
FOURTH EUROPEAN ROTORCRAFT AND POWERED LIFT AIRCRAFT FORUM 

Paper No. 21 

~~ EXPERIMENTAL STUDY OF COUPLED ROTOR-BODY 

AEROOJECHANICAL INSTABILITY OF HINGELESS ROTORS 

It\ HuVER 

WILLI~'! G. BOUSc!AN AND DEWEY H. HODGES 

Aeromechanics Laboratory 
U.S. Amy Research and Technology Laboratories (AVRADCOM) 

Ames Research Center 

Moffett Field, California 94035, U.S.A. 

September 13-15, 1978 

STRESA - ITALY 

Associazione Italiana di Aeronautica ed Astronautica 
Associazione Industrie Aerospaziali 





AN EXPERIMENTAL STUDY OF COUPLED ROTOR-BODY 

AEROMECHANICAL INSTABILITY OF HINGELESS ROTORS 

IN HOVER 

William G. Bousman and Dewey H. Hodges 
Aeromechanics Laboratory 

U.S. Army Research and Technology Laboratories (AVRADCOM) 
Ames Research Center 

Moffett Field, California 94035, U.S.A. 

SUMMARY 

A 1.62-m diameter, three-bladed rotor model was tested in hover to 
examine aeromechanical stability of coupled rotor-body systems. Excellent 
modal frequency data and good lead-lag regressing mode damping data were 
obtained over a wide range of rotor speeds. Damping data for the body 
modes were not satisfactory due to nonlinear damping of the gimbal ball 
bearings. Simulated vacuum testing was performed with circular cross 
section blades made of tantalum, which resulted in a Lock number 0.2% of 
the aerodynamic value. The experimental data were compared with theoreti
cal predictions, and the overall agreement was very good. 

1. Introduction 

Soft inplane hingeless rotor helicopters are susceptible to aero
mechanical instabilities in hover and on the ground, commonly known as air 
and ground resonance. Instabilities of this type occur when the rotor lead
lag regressing mode and a body pitch or roll mode become proximate or 
coalesce. The classical condition of ground resonance as analyzed by 
Coleman and Feingold (Ref. 1) for articulated rotors is a purely mechanical 
instability, and as such represents a restricted class of problems where 
coupling between the rotor and body can be simply represented and the effects 
of aerodynamics ignored. For the hingeless rotor helicopter, however, 
coupling between the rotor and body is quite complex, and the rotor aero
dynamics significantly affect system stability. A number of mathematical 
models of aeromechanical stability have been developed (Refs. 2-4) and these 
have been used in the design of helicopters with soft inplane rotors. In 
addition, Boeing Vertol has used small-scale development models to investi
gate parameters affecting aeromechanical stability (Refs. 5-6) and thereby 
gained confidence in their analyses. Despite these efforts, a comprehensive 
understanding of aeromechanical stability has not been achieved. 

The complexity of coupled rotor-body systems suggests that a valid 
mathematical model is required in the development of any hingeless rotor 
helicopter. Although useful in the design and development of a rotorcraft, 
such a model may be overly cumbersome for use as a general research tool. 
In particular, if a broad, fundamental understanding of coupled rotor-body 
stability is desired, then a simplified analytical model is required that 
can adequately represent the essential features of the coupled rotor-body 
problem, but is flexible enough to allow wide parameter variation. This 
is the rationale used by Ormiston in developing the theoretical model dis
cussed in Ref. 7. The same distinction exists between an experimental model 
used in the development of a new rotorcraft design, and one designed purely 
as a research tool (e.g., Ref. 8). 



The present experiment has been designed to use a relatively simple 
experimeptal model in a manner analogous to the theoretical model of Ref. 7. 
The objectives of the experiment are: (1) to obtain a set of data that 
can be used to validate simple theoretical models of coupled rotor-body 
systems, (2) to explore the character of aeromechanical stability of hinge
less rotor helicopters, and (3) to evaluate test techniques suitable for 
rotor-body stability testing. 

The model used in these experiments simulates a hingeless rotor by 
using a rigid blade with a spring-restrained root hinge in the manner of 
Ref. 7. However, the hinge location for the experimental model is offset 
from the rotor center, and as hinge offset is not included in the theoreti
cal model of Ref. 7, the analysis of Ref. 9 is used in the comparison of 
theory and experiment. The theoretical model of Ref. 9, although developed 
for the purpose of examining the aeroelastic stability of bearingless 
rotors, is also capable of treating the present experimental model with 
its high. torsional rigidity. 

The paper contains, first, a discussion of the theoretical model, 
and then describes the design of the experiment, including validation pro
cess requirements, model characteristics, and test procedures. Comparisons 
are then made between theory and experiment, and conclusions are offered. 

2. Analytical Model 

In this section, the analytical model used to represent the experi
mental model is described. The theory is actually based on a more general 
analytical model developed for bearingless rotor helicopters and described 
in Refs. 9 and 10. This discussion includes only elements of the analytical 
model actually used in the study of air and ground resonance stability of 
the experimental model. 

The dynamical system consists of two parts, the body and the rotor. 
The body is assumed to be a rigid body mounted on spring- and damper
restrained hinges in the pitch and roll directions. Translations of the 
body, although present in the analysis (Ref. 10), are ignored for corre
lation with the experimental data. 

A schematic of the body is shown in Fig. 1. Contributions of the 
hub and mast are included in the mass and inertia properties of the body. 
The total mass of the body is mf and the moments of inertia for the mass 
center of the body are Ix and Iy, respectively, for the X and Y 
directions. The aircraft reference center, shown in Fig. l, is a distance 
z above the body mass center and a distance h below the hub center. 
In studying air resonance and ground resonance, in hover and on the ground, 
respectively, vertical translation and yaw rotation of the body are insig
nificant. In this paper, body roll ~x and body pitch ~y degrees of 
freedom are included. Body spring stiffness restrains the 4x and ~y motion. 

The rotor blades are attached to the hub and rotate at constant 
angular velocity Q. The blade has a built-in pitch angle offset relative 
to the flexbeam 8 . A schematic of one rotor blade is shown in Fig. 2. 
The analysis has geen developed to treat different pitch-control configura
tions; however, in the present case the blade is considered to be unre
strained by any form of control system (Fig. 2). In the analysis the 
flexure or strap is treated as a single uniform beam segment. 

21 - 2 



3. Theoretical Analysis 

A complete derivation of the 
equations of motion used in this 
analysis is beyond the scope of this 
paper; the derivation is given in 
Ref. 10. The analysis is based on 
the set of generalized forces due 
to inertia, gravity, body springs 
(when the aircraft is in ground 
contact), quasi-steady aerodynamics, 
and the flexbeam structure. All 
these generalized forces (except 
those due to flexbeam structural 
loads) can be written exactly, 
within these assumptions for the above 
analytical model, and analytically 
linearized about equilibrium. The 
flexbeam equilibrium deflections can 
be calculated through a nonlinear 
numerical iteration process, and 
the flexbeam structural loads for 
small perturbation deflections can 
be determined through numerical per
turbation of the equilibrium solu
tion. These steps lead to a system 
of linear, constant-coefficient, 
homogeneous, ordinary differential 
equations. 

