over potential methods 
to Euler and Navier-Stokes solvers. On the other 
hand, the dynamic behaviour of the rotor blades 
can be calculated by multiple rigid-body systems 
up to flexible body systems by means of finite­
element methods. For the accurate prediction 
of the rotor flow field, rotor loads, trim condi­
tions, stability characteristics and the simulation 
of flight manoeuvres the coupling of such aero­
dynamic and dynamic methods is necessary. 



Solution Procedures 

Elastic Modelling of the Rotor Blade 

The dynamic behaviour of the blades is repre­
sented by their first natural modes and frequen­
cies. Since the calculation model takes into ac­
count rotor systems with articulated and flexi­
ble blades, the rotor is modelled as a dynamic 
system of multiple rigid bodies connected with 
hinges. The hinges are provided with springs 
and dampers. Their characteristics represent the 
elastic properties of the blade. Figure 1 shows an 
art impression of the possible degrees of freedom 
of a single rotor blade: control torsion angle {)., 
flapping angle /3, lagging angle (, and blade tor­
sion angle Bb. 

Axis of 
Rotation 

Control Input 

Figure 1: Model of the Rotor Blade [4] 

Although the dynamic model is not capable 
of predicting nonlinear aeroelastic effects such 
as flutter, it has been demonstrated in [8] that 
the consideration of only the first bending mode 
shapes is sufficient for the investigation of typical 
flight characteristics. 

Let us now take a closer look at the derivation 
of the governing equations of blade motion. The 
equations are deduced from the momentum bal­
ances at the hinges. The outer moments ( aerody­
namic moments m1 and mass moments of inertia 
mm) are in equilibrium with the inner moments 
(spring moments mr and damper moments md), 
which leads to 

ffiJ; + ffim; + illf; + md; = 0 (1) 

for an individual hinge i, each one representing 
a degree of freedom. 
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The aerodynamic force and moment of the 
rotor blade can be obtained in several ways with 
an increasing degree of complexity. The eas­
iest way to determine the aerodynamic forces 
and moments is by means of the blade-element 
theory. This approach is described in detail by 
Buchtala in [1]. The aim of the present approach 
is to provide these forces and moments by solving 
the complete inviscid flow field around the rotor 
blade. How this is done will be outlined later in 
the section 'Aerodynamic Analysis'. 

If we consider, for the moment, the inviscid 
:flow field to be known, the demanded aerody­
namic force and moment with respect to the 
quarter chord point at the blade root, QC, is 
given by 

flqc = JJ pdn 
s 

mlqc = J J rqcp x p dn . 
s 

(2) 

(3) 

The integration is carried out over the entire 
blade surface S with the pressure p acting on 
the surface at point P. rqcp is the coordinate 
vector pointing from QC to P. 

REMARK 1 No matter how the aerodynamic 
forces and moments are determined, each of 
these methods needs as a basic requirement the 
velocity of arbitrary points on the blade. The 
velocity-winder of the quarter chord point at the 
blade root, relative to the rotating rotor hub sys­
tem, can be expressed as 

n 

vqc = 'L:w; x r;qc 
i::=l 
n 

wqc = 'L:w;. 
i=l 

(4) 

(5) 

Here r ;qc is the position vector from the hinge 
i to the quarter chord point, w; is the vector of 
the angular velocity - the derivative of the de­
gree of freedom - at hinge i. The summation is 
carried out over n degrees of freedom. In fact, 
the position of the rigid blade and the velocity­
winder defined by Equations ( 4) and (5) consti­
tute the first part of the interface in the fluid 
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structure coupling process. With the velocity­
winder known, the velocity of any point P, hold­
ing a fixed position relative to QC, can be calcu­
lated using 

vp = vqc +wqc x rqcp. (6) 

The mass moment of inertia is defined as 

mmQc =-Iff rqcp x bdm. (7) 
v 

The derivation of the acceleration vector b and 
the subsequent integration (7) involves quite te­
dious computations. The details can therefore 
be found in [1]. 

