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ABSTRACT 

A lifting surface theory has been developed for a helicopter 
rotor in forward flight for compressible and incompressible 
flow. The method utilizes the concept of the linearized 
acceleration potential and makes use of the doublet lattice 
procedure. Calculations demonstrating the application of the 
method are given in terms of the lift distribution on a single 
rotor, a two-bladed rotor, and a rotor with swept-forward and 
swept-back tips. In addition, the lift on a rotor which is 
vibrating in a pitching mode at 4/rev is given. Compressibility 
effects and interference effects for a two-bladed rotor are 
discussed. 

INTRODUCTION 

The aerodynamic environment in which a helicopter rotor 
operates is very severe. In forward flight, the aerodynamic 
loads are time dependent and the wake from preceeding blades 
induces large interference effects. In high speed flight, the 
retreating blade usually stalls. The resulting dynamic loads 
plus others are acting on a long slender blade inducing high 
dynamic stresses and vibration modes. 

The standard procedure for predicting the airloads on a 
rotor blade is to utilize experimentally derived, two-dimensional 
airforces which were obtained through a large range of angles of 
attack up to and through the stalled region. These data are 
usually put in tabular form and used in an iteration procedure to 
determine stability and performance. This process neglects the 
effect of the wake as well as the three-dimensional effects. 
Approximations are usually made to try to correct for the wake 
and the three-dimensional flow effects. 

There are several analytical approaches that can be used to 
predict these unsteady airloads. Two traditional methods involve 
the use of the velocity potential or the acceleration potential. 
Runyan (1973) utilized the acceleration potential approach to 
obtain a solution for the oscillating propeller in compressible 
flow. Suciu et al (1976) have derived an incompressible lifting 
surface theory and applied it to a windmill. The procedure is 
based on the velocity potential method and subdivides the 
integration areas into panels within which a constant pressure 
distribution is assumed. Dat, (1973) has derived a general 
expression for an acceleration doublet for any motion. The 
theory developed by Oat was applied to a helicopter in forward 
flight by Castes (1972). Castes' approach is similar to the 
method given in this paper with the exception of a numerical 
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differentiation procedure which was adopted to obtain the 
downwash velocity from the velocity potential. In the present 
approach, the downwash velocity' expression is obtained 
analytically. Pierce and Vaidyanathan (1983) have treated the 
helicopter rotor in forward flight using the method of matched 
asymptotic expansion for the incompressible case, which was based 
on the work of Van Holten (1975). 

The method presented in this report sets forth a formulation 
of fundamental, three dimensional, compressible, unsteady 
aerodynamic theory for propellers and helicopter rotors in 
forward flight. An inertial coordinate system is adopted and the 
integrations involved in solving the integral equation are 
formulated for arbitrary space-time variations. In this 
formulation, singular terms arise in the integrations, which are 
handled by the finite part technique. 

The paper is divided into three basic sections. The first 
section contains a brief derivation of the fundamental equations, 
which is followed by a section describing a method for solving 
the integral equation. Finally, the method is applied to 
specific examples and the computational results are given. 
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SYMBOLS 

rotor b 1 a de area 
aerodynamic influence coefficients 
Fourier coefficients 
speed of sound 
chord of rotor 
thrust coefficient (thrust/npQ2Rt4) 
where thrust is normal to tip path plane, and is 
positive in positive z-direction 
radius vector from doublet to downwash point 
absolute value of 0 
unit vector of 0 
kernel function 
unit vector at downwash point, norma 1 to 
velocity vector surface 
unit vector at doublet point, normal to 
velocity surface 
pressure 
position vector of doublet from inertial frame 
origin 
position vector of downwash point from inertia 1 
frame origin 
source or doublet strength 
rotor tip radius 
rotor root radius 
distance to downwash point along the span 
distance to doublet along the span 
distance to doublet along span at singular 
point time 
field time 
velocity of rotor system, parallel to x-axis, 
positive in negative x-direction 
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x,y ,z 
Xo,Yo,zo 