3.1 Generalized Forces 

Fig. l. 
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Fig. 2. Schematic of blade geometry. 

In addition to the rigid-body degrees of freedom ~X' ~ , described 
above, the six degrees of freedom of the kth blade in the rotating system 
may be ex~res~ed as: (1) three translations of the blade root corresponding 
to the n1 , n2 , n~ axis system, uk, vk, Wk• respectively; and (2) three 
rotations 'k· sk, and ek, lead, flap, and r.itch angles, respectively, of 
the bla~e (beginni~g with 'k about t~e n~ axis, Sk about the axis 
cos 'kn~ - sin cknl, 'md 8k about nx axis). Such a sequence is noted 
only for the purpose of definition; obviously, the sequence of angles will 
not affect the solution of the equations of motion. 

Exact expressions for the generalized forces due to inertia, gravity, 
body springs, the pitch-control systems, and quasi-steady airloads are 
derived in Ref. 10. The total forces acting along the blade may be resolved 
into a force and moment acting at the tip of the kth flexbeam. These are 
exactly balanced by the structural loads that the kth flexbeam exerts on 
the kth blade. This is true because all external loads acting along the 
flexbeam are neglected. All of the loads except the structural loads of 
the flexbeam can be expressed in closed form. A numerical scheme that 
solves the equilibrium deflections is described in the next section, treating 
the flexbeam structural loads implicitly. 

3.2 Flexbeam Equilibrium Deflections 

The force vector Fk, representing forces that the kth blade 
exerts on the kth flexbeam, and the moment vector Mk' representing the 
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moments that the kth blade exerts on the kth flexbeam, have steady 
and unsteady components: 

(1) 

Quantities without subscripts are steady components and the tilde 
quantities are unsteady components. Similarly, 

wk = w + wk (t) 
(2) 

'k r; + 2k ( t) 

sk = s + iik(t) 

t;k = r; + 2k ( t) 

The steady components F and M possess geometric nonlinearity in u, v, 
w, t;, S, 8. The unsteady components Fk and Mk may be analytically 
linearized in the following quantities and their first and second deriva-
tives: Uk' Vk' Wk' ~k' Sk' Bk' $X, $y' 

Consider only the steady part of the solution. If u, v, w, t;, S, 
8 were known (the deflections of the blade and tip of the flexbeam), then 
F and M would be determined. These deflections are not known, however. 
If the forces and moments at the root of the flexbeam FR, MR were known, 
the geometrically exact expressions for the curvature-slope-deflection 
relations could be numerically integrated along the flexbeam to obtain 
the correct tip deflections. Thus, what we have is a type of two-point 
boundary value problem. The expressions relating the tip deflections to 
tip forces and moments are known. The relation between root forces and 
moments and tip deflections is determined through numerical integration. 

A workable, accurate scheme for the solution of this problem is 
given in the following seven steps: (1) assume a set of flexbeam tip 
deflections ut, vt' wt, r; , S , 8 , (2) calculate the force and moment 
F and M based on the asEumea deflections, (3) transfer the force and 
moment F and M to the equivalent root force and moment FR and MR 
using the assumed tip deflections, (4) evaluate the tension force and 
bending and torsion moments for a generic point along the flexbeam in 
terms of the deflections u, v, w, r;, S, 8, each a function of the distance 
along the deformed flexbeam, (5) using moment-curvature relations, numeri
cally integrate the geometrically exact expressions relating bending and 
torsion curvatures to slopes and deflections (Ref. 10), (6) compare the 
assumed tip deflections ut' vt, wt, 't' st. et' with the tip deflections 
u, v, w, t;, a, 8 of step (5), (7) place steps (1) through (6) in an 
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optimization scheme to minimize 

3 = (u- ut)2 + (v- vt)2 + (w- wt)2 + (I; - l;t)2 + (S - St)2 + 

(e - e )2 
t 

(3) 

Naturally, the minimum 3= 0 is the exact solution to the equilibrium 
position of the rotor blades. This minimum can be found by use of a non
linear least squares algorithm. 

3.3 Perturbation Flexbeam Structural Loads 

In addition to the equilibrium solution the perturbation forces and 
moments that the flexbeam exerts in response to perturbation deflections 
must be determined. This is done by cyclically perturbing the equilibrium 
force and moment components in the directions of u, v, w, C, 8, 8 and 
looking at the new deflections. Symbolically, this is expressed as 

(ik Fuk 

'\ jlvk 

wk 
[ F] 

:Fwk 
( 4) = 

l;k gl;k 

sk Msk 

i\ Me k 

where [F] is a 6 x 6 matrix, identical for all k, the elements of which 
are 

deflection due to jth perturbed load) 
- ith equilibrium deflection (5) 

and s is the amount the loads are perturbed. The matrix elements are 
symmetric for infinitesimal s. Numerically, however, s cannot be any 
smaller than the square root of the relative error of the deflections. 
This will depend on the error criterion in the optimization algorithm. 
On the other hand, an s that is too large will produce slight nonsymmetry 
in [F] due to geometric nonlinearity. The force and moment response of 
the flexbeam to small perturbations of the deflection may be obtained from 
Eq. (4) by simply inverting [F]. The resulting matrix [F-1] is the 
structural stiffness matrix for the flexbeam. To complete the system 
equations of motion, this matrix may now be combined with the linearized, 
unsteady perturbation forces and moments produced by the pitch-control 
system, inertia, gravity, quasi-steady aerodynamics, and the body springs. 

3.4 Linearized Perturbation Equations 

When all of the generalized forces associated with both blade and 
body degrees of freedom are linearized in uk, vk, wk, 2k, Sk, ek, ~X' ~Y' 
and in their first and second time derivatives, there are many terms with 
coefficients cos ~k and sin ~k· In hover, all of these may be removed 
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by the multiblade coordinate transformation (Ref. 11), 
applying this transformation to the present problem are 
Only the rotor cyclic modes are coupled to the $x, $y 
hence, the collective and differential collective modes 
in the present analysis. The two cyclic modes for six 
each, plus the two body modes, yields fourteen degrees 
vc, 'Og, We, Ws, ~C! es, Sc, Ss, Eic, 8s, ¢x, ¢yl where 

and 

F 

F 

2 'h 
L:: 

b k=l 
'\ cos ljik 

2 b 
u = - <r"' ilk sin ljik 

s b t'l 

u 
c 

u 
s 

2 b 

b J~i 
• . 

F sin ljik 
uk 

The details of 
given in Ref. 10. 
body motion, and 
are not included 

degrees of freedom 
of freedom lie, U8 , 

(6) 

(7) 

These 14 resulting linear ordinary differential equations with 
constant coefficients can be formed into a matrix equation 

[A]{xl + [B]{xl + [C]{xl = o (8) 

where [A], [B], and [C] contain elements that depend on the system parame
ters and blade equilibrium deflections u, v, w, s, 6, 8, These matrices 
contain no small angle assumptions or geometric approximations. Equation 
(8) is solved as a conventional eigenvalue problem, 

4. Mathematical Model Validation 

A primary objective of the experiment was to provide data suitable 
for use in validating mathematical models of coupled rotor-body systems. 
To be successful, the validation process must meet three requirements: 
(l) the experimental model must closely simulate the theoretical model; 
(2) the parameter variation must be sufficiently extensive to test the 
limitations of the theory; and (3) the bases of comparison between theory 
and experiment must be valid. 