The dynamic model of the blade uses springs 
and dampers to simulate the elastic properties of 
the blade. The resulting inner moments at the 
hinges are expressed as 

mri = -cri · Ji 

IDcti = -Cdi . Oi 

(8) 

(9) 

with 15; representing the ith degree of freedom. 

Introducing Equations (3), (7), (8), and (9) in 
(1) the resulting second-order system of ordinary 
differential equations reads 

After transforming this system of second-order 
differential equations into an equivalent system 
of first-order differential equations, it can be 
solved by standard integration schemes. Here 
we used the explicit fourth-order Runge-Kutta 
method. 

REMARK 2 It should be emphasized that the 
aerodynamic forces and moments themselves de­
pend on 15 and 8 (see Remark 1). However, they 
are explicitly shown since they represent the sec­
ond interface between the dynamic and the aero­
dynamic solution procedures. 

During the process of numerically integrat­
ing Equation (10) over a rotor revolution, the 
right-hand side F has to be evaluated several 
times. This is the most time-consuming part 
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of the solution process, since this evaluation im­
plies solving the governing equations for invis­
cid flow fields, i.e. the Euler equations. It is 
therefore of great importance to keep the num­
ber of evaluations of F as small as possible. A 
straightforward implementation of the fourth or­
der Runge-Kutta method requires four evalua­
tions of F, and therefore of fiQc and mlQc, for 
a single time step. Since this would be compu­
tationally unreasonable, the following approach 
was adopted: The first evaluation of the right­
hand side per time step is done exactly. All other 
evaluations ofF use an extrapolation of the aero­
dynamic forces and moments from the previous 
time steps, whereas the relatively cheap compu­
tations of the other terms on the right-hand side 
due to the mass moments of inertia are still done 
exactly. The benefit of this approach is that the 
results, using a time step sufficiently small for 
the aerodynamic analysis, differ with less than 
0.01% in magnitude and that the computational 
time is reduced to a fourth. 

Aerodynamic Analysis 

The Euler solver has been extensively described 
in [10] and is shortly summarized here. 

The Euler equations are formulated in body­
fitted coordinates in a rotating frame of refer­
ence, which is attached to the z-axis, represent­
ing the rotor shaft: 

(11) 

The vector of the conservative variables, multi­
plied by the cell volume, is given by 

"'= v- (p, pu, pv, pw, e) . (12) 

The velocity and energy are given in terms of ab­
solute velocities. 

The time integration is performed by a second­
order three point backward-difference scheme. 
This leads to the following implicit system of 



equations 

3 q,n+1 _ q,n 1q,n _ q,n-1 
2 D.r -2 D.r + 
e{+l + r;+l + g;:+1 - kn+l = 0 (13) 

which is iteratively solved by the Newton-Meth­
od. This leads to 

[_!_ + ~ (AP. + BP. + CP.- QP.)] D.¢P.+1 = 
AT 3 " ~ ( 

LHS 

+~ ( e( + r;: + g( - kP.)] (14) 

rhs 

where 1-L denotes the index of the subiteration 
within the time step. A, B, C, and Q are the 
jacobian matrices of the fluxes, and the source 
term, respectively. 

The LUSGS (Lower-Upper-Synnetric-
Gauss-Seidel) implicit operator by Jameson 
and Yoon [5], applied by Chen, McCroskey and 
Obayashi [2] to rotating flows, is used for the 
solution of the resulting system of equations. 
It consists of an approximate factorization in 
lower L, diagonal D, and upper matrices U. 
Defining D.,,~,( and V' .;,~,( as forward- and 
backward-differences in the three coordinate 
directions, the matrices are written as 

L =l+!AT ( -Aijk + V',A+ -Bijk + V'~B+ 

-c;_;k + V' <c+) (15) 

D = [I+!Ar (Atk- A;jk + Btk- B;jk 

+Ctk - c;_;k) ]-1 (16) 

U =l+1Ar (Atk +A.; A-+ Btk + D.~B-

+Ctk + D.<c-) (17) 

For the chosen time discretization 1 is set to 2/3. 
A simplified calculation of the split matrices can 
be carried out using 

(18) 
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where a, is the spectral radius of A multiplied 
by a factor k 2: 1. 