"' "o 
"r 
B 

velocity at downwash points 
resultant velocity normal to blade 
velocity of doublet 
velocity of rotor system, parallel to z axis 
downwash velocity, normal to velocity plane, 
positive down 
Cartesian coordinates of downwash point 
Cartesian coordinates of doublet position 
twist angle at downwash point 
twist angle at doublet position 
angle of axis of rotation re 1 at i ve to z-axi s 

V0 /c 

1 
c <l-r 

angular position of blade at timet (e = nt) 
angular position of blade at time T (e0 = Q-r) 
advance ratio (U/IIRt} 
air density 
source time 
source time at which integrand in Eq. 17 becomes 
singular 
velocity potential 
acceleration potential 
azimuth angle measured from downwind position 
rotation speed of rotor 

BASIC FORMULATION 

The formulation of the aerodynamic equations is based on the 
linearized acceleration potential approach. The fluid is 
considered perfect, with no separation and the formulation is 
based upon the assumption of small perturbations. One reason for 
adopting the acceleration potential approach is that the pressure 
discontinuity occurs only on the surface of the blade and thus 
the boundary conditions need only be applied on the blade surface 
and not throughout the wake. The blade is treated as a very thin 
surface of discontinuity across which a pressure jump occurs. 
The effect of compressibility is taken into account by utilizing 
the complete linearized potential for a lifting doublet, along 
with the effects of retarded time. 

As shown in figure 1 an inertial coordinate system has been 
used. The helicopter rotor is moving in the negative x-direction 
with velocity U, in the positive z-direction with velocity W and 
is rotating counter clockwise with a constant angular velocity 
11. A point of interest on the rotor blade is designated by the 
vector X0 (-r) from the origin of the ground based coordinate 
system. 

Let ¥ be the acceleration potential of a source (or 
doublet},the perturbation pressure is then given by 

p = -p¥ 

This expression represents the pressure p at point X due to a 
+ 

single source (or doublet) located at X0 • The potential ¥ 
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contains a constant "q" which represents the strength of the 
source and thus the magnitude of the pressure. In this form, 
there is no boundary condition available to determine the value 
of the arbitrary constant "q" and the resulting pressure. 
Recourse can be made to the velocity potential, since the spatial 
derivative of a velocity potential represents a velocity. The 
relationship between the pressure and velocity potential for an 
inertial coordinate system is 

p = -~ (2) 

h Q1 . h w ere Dt 1s t e 
order terms and 
in 

substantive derivative. Dropping out the second 
integrating with respect to observer time results 

q,(t) = ft '!'(t 1
) dtl (3) 

t 
/::.W = _£.2 = _2 f '!' dt 1 dA 1 (4) 

n an an_oo .. 
The right hand side of Eq. (4) represents an induced velocity 

in the direction n due to a moving source (or doublet) of 
strength q where q is contained in the expression for '!'. By 
summing the contribution of all doublets distributed over the 
rotor, the induced velocity along nat the downwash point can be 
represented as 

t 
w = f t::.w dA 1 = f .L f '!' dt 1 dA 1 

n n an (5) 

The left hand side, w0 , represents the known boundary condition 
and is the velocity normal to the velocity vector at the downwash 
point. Thus the problem resolves itself into setting up a method 
of solution of equation (5) from which the values of q, the 
unknown, can be determined which satisfy the known velocity 
boundary conditions wn· The next section contains the 
development of the expression for an acceleration doublet 
potential. 

Acceleration Potential of a Doublet in Compressible Flow 

The acceleration potential '!'s must satisfy the wave 
equation 

where f(X,t) is a source distribution. Furthermore, if the path 
of an isolated source is a function of time X0 (t), then 

+ + + 

f(X,t) = qo(X - Xo(t)) where o is the Dirac delta function. 
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Using the Green's function formulation the acceleration 
potential expression for a moving source, o/s can be written as 
(Morse and Feshbach, 1978, page 841) 

( 6) 

where X0 (-r) designates the position of the source at time -r, 

X is the position of the field point at the time t, V0 {-r) is 
the velocity of the source point at time t, c is the speed of 
sound and q is the strength of the source. An auxiliary 
equation which relates the time interval (t - -r) to the distance 

t - ' = (7) 
c 

which is usually referred to as the causality condition. Eq. (6) 

expresses the potential as function of '• and only though Eq. {7) 

as an implicit function of t and X. 