The requirement that the experimental model simulate the analytical 
model is necessary to insure that differences between the theoretical 
predictions and experimental measurements reflect limitations of the theory 
and not the experimental modeling process. As an example, the simplified 
theoretical model of Ref. 7 assumes that the rotor blades are hinged at 
the hub centerline and that their stiffness is due to a hinge-mounted 
spring. In the design of an experimental model it is difficult to place 
the hinge centerline at the rotor center. Thus, in any comparison of 
theory and experiment, there will be an effect due to hinge offset that 
is in the experimental data but not in the theory. The resulting ambiguity 
is that there is no way to know whether a difference that occurs is due 
solely to hinge offset, or whether there is an additional source of error. 
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There are other difficulties that occur in designing an experimental model 
to match a simplified mathematical model. Of these, joints and bearings 
present one of the more troublesome problems. Any loose joint, and many 
kinds of bearings, introduce friction or viscous damping and slop. Par
ticularly at model scale, nonlinearities or excessive damping can drasti
cally affect system damping and must be avoided. A second problem is 
that of extraneous system modes. The simplified theoretical model may 
assume that the blade is rigid or that body motion is constrained purely 
to pitch and roll. The experimental model, in fact, will have numerous 
higher modes, and the model designer's problem is to insure that these 
modes do not couple with the primary modes of interest. In emphasizing 
the necessity of the experiment matching the theory, it is also necessary 
to point out that the simplified theory must provide an adequate represen
tation of potential helicopter designs, or the entire exercise loses its 
value. 

The second requirement in the validation process is the need to 
provide for extensive parameter variation in the experimental design. 
Every parameter that is of significance in the theoretical model defines 
a dimension in an n-dimensional space that defines the model region of 
applicability. To validate the theory over the entire n-dimensional space 
would be difficult and would undoubtedly be a waste of time. However, it 
is desirable to select the more significant parameters and provide a suf
ficient range of variation to determine the limitations of the theory. 
Clearly, comparing theory and experiment for one or two points is of little 
value. 

The third requirement is that the bases of comparison must be valid. 
In investigating the aeromechanical stability of a hingeless rotor heli
copter, the behavior of the least damped mode is of the greatest importance; 
but there are a number of bases of comparison that may be used in the 
validation process, and some may be more useful than others. A hierarchy 
of these bases can be devised, the lowest basis.of which is the easiest to 
obtain but provides the least confidence in the theory, while the highest 
basis represents the most difficult experimental problem but provides the 
greatest confidence in the theory. For aeromechanical stability tests, an 
appropriate hierarchy starts with frequency measurements of a single mode, 
frequencies of all significant modes, stability boundaries, modal damping 
of a single mode and then all significant modes, and finally, mode shape 
measurements representing the most difficult problem. In selecting 
appropriate bases for an experiment, it may be necessary to strike a 
balance between the level of confidence that is needed and the difficulty 
of the experimental problem. 

5. Experimental Model 

Experimental data were obtained with a 1.62-m diameter, three-bladed 
model rotor as shown in Fig. 3. The electrically powered model is mounted 
on a gimbal frame that allows pitch and roll freedom, and the various 
modes of the system are excited by an electromagnetic shaker that is 
attached to the body through a linkage and pneumatic clamp. 

The rotor blades were designed to be very stiff, and most of the 
blade flexibility is concentrated in root flexures as shown in an exploded 
view in Fig. 4. The root flexures are designed so that the lead-lag and 
flapping flexibility are in separate flexures. By folding the structure 
back on itself, the spanwise locations of the flexures are made coincident. 
The design of the flexures is such that the torsional stiffness is very 
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Fig. 3. 1.62-m diameter rotor model. 

high; at 1000 rpm the blade nondimensional torsion frequency is greater 
than 20/rev. By designing the blades to be very stiff, and concentrating 
the major portion of flexibility in the root flexures, the model design 
approximates a rotor blade with only one flap and one lead-lag degree of 
freedom. This design provides a good approximation of the theoretical 
model that assumes all blade flexibility to be concentrated in a flexible 
element at the blade root. However, some blade flexibility is outboard 
of the root flexures (Ref. 12), and to this degree the model design differs 
from the theory. The root flexures are strain-gaged to provide measure
ments of flap and lead-lag bending moments and torsional moments for each 
blade. Blade pitch angle changes are made outboard of the flexures. 

The blades and root flexures are bolted to a hub that is mounted 
on a static mast, as shown in the schematic of Fig. 5. The static mast 
is bolted to the body, which is supported on either end by ball bearings. 
These ball bearings provide the body with roll freedom and are supported 
in a gimbal frame that is mounted to the yoke by a second set of ball 
bearings that provide pitch freedom. The yoke is the upper part of the 
stand, which provides a rigid support for the model. 

The model is excited about the roll axis by an electromagnetic 
shaker that is connected to the body with a pneumatic clamp. The shaker 
may be used to oscillate the body at a specific frequency or to provide 
an input deflection in roll. By opening the pneuQatic clamp, the body is 
then unconstrained and measurements are made of the transient decay of the 
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Fig. 4. Exploded view of blade root flexures. 
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Fig. 5. Schematic drawing of rotor model and test stand. 

modes that have been excited. For unstable conditions, a snubber mechanism 
within the stand may be actuated by the operator, or the snubber will 
automatically lock out body motions in the event that blade bending moments 
become excessive. 

Body stiffness is provided by cantilever-beam springs, one in roll 
and two in pitch. Each spring includes a slider that allows the working 
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Fig. 6. Local damping coefficient of gimbal pitch 
and roll bearings. 

length of the beam spring to be changed to adjust the body stiffness, and 
hence, frequency. The range of body frequencies is from about 2 to 20Hz. 
This design provides a good match of the theoretical model, in that the 
body motions are constrained to purely pitch and roll motions, at least 
at the lower body frequencies. At higher frequencies, however, the motion 
of the body will include some translational motions due to flexibility 
in the static mast. 

Body damping is supplied by damping in the gimbal ball bearings. 
Unfortunately, this damping is nonlinear with amplitude as shown in Fig. 6, 
where a local damping coefficient is defined based upon the log decrement 
per half cycle. The increase in damping with a decrease in amplitude is 
typical of Coulomb, or dry friction. If it is hypothesized that the 
source of the dry friction is the rubbing between the balls and the cage 
of the ball bearing, then the damping moment will be proportional to 
(1) the number of balls in the bearing that are restrained by the cage, 
(2) the friction force between ball and cage, and (3) the radius at which 
the friction force acts. A solution for the nonlinear equation describing 
a single degree of freedom system (Ref. 13) is shown in Fig. 6, where the 
friction force per ball is selected to match the experimental results at 
8i = 6° for the pitch bearing. The presence of nonlinear damping in the 
experimental model is a deficiency that would be expected to cause some 
difficulty in correlating the results of theory and experiment. 