Since the three matrices consist only of scalar 
diagonal 5 x 5 submatrices, which means that 
only divisions are necessary for the solution, the 
following equation 

L · D · U t:,.¢JJ.+l = -AT rhsP. (19) 

can therefore be solved in three consecutive 
steps: 

t:,."4>* = L - 1 (-AT rhsP.) (20) 

t:,.ifr = n-1 D..7p• (21) 

(22) 

Furthermore it is possible to eliminate the cal­
culation of the split flux jacobians and the sub­
sequent multiplication with D.¢ by applying a 
Taylor expansion to the fluxes [10]. 

The algorithm is completely vectorizable by re­
ordering the grid points and storing them by di­
agonal planes i + j + k = canst. In that way, the 
vector length can also be increased with respect 
to a conventional i, j, k ordering. 

For the finite-volume cell centred scheme, the 
evaluation of the fluxes at the cell faces, which 
appears on the right-hand side, rhs, is done by 
an approximate Riemann solver developed by 
Eberle [3]. The applied low dispersion scheme 
results in third-order spatial accuracy, being 
switched to first-order upwind at discontinuities. 

Fluid Structure Coupling 

Partitioned Procedures 

In order to predict the dynamic response of a 
flexible structure in a fluid flow, the equations 
of motion of the structure and the fluid must be 
solved simultaneously. Since the governing equa­
tions of the fluid flow are highly nonlinear, the 
numerical solution via a fully coupled monolithic 
scheme is a quite difficult undertaking. Alterna­
tively the fluid structure coupling can be accom­
plished by partitioned procedures [6]. This ap­
proach offers several appealing features includ­
ing the ability to use well-established solution 



methods within each discipline, simplification of 
software development efforts, and preservation of 
software modularity. 

The physical interaction between the fluid and 
the structure can be understood in the follow­
ing way [7]. During the time evolution of the 
flow field and the structure, the movement ofthe 
structure induces instantaneously a change in the 
flow. This influence is determined by the loca­
tion and the speed of the flow boundary. Since 
the flow changes, the exerted force on the struc­
ture varies and the movement of the structure 
changes at the same time. Again, this last change 
implies a variation of the flow and the cycle starts 
again. It is obvious that the changes in the flow 
and the movements of the structure are coupled 
phenomena. They affect each other through the 
boundary conditions from structure to fluid and 
surface forces from fluid to structure. The un­
derlying idea of a staggered solution strategy is 
to replace these continuous interactions with dis­
crete ones over a time step from t" to tn+l. If 
we consider the flow field and the structure state· 
to be known at timelevel tn, a straightforward 
staggered algorithm is the following fluid struc­
ture coupling scheme 1 (FSCl). 

--S" 
' 

~ 

Figure 2: Fluid Structure Coupling Scheme 1 
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In the depicted scheme, the superscripts corre­
spond to the timelevel. S, s, F, and f rep­
resent the state of the structure, the bound­
ary conditions for the fluid flow, the state of 
the fluid, and the forces on the structure sur­
face, respectively. The filled arrows - rep­
resent heavy computations with high computa­
tional costs, i.e. updating the state of the fluid 
with known boundary conditions. The hollow ar­
rows --!> represent computations with moderate 
or low computational costs, i.e. advancing the 
structure state, computing the boundary condi­
tions (here: the velocity-winder) for the flow, 
knowing the state of the structure or getting the 
surface force from the known variables of the 
fluid flow. The dashed lines indicate that ad­
ditional information is needed. For example to 
determine the state of the structure sn+l not 
only the forces F have to be known but also the 
previous state of the structure sn. 