From Eqs. (3) and (6), the velocity potential due to a 
moving source is 

t 
~ (t) = J o/ (t I) dt I 

S _
00 

S 

t 
= J 

1 T q(~') 
=411 J ~dt', 

-oo 

4TrlD - 0 

where 0 = X - X , D = j Dj and dt ' = [1 - 0 ~ i3] dt '. The 
quantities ,•, t' and t, -r satisfy eq. (7). 

(8) 

A source potential cannot be used to produce a pressure 
difference across a lifting surface. However, a doublet does 
contain the proper form of the singularity on the surface to 
provide a jump in pressure over such a lifting surface. The 
expression for a doublet potential can be obtained by taking the 
derivative of a source potential in a direction normal to the 
airfoil surface. If n0 designates the normal to the airfoil 
surface, then 

V+ ~ 
x "'s 

(9} 

Eq. (9) was also derived by Oat (1973) in a different fashion. 
Note that for incompressible flow, c + oo, the first term + 0 and 
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The integral remains unchanged except for the upper. limit where 
T = t. 

To obtain the final equation for downwash AWn, a second 
directional derivative is required. This derivative is taken 
normal to the flight path at the location of the downwash point, 

This leads to 

AWn " 2 , 
41lc0 [l-D 

++ 

S n 
A D + + 
D - c . "o n 

aJ [
til • 

A 

( 1 - D • B) 

1 
+41T 

D n • 0[1-s + c • ~ J '+ • 2 o t J 

Dj 

A 

D +n 1: 
. ~ - ( 10) 

This concludes the derviation of the basic equation for the 
downwash AWn at a field point created by an arbitrarily moving 
doublet. In the present application, the term containing q was 
not used in the subsequent calculations. It can be argued that 
the ratio of the q term to the fifth term in the first bracket is 
nD/C which is small unless the frequency, n, is very large which 
might be true in other applications such as acoustics. The 
remaining portion of the paper is directed towards specializing 
this equation for a helicopter blade, moving with a forward 
velocity U, a vertical velocity W, and rotating with angular 
velocity n. 

Equation (10) gives the downwash at a field point (x, y, z, 
t) due a doublet placed at a point (x0 ,y0 ,z0 ,T) having a 
strength q. In order to form a lifting surface such as a rotor, 
it is necessary to distribute the doublets over the lifting 
surface and integrate over the surface to obtain the downwash at 
a field point. If the downwash is known, the quantity "q" then 
can be determined. Letting K be the expression on the right hand 
side of equation (10), the final equation is 

w = jj K dA' 
n A, 

( 11) 

where A' is the area of the rotor surface. This represents a 
rather formidable computing task and the history of lifting 
surface theory even for non-rotating wings has centered on 
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devising approximate methods to accomplish the integration in an 
economical manner. One method, termed the doublet lattice 
method, has been very successfully applied to aircraft wings, and 
is probably the more economical procedure of the many variants. 
This method was first demonstrated for the unsteady case by 
Runyan and Woolston (1957) and was later expanded by Albano and 
Rodden (1969). This is the method adopted in this paper and the 
application will be discussed later. In the next section the 
coordinate system is specified and the doublets and downwash 
points are appropriately located for a helicopter rotor in 
forward flight. 

Specification of Coordinate System 

The blade has the cord C and length Rt - Rs, 
Rs being the radial distance to the the root of the blade, 
Rt is the distance to the tip of the blade. The blade executes 
a counterclockwise rotation with angular velocity n while 
moving with velocity U along the negative x direction 
and W along the positive z direction. Since the doublet 
lattice method has been adopted, for one chordwise panel, the 
doublet point lies 1/4 C ahead and the downwash point lies 1/4 C 
aft of the midchord. The position of the doublet point as well 
as the downwash point can be established as follows. The 
Cartesian components of the doublet position are 

x0 = -UT + r0 cos(nT) - (C/4) sin(QT)cosa0 
Yo = r 0 sin(nT)+ (C/4) cos(QT)cosa0 (12a) 
z0 = WT + (C/4) sin a