Measurements of body motion are made with two accelerometers mounted 
just below the hub on the static mast and film potentiometer strips on the 
gimbal frame. The bending moment signals on the rotor are routed through 
a set of slip rings at the base of the rotor drive shaft; these are com
bined with the body measurements, 1/rev and 60/rev signals, lubricating 
oil lines, and cooling water lines and routed off the model in a manner 
to minimize their interference with body motions. Additional details 
relative to the model design and instrumentation are contained in Ref. 14. 
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6. Simulated Vacuum Tests 

The stability of coupled rotor-body motions is strongly affected 
by the blade aerodynamics. In the validation of a theoretical model, it 
would be desirable to test a model in a vacuum to observe the effect of 
inertial and structural properties without aerodynamics. However, vacuum 
testing is a difficult experimental problem. A partial solution is to 
simulate a vacuum by testing at a reduced Lock number. If the definition 
of Lock number is modified to include the effect of the profile drag 
coefficient 

4 Cd 
p acR (l + ___£_) 

I a 
(9) 

The Lock number may be reduced by substituting a blade of circular cross 
section where the lift curve slope is zero. If the circular cross section 
blade is assumed to have a uniform density, the Lock number becomes 

12PCd 
0 

(10) 

and it is seen that the Lock number is proportional to the radius and 
inversely proportional to the density of the rod and blade chord. If the 
constraint is added that blade flap inertia must not change from the aero
dynamic blade flap inertia, then: 

12I 
= constant (11) 

From these relations it appears that material density and blade chord 
should be increased, and blade radius reduced. It is important to note, 
however, that other dynamic properties of the rotor will be affected by 
these changes; e.g., dimensionless hinge offset increases proportionally 
to 1/R, while rotor mass increases as l/R2 . Large decreases in rotor 
radius will therefore cause a large hinge offset effect~ and reduce the 
body frequencies due to the effect of the increased rotor mass. In addi
tion, the flexibility of the circular cross section blade cannot be easily 
matched to the aerodynamic blade flexibility. In the present case, this 
latter point is unimportant as the theoretical model assumes that the 
blade is rigid. 

The configuration selected for this experiment is a reduction in 
blade radius from 81 em to 38 em and a selection of tantalum for the blade 
material. Tantalum has a density greater than lead, but has strength and 
stiffness characteristics similar to steel. The Lock number for this 
configuration is reduced to 0.2% of the aerodynamic blade value. A pic
ture of the model with the tantalum blades installed is shown in Fig. 7. 

7. Modal Measurement Considerations 

The essential problem of the experiment is to understand the 
behavior of the modes that affect the aeromechanical stability of the 
coupled rotor-body system. An introduction to the behavior of these 
modes and how to measure their characteristics can be obtained by examin
ing the case of a rotor mounted on a rigid hub, where each blade has a flap 
and a lead-lag degree of freedom. For a three-bladed rotor, then, the 
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Fig. 7. Rotor model with tantalum stub blades installed. 

individual blade modes will combine to form six rotor modes: collective 
flap, collective lead-lag, two cyclic flap, and two cyclic lead-lag modes. 
The two collective modes will not couple with body pitch and roll motions 
in hover and may be safely ignored. The frequencies of the cyclic modes 
will appear in the fixed system at sum and difference frequencies between 
rotor speed and the individual blade natural frequencies as shown in 
Fig. 8 (where the individual blade natural frequencies in the rotating 
system are shown as dashed lines). The higher frequency modes that are 
based on the sum are referred to as progressing modes, while the lower 
frequency modes based on the difference are the regressing modes. 

For rotor speeds below the resonance of rotor speed and the lead-lag 
natural frequency (n = w,), rotors may be characterized as stiff inplane. 
Rotor speeds beyond the resonance describe soft inplane configurations. 
It is in this latter regime that the coupled rotor-body instabilities, 
ground and air resonance, normally occur. The experimental problem, then, 
is to select body modes with frequencies in the range of the lead-lag 
regressing mode and observe the behavior of the coupled rotor-body system. 

The frequency and damping of the rotor regressing modes and the 
body pitch and roll modes provide an accurate description of coupled rotor
body behavior, and are suitable bases of comparison between theory and 
experiment. To observe these modes directly, however, is difficult, as 
neither the rotor regressing nor the body modes correspond directly to a 
physical coordinate. The body pitch mode includes pitch motion, to be 
sure, but also includes roll motion and rotor flapping. The body roll 
mode behaves similarly, while the flap regressing mode is made up of not 
only flapping, but both body motions as well. Moreover, neither the flap 
nor the lead-lag regressing mode can be identified from individual blade 
bending moment signals. To observe these modes it is necessary to trans
form the individual blade coordinates to multiblade coordinates (Ref. 11). 
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The multiblade coordinates for a 
three-bladed rotor include a col
lective coordinate and two cyclic 
coordinates for both flap and 
lead-lag degrees of freedom. For 
a hovering rotor, the flap and 
lead-lag collective coordinates 
make up the flap and lead-lag 
collective modes, respectively. 
But the lead-lag regressing mode, 
for example, includes both cyclic 
lead-lag coordinates, as does 
the lead-lag progressing mode. 
Thus, measurements of either cyclic 
lead-lag coordinate will show the 
presence of both modes. To 
observe the lead-lag regressing 
mode directly requires a narrow 
bandpass filter to separate the 
regressing and progressing modes. 

The frequency and damping 
of the modes of interest are 
obtained by exciting the mode, 
and measuring the frequency and 
damping from the transient decay. 
In the case of the lead-lag 
regressing mode, the model was 
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Fig. 8, Uncoupled rotor frequencies 
in rotating and fixed systems. 

oscillated in roll at the regressing mode frequency until the blade motions 
were sufficiently large, at which point the excitation was cut off and the 
pneumatic clamp that connects the model to the shaker was opened so that 
the mode could decay without restraint due to the shaker. The flap regress
ing (in the simulated vacuum case) and the body roll mode could not be 
excited at their modal frequencies without causing excessive loads due 
to lead-lag response. This is probably an inherent limitation of the tran
sient decay method whenever there is a significant difference in damping 
between nearby modes. However, both flap regressing and body roll modes 
could be excited by deflecting the model in roll and quickly releasing it. 
Responses of the two modes were then separated using a narrow bandpass 
filter. The body pitch mode was excited to the extent it participated 
in motion about the roll axis, and by gyroscopic coupling. 

Transient decay records were analyzed for modal frequency using 
both an online spectrum analyzer, and by playing the signals recorded 
on analog tape back through a tracking filter. Modal damping was deter
mined from analog tape records using the log RMS amplitude of the tracking 
filter as described in Ref. 15. 

8, Comparison of Theory and Experiment 

The configurati'ons tested that will be discussed here are: (1) tan
talum stub blades with roll freedom, (2) tantalum stub blades with both 
pitch and roll freedom, and (3) aerodynamic blades with pitch and roll 
freedom. Other configurations tested and the comparison of theory and 
experiment may be found in Ref. 14. For each configuration tested, the 
primary parameter variation used was rotor speed. By varying rotor speed 
from approximately 250 to 1000 rpm, rotor configurations were simulated 
from stiff inplane (w,/Q ~ 1.7/rev) to soft inplane (wc/Q ~ 0.7/rev). For 
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specific configurations, secondary parameter variations were included, such 
as body stiffness (frequency) and blade pitch angle, but these variations 
were not extensive. 