If we examine the FSCl scheme more closely, an 
important fact will show up. The coupled sys­
tem is advanced in time within the structure step 
F --!> gn+l. During this phase the flow vari­
ables are held constant, which means that com­
pared to the structure the flow is a little late. 
Since the typical time of evolution for the fluid 
is considerably smaller than for the structure, we 
would prefer the structure rather than the fluid 
to be late. This can be accomplished by the 
FSC2 algorithm [7] shown in Figure 3. Here the 
coupled system is advanced from tn to tn+l dur­
ing the fluid step sn - pn+l. The fluid mani­
fests itself implicitly in the flow. 

Additional attention has to be paid to the fact 
that we use an implicit solver for the fluid flow. 
To start the computation of pn+l, the flow vari­
ables at timelevel n, Fn, but also the bound­
ary conditions sn+l must be known. To cir­
cumvent this problem, the following predictor­
corrector algorithm was adopted. The structure 
state gn+l is calculated with the values of rn 
and sn (predictor step) as it is done in the FSCl 
scheme. Therefore sn+l can be evaluated. Now 
we are able to perform the fluid step and advance 
the flow to timelevel n + 1. With F+l known, 
the structure state snH is calculated (corrector 
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Figure 3: Fluid Structure Coupling Scheme 2 

step). Another advantage of this approach, in 
terms of improved stability, is that the aerody­
namic forces come implicitly into play when the 
structure evolves. 

Implementation Issues 

The coupling of the program modules itself, 
which means the exchange of data between the 
fluid and the structure solver can be established 
in two different ways. 

First, if the source codes of both programs are 
at hand, they can be merged to a single pro­
gram unit. This is obviously the fastest way of 
coupling, since the data has not really to be ex­
changed by the program parts. The disadvan­
tage of this approach is that the modules can­
not be exchanged nor can others be added with 
ease. When calculating a helicopter for exam­
ple, an additional module for the prediction of 
helicopter noise could be considered. 

If we want to retain the advantage of soft­
ware modularity, given by the use of partitioned 
procedures, the programs must keep their inde­
pendence. In this case they have to communi­
cate with each other using routines provided by 
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the operating system. The disadvantage of this 
method is that it's not as fast as the first one. 
This dis ad vantage will no longer be relevant if 
the computational time of a single module is con­
siderably higher than the time needed for com­
munication purposes. We have to assume that 
this is the case if we couple fluid with structure 
solvers by means of partitioned procedures. An­
other disadvantage is the higher administrative 
effort to synchronise the programs. In a mono­
lithic program system this is in any case accom­
plished due to the sequential processing of the 
code. The supreme advantage in working with 
self-reliant programs is that they can be easily 
exchanged or added together with others. 

In the present approach, the coupling is done 
by means of UNIX SVR4 interprocess commu­
nication (IPC) routines. In general there are 
three different ways of IPC: semaphores, :mes­
sage queues, and shared :memory. Here we use 
message queues for synchronisation and data 
exchange - the data to be exchanged (syn­
chronisation flags, forces, coordinates, velocity­
winders) is transfered via strings. Thus we gain 
the advantage that the programs can still work 
with different internal representations of num­
bers, which would not be the case if shared mem­
ory IPC was nsed. 

The fluid and structure parts of the code are 
written in Fortran 90, whereas the interface is 
written in C since it makes direct use of routines 
provided by the operating system. 

Results and Discussion 

Test-Case Definition 

The validation of the coupled codes is done on 
a B0-105 model rotor. The test campaign at 
the DNW, carried out within the framework of 
the European cooperative research project HE­
LINOISE, provides an extensive database for dif­
ferent flight conditions simulated with a 40% ge­
ometrically and dynamically scaled model of the 
B0-105 helicopter [9]. 

The rotor under consideration is a four-bladed 
hingeless rotor with a diameter of 4 m, a root 



cut-out of 0.350 m, and a chord length of 
0.121 m. The rotor blade uses a NACA 23012 
airfoil with the trailing edge modified to form a 
5 mm long tab to match the geometry of the full­
scale rotor. The rotor blades have -8° of linear 
twist, a standard square tip, and a solidity of 
0.077. The nominal rotor operational speed is 
1040 rpm. 