0 

where r0 is the radial distance of the doublet along the span. 
With the substitution of C + -C, r0 + r, T + t the position 
of the downwash point is given by 

x = -Ut + r cos(nt)+ (C/4) sin(nt)cos a 
y = r sin(nt)- (C/4) cos(nt) cos a 
z = Wt - (C/4) sin a 

In eqs. (12), the angles a,ao are the twist angles of 
the velocity vectors V and V0 , respectively, defined by 

tan a = w 
u sin(nt)+ rn 

tan a = w 
0 u sin(nT)+ ron 

The vector D = X-X0 defined in Eq. (8) can be expressed as 

D = {[U(t-T) + r cos(r.t)- r
0 

cos(QT)+ (C/4)(sin(nt)cos a+ 
sin(nT)cos a

0
)]2 

(12b) 

(13) 

+ [r sin(nt)- r
0 

sin(nT)-(C/4)(cos(nt)cos a+ cos{nT)cos a
0

)]
2 

+ [W(t-T) -(C/4)(sin a
0
+ sin a )]2} 112 
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The integral equation was solved for the unknown q(r0,T) by 
using a collocation process based on the doublet lattice 
assumption. The kernel is singular when 0 = 0, and this was 
handled by use of the finite part technique. 

SOLUTION OF INTEGRAL EQUATION 

Equation (11) states that doublets of strength "q" are 
distributed over the area of the rotor surface A' and the induced 
velocity normal to the blade surface is equated to the normal 
velocity of the blade, wn, where wn is the boundary condition 
on the blade surface and is a known quantity. Thus, the only 
unknown in the integral equation is the strength of the doublet, 
q. As mentioned previously, one method for obtaining a solution 
to this equation is termed the doublet lattice method, and is the 
method used in this report. It has been used successfully for 
the wing in pure translational motion. One of the advantages of 
the doublet lattice method is that it eliminates the chordwise 
integration, thus reducing computing costs. The reduction is the 
result of a judicious choice of the location of the doublet and 
the downwash points. 

Doublet Lattice Technique 

In following the doublet lattice technique the rotor is 
divided into a number of panels, both spanwise and chordwise. 
In each panel, a line of doublets of unknown strength qi is 
located at the 25% chordwise location of the particular panel, 
and the downwash is evaluated at the point located at 75% 
chordwise location and midspan of the panel. The problem then 
resolves itself into performing an integration from rt to ru 
for the vortex located at C/8 for the downwash point located in 
the middle of the spanwise panel at (3/S)C (wn=wl) and the 
effect of the same vortex must be determined for the downwash 
located at (7/8)C (wn = w2l· A similar calculation is made 
for all the remaining vortices including lateral distances. 
Therefore, a collocation procedure is used to obtain a set of 
equations in terms of the unknown loadings Qi· 

The term q(r0 ,•) represents the strength of the doublet 
located at r0 and at time '• and is proportional to the unknown 
loading. Within a particular panel, q is assumed to be constant 
in the spanwise direction. In order to account for unsteadiness, 
a solution was formulated to take into account the time variation 
of the strength of the doublet. The time variation of q is 
represented by assuming a Fourier series of the form 

m 
q(r

0
,•) = A

0
(r

0
) + t (An(r

0
)cos(nnT) + Bn(r

0
)sin(nn•)) (14) 

If q(r0 ,T) is assumed to be a function of r0 alone, which 
means that the doublet strength does not vary with time, the· 
Fourier series reduces to q(r0 ) = A0 • A solution obtained 
with this approximation is termed the quasi-steady solution. 

This series was inserted in the basic equation (Eq. (11)) 
and integrated with respect to •· However, there were more 
unknowns than simultaneous equations to solve for the unknowns. 

24-8 



The additional required equations were obtained by evaluating 
Eq. {11) at a number of azimuth. locations. For instance if m = 
1, then 

The azimuth was divided into equal segments of 1200 and the 
proper boundary conditions applied at IJl = oo, 1200, and 
2400 thus providing the necessary additional equations. 