The experimental model properties required for use in the theoretical ~ 
model were obtained from nonrotating measurements. The body spring stiff-
nesses in the simulated vacuum case, for instance, were calculated based on 
the measured nonrotating body frequencies, using the uncoupled pitch and 
roll equations, and assuming the blade motion was locked out due to the re-
straint of the blade droop stops. The bending and torsional stiffness of 
the single element flexbeam of the theoretical model were determined directly 
from measurements of blade nonrotating frequencies. No adjustments were made 
to any of these properties to improve the correlation between the theory and 
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Fig. 9. Tantalum stub blades with roll 
freedom. w$ = 2.60 Hz (flagged symbols 
are w~ = 2~56 Hz; shaded area shows 
effect 3f halving and doubling nominal 
body damping), (a) Modal frequencies. 
(b) Lead-lag regressing mode damping. 
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experimental data. The input proper
ties used by the theoretical model 
are described in Ref. 14. An ex-
ception to the above comments was 
the specification of body damping. 
Estimates of the nonlinear gimbal 
damping from nonrotating tests 
necessarily represent some sort of 
"average" damping, which may or 
may not provide a good approxi
mation of the nonlinear effects. 
Rather than using such an average, 
the body damping was arbitrarily 
set to 3% of critical, and the 
effect of this assumption was ex-
amined by calculating results at 
half and double this value. 

8.1 Tantalum Stub Blades with 
Roll Freedom 

The tantalum stub blades 
were run with just the body roll 
degree of freedom by locking out 
the pitch motion of the gimbal 
frame. This resulted in the model 
and stand having a first pitch 
frequency of approximately 27 Hz, 
which is well separated from the 
body roll and rotor regressing 
mode frequencies. By testing with 
the tantalum stub blades to simu
late a vacuum and locking out the 
body pitch degree of freedom, it 
was possible to examine an ex
tremely simple coupled rotor-body 
system. The theory is compared 
with the experimental results in 
Fig. 9 for the case of a non
rotating body frequency of 2.60 Hz. 

The plot of modal frequen
cies shows the rotor regressing and 
body mode frequencies (and a small 
portion of the flap progressing 
mode) as a function of rotor speed. 



The experimental estimates of lead-lag regressing mode frequency were obtained 
from the 'c cyclic coordinate, following excitation of the lead-lag regress
ing mode, and are indicated by circles. The body roll and flap regressing mode 
frequency measurements were obtained from the roll axis potentiometer, follow
ing the deflection and release of the model in roll, and are indicated by dia
monds for the body roll mode and triangles for the flap regressing mode. 
Because these modes comprise more than one degree of freedom, the names 11 body 
roll 11 or 11 flap regressing" are only a convenient means of naming the modes, but 
do not constitute an exact description. 

As rotor speed increases, the lead-lag mode decreases in frequency until 
resonance with the rotor speed is reached at about 505 rpm. Above this reso
nance, the lead-lag regressing mode increases with increasing rotor speed. 
The body roll mode is also rotor-speed dependent within the range of rotor 
speeds tested and increases quickly enough with rotor speed to prevent any 
coalescence with the lead-lag regressing mode. Interestingly enough, the flap 
regressing mode coalesces with the lead-lag regressing mode at about 670 rpm, 
and a very weak mechanical instability occurs. This coalescence is shown 
scaled up five times in the inset to the figure. This weak instability is dis
cussed in Ref. 7 and is limited to rotors in a vacuum or, as in this case, in 
a simulated vacuum. The correlation between the theory and experiment for 
modal frequency is excellent. Even at the expanded scale of the inset, the 
correlation is still quite good. 

Figure 9(b) shows the lead-lag regressing mode damping as a function 
of rotor speed. Although attempts were made to estimate the damping of the 
body roll and flap regressing modes, the nonlinearity in the gimbal ball 
bearings was evident in both modes, and no suitable quantitative estimates 
could be made. Despite the nonlinear gimbal damping, however, the lead-lag 
regressing mode damping was linear and well-behaved, except for a few con
figurations in the vicinity of stability boundaries (these points are noted 
when they occur). The experimental damping measurements show considerably 
more scatter than in the measurements for frequency, and clearly show the 
weak instability at the coalescence of the flap and lead-lag regressing 
modes. The theoretical prediction of lead-lag regressing mode damping 
shows good agreement with the data, except for an overestimation of the 
damping level, particularly at higher rotor speeds. Although the nonlinear 
character of the gimbal bearing damping cannot be included in the theoreti
cal model, the effect of different levels of body damping may be used to 
examine the sensitivity of the predicted results to body damping. The 
shaded areas in this figure show the effect of halving and doubling the 
nominal body damping of 3%. For the most part, the lead-lag regressing 
mode is insensitive to the amount of body damping, except when the flap 
and lead-lag regressing mode frequencies are proximate. This suggests 
that the experimental measurements of lead-lag regressing mode damping are 
valid, despite the nonlinear gimbal damping. In addition, it does not 
appear that the difference in damping level between theory and experiment 
can be ascribed to the nonlinear gimbal damping. The computed modal fre
quencies are not affected by the level of gimbal damping. 

The lead-lag regressing mode damping calculated for an actual vacuum 
is also shown in this figure, and it can be seen that these predictions 
are significantly less than the simulated vacuum predictions, a difference 
due to the profile drag damping of the tantalum stub blades (cd = 1.0). 
The original purpose in doing simulated vacuum tests was to exagine the 
effects of inertial and structural terms without the influence of blade 
aerodynamics. Although the effects of residual aerodynamics on the lead
lag regressing mode damping are significant, the character of the true 
vacuum behavior is retained in the simulated vacuum case. 
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Fig. 10. Mode shapes for tantalum 
stub blades with roll freedom (modal 
frequency from Fig. 9). 

The behavior of the coupled 
rotor-body modes is more readily 
understandable if the mode shapes 
are examined, The modal frequency 
plot of Fig. 9(a) from zero to 
250 rpm is expanded in Fig. 10, and 
the calculated mode shapes for 
selected rotor speeds are plotted 
on the figure. For each mode a 
vector is used for each coordinate 
to show relative amplitude and 
phase. The cosine flap coordinate, 
S , has been selected as a zero 
pfiase reference. If the lowest 
frequency mode at zero rotor speed 
is examined, it can be seen that it 
consists of sine flapping, Bs, and 
body roll. Because of the sign 
convention used here, inphase motion 
of Bs and ¢x is represented by 
vectors of opposite phase, and vice 
versa. Thus, the motion of this 
mode shape is the body and rotor 
moving together in a fashion analo
gous to first-mode bending of a 
beam. As the rotor speed is increased 
from zero, this motion persists with 
the addition of cosine flapping. 
From the mode shapes of this first 
mode, it is clear that this is a 
combined body-flapping mode, despite 
the name 11 flap regressing 11 that has 

been given to it. The next higher mode in frequency, at zero rotor speed, 
shows purely cosine flapping. In this case, the rotor disk is tilting 
back and forth about the pitch axis, its motion reacted by the infinite 
stiffness of the body pitch coordinate. The third mode at zero rpm con
sists of sine flapping and body roll as in the first case, but now the 
motions are out of phase (inphase vectors mean out-of-phase motion due to 
the sign convention). This kind of motion, where the rotor disk tilts 
one way and the body tilts the other, is analogous to the second bending 
mode of a beam. If rotor speed is increased to 50 rpm, this third mode 
changes character and becomes purely a flapping mode (the flap progressing 
mode), while the characteristic of out-of-phase sine flapping and body 
roll motion now becomes the property of the second mode, a mode previously 
referred to as the "body roll" mode. It is now possible to see that the 
body roll and flap-regressing modes both have significant amounts of body 
and flapping motion in them and that they are distinguished by the phasing 
of the motions. The flap regressing mode is where the rotor disk tilts 
with the body and has the lower frequency. The body roll mode is where 
the disk tilts in opposition to the body and has the higher frequency. 