The chosen test-case for the validation of 
numerical results is the low-speed level flight, 
HELINOISE DP-344. This test-case is charac­
terized by an advance ratio of p, = 0.15, a rotor 
thrust coefficient of Ct = 0.00446, and a hover 
tip Mach number of Mah = 0.644. Further de­
tails can be found in [9]. 

The elastic rotor blade is presently represented 
with the two degrees of freedom flapping and lag­
ging for the dynamic part of the coupled proce­
dure. 

The flow field around the rotor blade is dis­
cretized with 65 x 38 x 26 gridpoints. The com­
putational grid in the physical space is shown in 
Figure 4. Using this grid, a performance of 600 

Figure 4: Computational Grid of the Blade 

MFlops is achieved on a NEC-SX4 supercom­
puter, which results in approximately 12 minutes 
computational time per rotor revolution. 

5.7 

Calculation Procedure 

The calculations were performed as follows. 
First, a converged solution for the rotor blade 
was determined with the dynamic solver STAN. 
At this stage of the procedure STAN uses the 
blade-element theory for the calculation of the 
aerodynamic forces. Part of this coupled 2D so­
lution are the Fourier coefficients for f3 and ( 

f3 = f3o + f3lc · cos 'if; + /3ls · sin 1,1> 

+ f32c ·cos 2'1/J + /325 · sin21,1> (23) 

( = (o + (lc · cos 'if; + (ls ·sin 1,1> 

+ (2c · cos 2'1/J + (2s · sin 21,1> , (24) 

and also for the induced velocity 

r "'' r . Wi=Wio+wic' Rcos'f'+Wis· Rsm'if;. 
(25) 

These results can directly be fed into the aero­
dynamic solver INROT to obtain the solution of 
the uncoupled 3D flow field. This is the way we 
did the calculations in the past. Now the re­
sults of STAN serve as initial conditions for the 
fully coupled 3D aeroelastic computation. The 
aerodynamic solver is started with -60° initial 
turn back of the blade in order to achieve a re­
alistic flow field at 'if; = 0° when the coupling 
process starts. The coupling is done over several 
rotor revolutions until a fully converged solution 
is achieved. 

Results 

The criterion for a converged solution is that the 
changes in the blade degrees of freedom from one 
rotor revolution to another do not exceed a cer­
tain limiting value, typically w-6 in the order of 
magnitude. 

(26) 

In Figure 5, the error sum defined by Equation 
(26) is shown for j3 and (. Both fluid struc­
ture coupling algorithms, FSC1 and FSC2, ex­
hibit a stable convergence behaviour. This is 
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Figure 5: Transient Error Development 

achieved through a special numerical damping of 
the starting conditions from one rotor revolution 
to the next. Indeed, if a subsequent revolution 
was started at 7/J = 0° with the unmodified values 
of {3 and ( at 7/J = 360° there will be no conver­
gence at all. The damping factor is adapted to 
D.~ in such a way that the damping is reduced to 
zero when the solution gets converged. 

Figure 6 gives an exemplary comparison of the 
converged solutions for {3, using the FSCl and 
FSC2 schemes. It becomes clear that the con-
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Figure 6: Comparison of Staggered Procedures 

verged solution is almost exactly the same for 
both schemes. This behaviour is also the same 
for ( and any other solution variables. It is 
not yet tested if this situation will remain un­
changed when additional degrees of freedom or 
different flight conditions are taken into consid­
eration. However, relating to the discussion in 
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the section about 'Partitioned Procedures' the 
author strongly recommends the use of FSC2. 

Finally, Figures 7 and 8 present the conver­
gence history of {3 and (. Good convergence be­
haviour is in any case achieved after four consec­
utive revolutions. 
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Figure 7: Convergence Study of Flapping 
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Figure 8: Convergence Study of Lagging 