A set of equations is thus obtai ned as shown be 1 ow 

w1 = All q1 + A12q2 + ... A1mqm 

w2 = A21q1 + A22q2 + ... A2mqm 

w = n An1q1 + An2q2 + ... Anmqm 

ru 
where Anm = J Knm dr0and where n refers to the downwash 

r.£. 

{16) 

point and m refers to the panel number. The rotor can be divided 
into any number of segments both chordwise and spanwise, with 
more segments resulting in more accurate results. However, the 
computing time and costs increases rapidly (roughly proportional 
to the square of the numbers of segments) as the number of 
segments is increased, thus a balance must be considered in any 
given situation, .trading computing costs with desired accuracy. 

Numerical Integration of Kernel 

A closed form integration of the kernel has not been found, 
therefore the integration was performed by numerical integration, 
except for the area surrounding the singularity. The integral 
over areas not containing the singularity were computed 
numerically using two-dimensional Romberg quadrature {Davis and 
Rabinowitz, 1984) and the contribution of the singular region was 
obtained in closed form by consideration of the finite part as 
shown in the next section. 

Treatment of Sin ular Term in Inte ral - The integral in the 
downwash equation, Eq. 10 , is singular when D+O and produces a 
complication which must be properly treated. It should be 
remembered that the integration path along "T" is the path the 
doublet has taken in arriving at the final doublet point at (c/4, 
r0) measured in the local blade coordinates. The integration 
takes place along the path from T=-~ to the final doublet 
position at T0 • The distance D is the distance from the 
integration point at time T to the downwash point at X. 

There is a particular set of values of r0 and T for which· 
the denominator D approaches zero, thus resulting in an infinite 
integrand. The singular part of the kernel is 
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-+- -t- .... -+- .... + 
n•n - 3(D•n)(D • n ) 
--~0~--~~----~0 dT dr 03 0 0 

(17) 

As D+O at the downwash point, D becomes perpendicular to n, 
therefore, at the singular point, the second term is zero and 
will be neglected in the treatment of the singularity. However, 
this second term is retained in all of the numerical integrations 
since it represents an important interference term, particularly 
when the blade is passing over a trailing wake. 

APPLICATION TO SPECIFIC EXAMPLES 

The foregoing analysis has been applied to several specific 
examples which are given in Fig. 2. The following section 
presents results for several paneling configurations;.e.g. 5 
spanwise and 1 chordwise panels (designated (5-l)) and 7 spanwise 
and 3 chordwise (designated (7-3)). The untwisted rotor blade 
was maintained at a constant pitch setting of eB = 0.1 radians 
for all the calculations. Although the spacing of the paneling 
can be arbitrary, the paneling arrangements used in all following 
examples are uniform except for the swept tip cases where the 
arrangement is described. 

Incompressible Flow 

Single Blade 

In order to investigate the convergence of the method when 
using the doublet lattice procedure, the program was run for 
several chordwise and panwise elements for the incompressible 
case. The thrust coefficients CT vs. the azimuth angle is 
shown in fig. (3). (In all of the follow plots for thrust 
coefficient vs. azimuth angle, the thrust was calculate for 16 
uniformly spaced azimuth angles and each curve was faired using a 
cubic spline). The rotor was first divided into 5 spanwise and 
one chordwise panel (5-l) and the results are shown by the solid 
line. The chordwise divisions were increased to (5-2) and the 
results are shown by the long dasned line. It can be seen that 
very little change has taken place. The spanwise divisions were 
increased to (7-1) and the largest change between various 
paneling schemes occurred at ~ = oo where the difference in 
CT is about 11%. Increasing the chordwise divisions to 3 (7-3) 
produced a little change from the (7-1) case. 

An interesting phenomena occurs in the rotor first 
quadrant. For ~=0 to 370, the lift increases to a local 
maximum at ~=370 then the lift abruptly falls to a local 
minimum for ~=600 and then rapidly increased to a maximum at 
~=1000. A similar phenomenon is shown analytically by Egolf 
and Landgrebe (1983) in Fig. 60 of that report where a local 
minimum and a local maximum occur in the same range of azimuth 
angles, even though the geometry of the two blades and the flight 
conditions are different. Also, in Fig. 93 of the same report 
some test data shows a similar variation of loading in the same 
azimuth range. 