The fourth mode in Fig. 10 shows sine lead-lag motion at zero rp~. 
This mode is the lead-lag oscillation of the blades against the restraint 
of the locked-out pitch degree of freedom. As rotor speed is increased to 
50 rpm, the mode is made up of sine and cosine lead-lag motion. At higher 
rotor speeds this mode takes on the character of pure flapping oscillations, 
that is, the flap progressing mode, while the third mode, that was previously 
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discussed, now shows mostly lead-lag oscillations and has become the lead
lag regressing mode. 

From a mathematical point of view, the various modes are unique 
and well defined. For instance, the third mode in Fig. 9(a) starts out 
with primarily sine and cosine flapping (flap progressing), the mode shape 
changes as rotor speed is increased, and the character becomes sine and 
cosine lead-lag oscillations (lead-lag regressing). Above 250 rpm the 
mode takes on the behavior of out-of-phase roll and sine flapping motions 
(body roll). Despite the different behavior this mode shows at different 
rotor speeds, it is a single, unique mode, as would be clearly seen if 
it had been shown on a root locus plot. But, to understand the behavior 
of the system from a physical point of view, it is necessary to consider 
the physical modal behavior. Thus, the lead-lag regressing "mode" starts 
out as the fourth mode, but as rotor speed is increased it becomes, pro
gressively, the third, second, and finally, the first mode. An element of 
confusion is probably inherent in the process of referring to separate 
mathematical modes as a single physical 11mode, 11 but the process is essen
tial to understanding the system behavior. 

An additional case was run with the tantalum stub blades and roll 
freedom alone, which included excitation of the lead-lag progressing mode 
as well as the lead-lag regressing mode. The nonrotating body roll fre
quency was lowered to 1.89 Hz for this case, and the theory and experiment 
are compared in Fig. 11. The behavior of the rotor regressing and the 
body roll modes is similar to that shown in Fig. 9. The agreement between 
the theory and experiment for modal frequency is again excellent, while 
the agreement is good for lead-lag regressing damping. Lead-lag progressing 
mode frequency and damping were obtained by oscillating the model in roll 
at the progressing mode frequency and estimating the frequency and damping 
from the transient decay. These data are shown in the figure as solid 
diamonds. A fifth mode is added to the collection described previously. 
This mode starts out as the lead-lag progressing mode, and in the vicinity 
of 400 rpm the mode becomes the flap progressing mode. The fourth mode, 
which is the flap progressing mode below 400 rpm, turns into the lead-lag 
progressing mode. The agreement between the predicted lead-lag progressing 
frequency and the measurements is very good below 400 rpm but is degraded 
at higher rotor speeds. Similarly, the prediction of modal damping is good 
below 400 rpm, but at higher rotor speeds the damping is significantly 
underpredicted. 

If the pitch degree of freedom is added to the analysis, and the 
nonrotating measurement of pitch frequency is used to specify the pitch 
stiffness, then the agreement between theory and experiment is much 
improved, as shown by the dashed lines in Fig. 11. The theoretical pre
diction of the lead-lag progressing mode frequency now shows the same 
trend as the data, although the agreement is not as good as for the low
frequency modes. The agreement between theory and experiment for the modal 
damping is not as good as in the frequency case, but it seems clear that 
the pitch degree of freedom is responsible for the rapid rise in damping 
that is seen for rotor speeds above 400 rpm. Unlike for the lead-lag 
regressing mode, the lead-lag progressing mode damping is very sensitive 
to the amount of damping in the roll gimbal bearings, and this may be 
responsible for some of the difference between theory and experiment in 
Fig. ll(b). It is noted that the theoretical predictions for the body 
roll and rotor regressing mode damping and frequency are the same whether 
the pitch degree of freedom is included or not. This demonstrates that 

21 - 17 



'""·Hz 

LEAD·LAG 
PROGRESSING 

--._.,.~!¥--"{;(PZ"""..&-<1 FLAP 

'--::::::--:-!::C""""'--:C:;:--:::. R E GR E SSI NO 

11. rpm 

- 8 

-.7 

- 6 

-.5 

WITHOUT PITCH FREEDOM 

WITH PITCH FREEDOM 

t PROGRESSING MODE DAMPING 

0 REGRESSING MODE DAMPING 

I 
I + 
I 
I 
I 
I • • 
I 
I + 
I 

• 

UNSTABLE 
lbl 

1 o~-c,:!:oo:;--:-"!::o-cs~o;co -::,!::oo:-:,c!o·oo 
ll.1pm 

Fig. 11. Tantalum stub blades with roll freedom including progressing modes; 
w~x = 1.89 Hz. (a) Modal frequencies. (b) Lead-lag mode damping. 

tests with a single body degree of freedom can be successfully performed if 
the frequency of the extra body mode is placed sufficiently far away from 
the frequency of the modes of interest. 

8.2 Tantalum Stub Blades with Pitch and Roll Freedom 

The model was tested with the tantlum stub blades, and with both 
pitch and roll freedom. The nonrotating pitch and roll frequencies were 
selected to have approximately the same value. A comparison of theory and 
experiment for modal frequency and damping is shown in Fig. 12. 

The major change that results with the addition of the body pitch 
mode is that the lead-lag regressing and body pitch modes coalesce, and 
a severe mechanical instability of the ground resonance type occurs at 
about 860 rpm. Interestingly enough, the weak instability and frequency 
coalescence between the flap and lead-lag regressing modes, which was seen 
in the roll freedom alone configuration, is now absent. The correlation 
between theory and experiment for modal frequency is quite good, although 
it appears from the experimental data that the body pitch frequency approaches 
coales~ence with the lead-lag regressing mode frequency at lower rotor speeds 
than predicted by theory. 
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The nonlinear damping in the 
gimbal bearings causes estimates of 
flap regressing or body mode damp
ing to be unsuitable, as in the roll 
freedom alone case. The lead-lag 
regressing mode damping for the most 
part is insensititve to the level of 
body damping over the rotor speed 
range tested, except in the vicinity 
of 400 rpm, where the flap and lead
lag regressing modes are strongly 
coupled, and near the stability 
boundary. In the vicinity of the 
stability boundary a number of test 
points show apparent nonlinearities. 
These are indicated in the figure 
by an arrow that extends from the 
initial damping level to the final 
damping level measured at the end 
of a data record. The nonlinearity 
in damping in this case is in the 
same sense as the gimbal bearing 
damping, that is, the damping de
creases as amplitude increases. 
In general, the agreement between 
theory and experiment for the lead
lag regressing mode damping is good. 
The data scatter is reduced from the 
roll freedom alone case, but the 
reduction is exaggerated by the con
densation of the ordinate scale. 