Now we will focus on the question, how the dy­
namic behaviour of the rotor blade will change if 
we solve the complete three-dimensional, invis­
cid flow field instead of using 2D blade-element 
theory in order to calculate the aerodynamic 
forces acting on the blade. Figure 9 illustrates 
the variation of {3 over 7/J for both cases. It is 
obvious that the amplitude changes drastically 
if the 3D Euler solver is used. This tendency can 
also be seen if we take a look at the correspond­
ing Fourier coefficients. 
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Figure 9: 2D vs. 3D Aerodynamic Modelling 

f3o (3" (3, (3,, (3,, 
2D 1.867 - 0.243 0.266 - 0.069 - 0.000 
3D 1.774 0.007 0.053 - 0.089 -0.030 

The oth harmonic coefficient decreases about 
only 5%, whereas the pt harmonic coefficients 
decrease about 97% in f31c and 80% in f3Is· In 
light of the fact that the experimental rotor op­
erated with zero flapping (due to cyclic pitch 
control), this experimental handicap is now re­
produced a Jot better. 

Figure 10 shows the above mentioned compar­
ison for the second degree of freedom, (. The 
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Figure 10: 2D vs. 3D Aerodynamic Modelling 

lagging angle is less affected by the dimensional­
ity of the aerodynamic modelling, which is quite 
obvious if we take a look at the following table. 

(o (,, (,, (,, (,, 
2D - 0.780 - 0.150 - 0.005 0.010 - 0.004 
3D - 0.803 - 0.192 0.030 0.013 - 0.002 
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Comparisons between the experimental chord­
wise pressure distributions and calculated results 
are presented in Figure 11 for various azimuthal 
and radial positions. Very good agreement be­
tween predicted and measured distributions is 
observed in most cases. In cases with more or less 
significant deviations from flight data ( ..P = 90° 
at 97%, ..p = 180° at 97%, ..p = 270° at 75%) the 
coupled results tend to be closer to the experi­
mental data. 

A better agreement will probably be achieved 
if a more sophisticated modelling of the wake and 
a finer grid is introduced. Both concerns will be 
dealt with in future work. 

The resulting inviscid forces and moments at the 
blade are obtained when the pressure is inte­
grated over the blade surface, see Equations (2) 
and ( 3). They are shown in Figure 12 over a 
rotor revolution. 

The origin ofthe underlying coordinate system 
is the quarter chord point at the blade root. The 
x-axis points towards the trailing edge, the y­
axis to the blade tip, and the z-axis upwards. 

Except for jy, the results obtained with the 
coupled 3D Euler analysis cannot be achieved 
by other methods, nor by the uncoupled 3D 
Euler solution neither by the coupled 2D 
blade-element approach. Due to the two­
dimensionality of the blade-element approach, 
/y cannot be investigated and is therefore zero. 
The large differences in my stem from the fact 
that the computational grid for the Euler cal­
culations was designed without tab. To capture 
the effects of the tab accurately, it has to be re­
solved with a very fine grid spacing in its imme­
diate vicinity. Furthermore, viscous effects in the 
flow should then be accounted for by the use of 
a Navier-Stokes solver. 
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Figure 12: Resulting Forces and Moments in the Quarter Chord Coordinate System 
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Conclusions 

In this paper an approach for the coupling of dy­
namic and aerodynamic methods for the calcu­
lation of helicopter rotor characteristics is pre­
sented. The dynamic properties of the rotor 
blades are represented by their first natural 
modes and frequencies, whereas the flow field is 
described by the three-dimensional Euler equa­
tions. 

Two fundamentally different fluid structure 
coupling schemes are discussed and investigated. 
The implementations of the schemes exhibit a 
monotone and stable convergence behaviour dur­
ing the solution process. 

The validation of the aeroelastic system is 
done on a B0-105 model rotor in low-speed level 
flight. The agreement between the experimental 
data and the calculated results is rather good, 
even from a quantitative point of view. Espe­
cially the fully coupled results are in a signif­
icantly better agreement with the experiment 
than the uncoupled calculations. 

Future work will be done on the application of 
the developed methods to other test-cases, es­
pecially high-speed level flight situations where 
shocks occur at the advancing blade. Further­
more, a more sophisticated modelling of the wake 
has to be considered. Therein we will investi­
gate the use of a free-wake model in comparison 
to implicitly capturing the wake by means of a 
chimera technique. 
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