The chordwise pressure distributions for the (7-3) case are 
presented in figure 4. It should be remembered that in using the 
doublet lattice method, the loading is concentrated at the 
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location of the doublet which for the (7-3) case is located at 
0.0833C, 0.416C, and 0.75C. The pressure was faired using a 
cubic spline through the three vortex locations and the known 
value of zero at the trailing edge. The distributions are given 
for 7 spanwise positions. In general, the curves exhibit the 
expected shape, having the largest values as the leading edge is 
approached. For the span distribution the values at r/RT = .85 
are slightly larger than the values at r/RT = 0.95, indicating 
a falling off in the tip region. 

Swept Tip 

The segments used for the doublet lattice for the swept tip 
studies were(5-1}, where two equal segments were used in the tip 
region and three equal segments were used in the unswept inboard 
section. In Fig. 5 the lift is shown plotted against azimuth for 
the two sweep conditions and for zero sweep. In general, the 
three results show little difference. The sweptback 
configuration has the largest lift from w ~ 3000 to 400. For 
w ~ 1000 to 2400, the swept forward configuration has a 
slightly larger lift than the other configurations. It appears 
that the total lift for one rotation for the swept-back case and 
the sweptforward case would give about the same lift as produced 
by the unswept rotor. In Fig. 6 the lift distribution along the 
rotor span is given for w = oo. The major effect of sweep is 
concentrated at the tip, where the swept-back tip load is greater 
than either the unswept or sweptforward cases. In contrast, for 
w = 180°, Fig. (7} shows the swept forward tip load to be larger 
than for the unswept or sweptback tip. 

Blade Oscillating in Pitch 

An example of unsteady loads on a rotor blade with (5-1} 
paneling which is oscillating in a pitching mode about the 
mid-chord at a frequency of 4 per revolution (120 cycles/sec) is 
given on fig. 8. For this case a 17 term Fourier series (m=8} 
was used to simulate the oscillating load, which was comprised of 
one constant term, 8 cosine terms, and 8 sine terms. The 
non-oscillatory and oscillating rotor blade loading is given for 
one revolution. The blade was oscillated through an angle of 
±0.1 rad. about a mean angle of 0.1 rad. The effect of the 
oscillation is readily apparent as compared to the 
non-oscillatory case. With the harmonic representation of the 
loading, the magnitude and phase of the several harmonic loads 
are easily determined. The magnitudes are plotted in Fig. 9. 
The only harmonic loads that were significantly changed from the 
steady case were the 3rd, 4th and 5th. Both the 3rd and 5th 
harmonics were increased and the 4th harmonic was dramatically 
increased. Another calculation was made for the non-oscillatory 
case and compared to the quasi-steady case. Virtually no 
difference was observed, indicating that, at least for this case, 
the rate of change of loading in a revolution of the blade is 
small enough so that the effect of a variable wake is negligible. 

Parametric Study Involving Horizontal Velocity U and Vertical 
Velocity W 

In the next two figures, results of a parametric study 
involving variations of the horizontal velocity U and the 
velocity W are given. In figure 10, the thrust coefficient CT 
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is plotted against azimuth angle for a constant horizontal 
velocity U = 100 ft/sec. and for several values of the vertical 
velocity W. (It should be recalled that in the coordinate system 
used in this paper, the rotor blades rotate in a plane parallel 
to the horizontal plane and move in the negative X-direction with 
velocity U and moves vertically with velocity W. Therefore, the 

total forward velocity is IUZ + W and if this total velocity is 
taken as horizontal, the tip path plane is tilted by 

"'r = tan ( ~ • ) For positive values of W, the tip path plane is 
such that a propelling thrust is created, whereas a negative W 
would represent a stopping or retarding thrust. The largest 
values of Cr are found for the negative W which is to be 
expected si nee negative va 1 ues of W represents an increase in 
blade angle of attack. Note that the notch in Cr that occurs 
in the range of 1J! = 45° to 60° for W = -5 ft/sec. to +10 but does 
not appear for W = 20ft/sec. In general, there is an orderly 
progression in Cr as the values of W are changed. 