The addition of the body 
pitch mode complicates the behavior 
of the various modes. The flap re
gressing mode is essentially as 
before: it is made up of the disk 
tilting in the same direction as the 
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Fig. 12. Tantalum stub blades with 
pitch and roll freedom; w~x = 2.55 Hz, 
w~y = 2.58 Hz (shaded area shows effect 
of halving and doubling nominal body 
damping). (a) Modal frequencies. 
(b) Lead-lag regressing mode damping. 

body tilt, and the two travel together around the azimuth at the flap re
gressing mode frequency. The body pitch and roll modes both represent out
of-phase motio'n, with the body tilting in the opposite direction from the 
rotor disk. The major difference between the two modes is that the pitch 
mode shows relatively more body deflection than flapping deflection, while 
the roll mode shows more flapping deflection than body deflection. Both 
body modes have considerable pitch and roll motion in them, although the 
pitch mode has more pitch deflection than roll deflection, and the roll mode 
has more roll deflection than pitch deflection. 

8.3 Aerodynamic Blades with Pitch and Roll Freedom 

The model was tested with the aerodynamic blades installed at blade 
pitch angles of 0' and 8.9'. The same body springs were used for the pitch 
and roll axes as for the tantalum stub blade case, but because of the reduced 
rotor mass there was an increase in the nonrotating body frequencies from 
2.58 to 2.62 Hz for pitch, and 2.55 to 2.75 Hz for roll. The first blade 
pitch angle case is representative of a ground resonance condition as there 
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is very little thrust on the rotor 
(there is some thrust due to blade 
camber). The modal frequencies and 
lead-lag regressing mode damping for 
this condition are shown in Fig. 13. 

The modal frequencies in this 
case illustrate a number of differences 
with the comparable tantalum stub blade 
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set is significantly reduced, the lead-
lag regressing mode frequency varies 
more rapidly with rotor speed than 
before. The flap regressing mode is 
now heavily damped by the blade aero
dynamics, and frequency information 
could not be obtained with transient 
excitation techniques. The body pitch 
and roll mode frequencies are virtually 
independent of rotor speed, and cross 
the lead-lag regressing mode rather 
than coalescing with it. The lead-lag 
regressing mode is unstable over a 
fairly wide range in rotor speed, but 
the instability is considerably milder 
than in the tantalum blade case. This 
tendency of aerodynamics to reduce the 
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lbl severity of the instability as compared 
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Fig. 13. Aerodynamic blades with 
pitch and roll freedom; wtx = 2.73 
Hz, w~y = 2.62 Hz, eb = 0 . 
(Shadea area shows effect of halv
ing and doubling nominal body 
damping.) (a) Modal frequencies. 
(b) Lead-lag regressing mode 
damping. 

The correlation between the theoretical 
predictions of frequency and the measure
ments is not as good as for the simulated 
vacuum conditions. The body mode fre
quencies show slight areas of disagree
ment, at both high and low rotor speeds. 
The lead-lag regressing mode frequency 
shows a systematic difference that is 
greatest at the maximum rotor speed and 
may reflect the effect of the model 
blade flexibility. In the rotor speed 

range where the system is unstable, significant differences appear between the 
calculated and measured body frequencies, but this may be due to the difficulty 
in making accurate measurements of the frequency of a stable mode in the 
presence of an unstable one. Overall, the correlation for the modal frequen
cies is good. 

The theoretical calculation of lead-lag regressing mode damping shows 
good agreement with the data at rotor speeds up to the lower stability boundary. 
Beyond this point the theory underestimates the amount of unstable damping, 
and as rotor speed is increased the theory overpredicts the recovery in damp
ing. Although the theory shows that the lead-lag damping is sensitive to the 
level of body damping in the unstable rotor speed range and beyond, this is 
not enough to explain the observed differences. The theoretical model uses 
a symmetrical airfoil, and so for these conditions there is no inflow. The 
experimental model, however, employs a cambered airfoil and in this respect 
fails to match the theory. The inexact match between theory and experiment 
results in an ambiguity-it is not known how much of the difference can 
be explained by the effects of camber and inflow. As in the tantalum stub 
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blade configuration, there are experimental measurements that show apparent 
nonlinearities in damping in the unstable regime. The test points at 725 
rpm show damping variation with amplitude that has the same sense as the 
gimbal bearings, that is, as amplitude increases, the damping becomes less. 
What is more interesting is that at 800 rpm the nonlinear damping is opposite 
to the sense seen in the gimbal bearings. The reason for these nonlinearities 
is unknown. 

The mode shapes in the aerodynamic case are not significantly dif
ferent from the tantalum stub blade case. Perhaps most interesting is how 
the various flapping-body modes are affected by the increase in aerodynamic 
flap damping. The flap regressing mode has become heavily damped, and this 
seems reasonable as the mode is made up of inphase flapping and body 
motions. Thus, tilt of the disk is accentuated by tilt of the body, and 
the normal flapping velocity is increased by the body rotation. For the 
body modes the rotor disk motion is opposite in phase to the body motion, 
and the effect of the flap damping is significantly reduced. In effect the 
flapping velocity is decreased by the opposite motion of the body, It 
is these body modes that couple with the lead-lag regressing mode to 
cause aeromechanical instabilities of the air and ground resonance type. 
The fact that the body motions are 
out of phase with blade flapping may 
explain why techniques that are 
effective in augmenting lead-lag 
damping for rigid hub conditions 
lose all effectiveness when body 
freedom is added (Ref. 16). 

The theory is compared with 
the experiment for the high thrust 
case where eb = 8.9° in Fig. 14. 
Experimental measurements were made 
for rotor speeds at 550 rpm and above. 
The modal frequencies are similar to 
the low thrust case, and the same 
systematic difference between theory 
and experiment is seen for the lead
lag regressing mode. The calculated 
values for body roll mode frequency 
are less than the measured values, but 
in general, the correlation is good. 

The lead-lag regressing mode 
damping is considerably changed from 
the low thrust case. The effect of 
blade pitch angle and thrust is to 
significantly increase the damping 
at rotor speeds below the stability 
boundary, and to increase the size 
and the severity of the unstable 
region (Ref. 7). The theory shows 
reasonable agreement with the data, 
and in particular calculates the 
amount of unstable damping quite 
well. However, it underestimates 
the recovery in the damping at the 
upper stability boundary, a trend 
that is opposite to that seen in 
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Fig. 14. Aerodynamic blades with pitch 
and roll freedom; W$x = 2.73 Hz, 
W$y = 2.62 Hz, eb = 8.9°. (Shaded area 
shows effect of halving and doubling 
nominal body damping.) (a) Modal frequen
cies. (b) Lead-lag regressing mode 
damping. 

21 - 21 



the low thrust case. Apparent nonlinearities in damping again appear in 
the unstable region, and as in the low thrust case, the sense of the non
linearity is the same as the gimbal bearing nonlinearity at the lower 
speed and opposite in sense at the higher speed. 