In figure 11, where Cr is plotted against azimuth angle, 
the forward velocity was varied from U = 100 ft/sec. to U = 10 
ft/sec. Contrary to the previous figure, the results for the 
three horizontal velocities show significant differences. For 
instance, for U =100ft/sec., Cr is substantially greater than 
for U =50 or 10ft/sec. in the range of 1J! = 90 to 120°, whereas 
in the range of 1J! = 200° to 300°, the thrust coefficient is the 
lowest for U = 100 ft/sec. 

Compressible Flow 

One-Blade Rotor (5-1) 

For a one-bladed rotor, the effect of compressibility is 
illustrated in Fig. 12, in which the Cr is plotted against 
azimuth angle. The incompressible result is included for 
comparison. As expected, the compressible load is larger than 
the incompressible throughout one revolution. The effect is 
greatest in the region of the advancing blade and smallest in the 
retreating region as would be expected. 

Two-Bladed Rotor (5-1 per blade) 

The method has been extended to the two-bladed rotor for the 
compressible case and the results are shown in Fig. 13. The 
thrust coefficient Cr. per blade is given vs. azimuth angle for 
a single bladed rotor and for a two-bladed rotor. For azimuth 
angles from 1J! = 200 to 1200 the single-blade rotor has a 
larger Cr. For 1J! = 1200 to 260°, the Cr on the one-and 
two-bladed rotors are approximately the same. However, for 
1J! = 2600 to 3400 a dramatic reduction in lift per blade 
occurs for the two-bladed rotor as compared to the one bladed 
results. The lowest lift occurs at 1J! = 2920 which places the 
other blade of the two-b 1 aded rotor at 1J! = 1120, the point of 
maximum lift on the other blade. Apparently the high lift on the 
blade at 1J! = l120 creates a very unfavorable induced velocity 
on the second blade at 1J! = 2920 which requires the loading to 
go to zero in order to satisfy the boundary conditions at 
lj! = 2920. 
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Comparison of Theory with Experiment 

In figure 14, a comparison between the present theory and a 
model experiment, reference Meyer et al, 1953, is given. The 
experiment employed a two-bladed rotor. The rotor radius was 2.5 
ft., the chord was 1/4 ft. and the rotation rate was 83.8 
radius/sec. The forward velocity was 45.8 ft/sec. No cyclic 
pitch was induced. The lift force on each blade in pounds/in. is 
plotted against span position. For the blade located at ~ = 
150°, the theory is about 9% lower than the experiment in the 
neighborhood of the peak load. For ~ = 330°, the agreement is 
excellent. Thus it appears that the theory appears to be 
adequate for predicting airloads. 

CONCLUDING REMARKS 

A linearized lifting surface theory including the effects of 
compressibility has been developed for a helicopter rotor in 
forward flight. The method utilizes the concept of the 
acceleration potential, and makes use of the vortex-lattice 
procedure for performing the required integrations. In addition, 
the method has been extended to include the effects of unsteady 
flow, and blade deformation. 

Sample calculations have been done for several cases. These 
include the effect of a swept-back and a swept-forward tip. The 
effect of these two tip configurations was minimal on the total 
loading for one revolution. However, the loading distribution 
changed considerably for several azimuth positions. 
Compressibility was investigated for one configuration. As 
expected, the effect was greatest in the advancing blade region 
(o/ = 900) and was minimal in the retreating blade region. A 
comparison of the thrust coefficient, Cr, of a one bladed rotor 
and a two bladed rotor was made. In the azimuthal range between 
200 and 1200, the one bladed rotor showed higher lift. 
However between 1jl = 2600 to 3400 the two bladed rotor 
indicated a lower Cr. The effect on Cr of a blade 
oscillating in pitch at 4/rev is given. The effect on the total 
blade lift is shown and the effect of the oscillation is readily 
apparent. The harmonic content was calculated and the greatest 
difference between the oscillatory and non-oscillatory cases was 
found in the 4th harmonic. 

Finally, a comparison between the present theory and an 
experiment for a two bladed rotor is given and the agreement was 
found to be excellent. 
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