9. Concluding Remarks 

The experiment reported in this paper was undertaken to obtain data 
for the validation of simplified theoretical models of coupled rotor-body 
systems, and to obtain a better understanding of hingeless rotor helicopter 
aeromechanical stability. The following conclusions are offered: 

(1) Modal frequency data of excellent quality were obtained for the 
lead-lag regressing mode, the body pitch and roll modes, and in the simu
lated vacuum case for the flap regressing mode. Modal damping data for the 
lead-lag regressing mode were also obtained and were of good quality. 

(2) Nonlinear damping characteristics of the gimbal ball bearing 
prevented acquiring adequate modal damping data for the flap regressing 
or body modes. No significant effect on the modal frequency measurements 
or lead-lag regressing mode damping due to the gimbal damping was observed. 

(3) Both theory and experiment show a weak mechanical instability 
to occur when the flap and lead-lag regressing mode frequencies coalesce 
under simulated vacuum conditions and with roll freedom alone. This insta
bility was predicted in Ref. 7. 

(4) Both theory and experiment demonstrate a mechanical instability 
of the ground resonance type for the simulated vacuum tests with pitch and 
roll freedom. 

(5) Both theory and experiment show aeromechanical instabilities for 
tests with the aerodynamic blades installed with pitch and roll freedom. 
Aeromechanical instability occurs at both low and high thrust conditions. 

(6) The correlation between theory and experiment for modal frequency 
is in general very good. The correlation for lead-lag regressing mode 
damping is generally good. Agreement between experiment and theory is 
better for the simulated vacuum tests than with the aerodynamic blades 
installed. 

(7) The use of circular cross-section blades of tantalum to simulate 
vacuum testing is a useful technique. Despite some residual effects due to 
profile drag, the tantalum stub blades used in the experiment provide a good 
approximation of the behavior of a coupled rotor-body system in a vacuum. 

(8) The progression in test configurations from simulated vacuum with 
only one body degree of freedom, to an aerodynamic blade configuration with 
both pitch and roll freedom, provided an opportunity to observe the funda
mental behavior of coupled rotor-body systems as complexity was increased. 

(9) Calculation of mode shapes provided basic knowledge of the behavior 
of the model. The flap regressing and body modes all contain substantial 
flapping and body motion. The flap regressing mode is distinguished from 
the body modes by the inphase tilting of the disk with the body (like the 
first bending mode of a beam). With the inclusion of aerodynamics this mode 
is highly stabilized. The body modes are characterized by out-of-phase 
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motion of the rotor disk and body, and these are the modes 
the lead-lag regressing mode for ground and air resonance. 
of aerodynamics these modes are not strongly damped. 

that couple with 
With the addition 

(10) The stringent requirements that ~ere established for experimental 
data to be used in the validation of theoretical models were not entirely met. 
With respect to the match between the theory and the experimental model, the 
nonlinear gimbal damping, and aerodynamic blade flexibility and camber leave 
some ambiguity as to the cause of differences seen between theory and experi
ment. The nonlinear bearing damping prevented satisfactory measurements of 
the body modal damping, and this decreased the number of bases of comparison 
for theory and experiment. Lastly, more parameter variation is required, 
particularly to examine the effects of blade pitch angle variation. 
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a 

b 

c 

e 

[ F] 

F 

Fk 

Fk 

FR 

FUk'FVk'FWk 

h 

I 

L 

NOTATION 

lift curve slope 

number of blades 

blade chord, m 

blade profile drag coefficient 

dimensionless offset of hinge from rotor center 

function to be minimized to produce rotor equilibrium 
solution 

flexbeam flexibility matrix 

steady component of Fk,N 

force acting on the kth blade, N 

perturbation oscillatory component of Fk,N 

force at the flexbeam root, made dimensionless by 
m2 

0 
~ 

perturbation components of force in the direction of u,v,w, 
respectively, acting at the flexbeam tip 

height of rotor-hub center above aircraft reference center, m 

rotor blade flapping inertia about flexbeam tip, kg-m2 

body mass moment of inertia for the body mass center for 
axes NA and NB, respectively, kg-m2 

blade length, m 

flexbeam length, m 
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M 

Mk 

Mk 

MR 

F!ck'f1ek,Mek 

m 

mf 

NA,NB,NC 

k k k 
Nl ,N2 ,N3 

k k k 
n ,n ,n 

X y 2 

p 

R 

u 

v 

w 

2 

s 

steady component of Mk, N-m 

moments exerted on the kth blade, N-m 

perturbation oscillatory component of Mk, N-m 

moment at the flexbeam root, made dimensionless by m 2 
0 

perturbation components of moments in the direction of 
s, s, e, respectively, acting at the flexbeam tip 

mass of one rotor blade, kg 

mass of the fuselage, kg 

body-fixed coordinate system, Fig. 1 

coordinate system that rotates at angular velocity n, Fig. 

coordinate system fixed in the kth undeformed flexbeam 

coordinate system fixed in the kth deformed flexbeam tip 

dimensionless blade flapping frequency, Fig. 8 

rotor radius, m 

steady component of uk, m 

axial deflection of the kth flexbeam tip, m 

steady component of vk' m 

chordwise deflection of kth flexbeam tip, m 

steady component of wk' m 

flapwise deflection of kth flexbeam tip, m 

vector with 

~s' gc' gs' 

elements: Uc, 
e -
c' 8 s' .::px' q>y 

a , v , 
s c 

v , 
s 

w , 
c 

w , 
s 

1 

vertical distance from aircraft reference center to body mass 
center, positive ~vhen body mass center is below reference 
center, m 

steady component of Sk' rad 

cosine flap coordinate, rad 

elastic flap rotation of the kth flexbeam tip, positive 
tip up, rad 

sine flap coordinate, rad 

modified Lock number, Eq. (9) 
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e 

p 

a 

w 

perturbation of flexbeam tip loads 

steady component of sk' rad 

cosine lead-lag coordinate) rad 

elastic lead angle of the kth flexbeam tip, positive tip 
leading, rad 

local damping ratio, Fig. 6, percent critical 

sine lead-lag coordinate, rad 

steady component of ek, rad 

built-in pitch angle of the blade with respect to the flex
beam, positive leading edge up, rad 

local deflection angle, Fig. 6, deg 

elastic twist of the kth flexbeam tip, positive leading 
edge up, rad 

air density, kg/m3 

density of circular cross-section blades, kg/m3 

damping exponent, sec-1 

time integral of angular velocity component in NA direction, 
rad 

time integral of angular velocity component in NB direction, 
rad 

azimuth angle of kth blade= Qt + 2n(k-l)/b 

rotor angular velocity, rad/sec, Hz, or rev/min 

nominal rotor angular velocity, rad/sec 

modal frequency, Hz 

frequency of lead-lag motion, Hz 

frequency of lead-lag, flapwise motion, respectively when 
Q = 0, Hz 

frequency 
n = o, 

of body roll, pitch motion, respectively when 
H z 
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Flexbeam tip deflection notation (x represents deflections u, v, w, S, 
s, e) : 

x 
c 

X 
s 

2 b 
b L xk cos tJ;k 

k=l 

unsteady component of xk 

b t L ~sin tj;k 

k=l 

assumed value for x in equilibrium deflection scheme, 
made dimensionless by ~ for u, v, and w 
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